
DeepDroid: Dynamically Enforcing
Enterprise Policy on Android Devices

Xueqiang Wang1, Kun Sun2, Yuewu Wang1, Jiwu Jing1

1Institute of Information Engineering, CAS
2College of William and Mary

Mon, Feb. 9th, 2015

2/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

3/31

Introduction

 Mobile devices are widely used for work
purposes.

 “51% of end users rely on smartphones to
perform daily business activities.”——Cisco

 “Android hit 84% smartphone share in Q3
2014”——IDC

4/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

5/31

Related Work

 Evolutionary support from Google

 Android Permission

 Coarse-grained

 All-or-nothing

 Lack of run-time configuration

 Device Administration APIs

 Only provide device-level control on password
policy, camera, device wipe, etc.

 Very limited interfaces (43 in KitKat VS 500+ in
BlackBerry)

6/31

Related Work

 Evolutionary support from Google

 Introduction of SEAndroid

 Brings flexible MAC to Android

 Middleware MAC has not been included, even in
Android 5.0

 Unavailable on legacy phones (58.7%<version 4.4)

 Incorporation of Knox APIs

 A large step towards “Android for Enterprise”

 Introduces Knox features into AOSP except
hardware-based ones

 Unavailable on legacy phones (98.4%<version 5.0)

7/31

Related Work

 Possible solutions

 Device OEMs’ API, e.g., SAFE, HTC, 3LM, LG.

 Other solutions based on source code
modification

 Extending permission, e.g., Compac[CODASPY’14].

 Introducing MAC, e.g., FlaskDroid[USENIX Security’13],
SEAndroid[NDSS’13].

 Dynamic taint tracking, e.g., TaintDroid[OSDI’10].

 Data shadowing, e.g., AppFence[CCS’11]

 Portability issue caused by tremendous source code
modification.

8/31

Related Work

 Possible solutions

 Rewriting Android apps

 Dalvik bytecode rewriting, e.g., I-ARM-
Droid[MoST’12]

 Low-level libc interposition, e.g.,
Aurasium[USENIX Security’12]

 On-the-phone instrumentation, e.g.,
AppGuard[TACAS’13]

 Require no modification to smartphone’s firmware
and require no root access

 Lack of isolation between app and monitoring
code.

9/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

10/31

 The system_server
 centralized controller for

middleware permissions

 The client-server architecture
 system services, content

providers, etc.

 Binder IPC
 RPC to services/content

providers

 Intent

 Broadcast

 Messengers

 ashmem

 …

Basic Idea-Middleware

/system/bin/mediaserver

com.android.phone

android.process.acore

android.process.media

……

system_server

configure middleware

permissions

configure middleware

behaviors

 Dynamic Memory Instrumentation

11/31

Basic Idea-Linux

zygote

app1 app2 app3

Activity

Manager

Create process that can:

• read/write sdcard

• access network

• use camera

• read contacts

 The zygote
 centralized controller for Linux

groups (a.k.a. Linux permissions)

 App works based on Linux
system calls.

configure

Linux permissions

configure

Linux behaviors

 Tracing System Calls

12/31

DeepDroid-Middleware Permission

 system_server opens a few interfaces for

middleware permission check.

Permission

Checkinter-

process

Monitoring

Code

Enterprise Policy

Repository

system_server

 Key: Java method interposition

13/31

interpreter

byte code

classes.dex

…

…

dalvik-LinearAlloc

nativeFunc

insns

accessFlags

…

 Method
…

…

…

monitoring

code

libx.so

…

…

DeepDroid-Middleware Permission

14/31

DeepDroid-Middleware Behavior

access to services

Intent

Broadcast

Messenger

ashmem

……

app

libc.so libc.so

system_server android.process.acore

libbinder.so libbinder.so

…

supervise

behaviors

upper
layers

upper
layers

Binder driver

 Transactions between apps and system services
 ioctl(binderFd, BINDER_WRITE_READ, &bwr)

 By tampering Global Offset Table (GOT) of libbinder.so

15/31

DeepDroid-Middleware Behavior

 Synchronous invocation
 E.g., getLastKnownLocation(), getDeviceId()

reply

requests

system process

BR_TRANSACTION

BC_REPLY

pairwise within a

binder thread

interfaces defined in aidl

& in .java

Primitives, IBinder,

FD, Parcelable

16/31

DeepDroid-Middleware Behavior

 Asynchronous invocation
 One-way callbacks, e.g., onLocationChanged()

data callback

get a remote

handle

system process

BC_TRANSACTION

interfaces defined in aidl

or in .java

counterpart recognization

1) servicemanager

2) IBinder instances

Primitives, IBinder, FD,

Parcelable

17/31

--runtime-init

--setuid=10028

--setgid=10028

--setgroups=1015, 3003, 1006, 1007

android.app.ActivityThread

DeepDroid-Linux Permission

 Configure Linux permissions (e.g.,
groups)

system_server

zygote app process

monitoring

fork

1: process

creation request

2: recognize

app

3: reset groups &

track until setuid

18/31

DeepDroid-Linux Behavior

 Configuration on Linux permissions is
irreversible.

 Tracking system calls of Application

Monitoring

Code

App

Process

--

syscall

ptrace

enforce

19/31

DeepDroid-Properties

 Fine-grained access control

 Both permission and behavior level

 Portable

 Based on stable system architecture, e.g.,
system services, permission mechanism, binder.

 Dynamic instrumentation

 Reduce the work on system customization

20/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

21/31

Evaluated Resources

Resource Permission Group Permission
Enforcement

Behavior
Enforcement

IMEI READ_PHONE_STATE package
com.android.phone

Phone # READ_PHONE_STATE package

location ACCESS_FINE_LOCATION package system_server

contacts READ_CONTACTS package android.process.acore

camera CAMERA camera package/
Process Creation

mediaserver

account GET_ACCOUNTS package system_server

logs READ_LOGS log Process Creation
app process

network INTERNET inet package/
Process Creation

SMS SEND_SMS package com.android.phone

22/31

Evaluated Devices

Device Android OS

Nexus S(Samsung) 2.3.6

Sony LT29i 4.1.2
4.2.2

Galaxy Nexus(Samsung) 4.0

Samsung Galaxy Note
II

4.1

Samsung Galaxy Note 3 4.3

Nexus 5(LG) 4.4

Meizu MX II Flyme 3.2
(4.2.1)

Huawei Honor 3c 4.2

23/31

Performance

0

2

4

6

8

10

12

14

16

18

20

phone_state contacts SMS message

m
s

Overhead of Sensitive RPC

Normal Mode (Success) DeepDroid Mode (Success)

Normal Mode (Fail) DeepDroid Mode (Fail)

24/31

Performance

0

20

40

60

80

100

120

MX II LT29i Nexus S

m
s

Zygote Overhead (Time of startService)

Normal Zygote Traced Zygote

25/31

Performance

Normal
Quadrant

Traced
Quadrant

MX II 2508.5 2507.6

LT29i 4653.8 4553.6

Nexus S 1750.0 1705.6

Quadrant Scores

Normal
CaffeineMark

Traced
CaffeineMark

MX II 6367.2 6207.5

LT 29i 14125.5 13998.5

Nexus S 5982.8 5959.9

CaffeineMark Scores

26/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

27/31

Discussion

 Root access
 Required to instrument system components and trace

zygote.

 DeepDroid is a self-contained app and can be easily
inserted as a system component.

 DeepDroid carries little burden on vendor
customization.

 Compared to other solutions
 SEAndroid is enforced on Android 4.4.

 Knox is fully supported only on some Samsung
devices.

 DeepDroid is based on stable architecture of Android,
therefore, it can be easily adopted on phones from
other OEMs and legacy phones.

28/31

Discussion

 policy misuse
 We used software-based scheme to protect policies.

 On future devices, we can adopt some hardware-
based schemes (e.g., TrustZone-based integrity
checking scheme).

29/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

30/31

Conclusion

 We propose a dynamic security policy enforcement
scheme named DeepDroid.

 DeepDroid enables fine-grained control on both
permission and apps’ behavior.

 DeepDroid is relatively portable on different
devices compared to direct system customization.

31/31

Thank You

32/31

References
 Compac[CODASPY’14]: “Compac: enforce component-level access

control in android”

 FlaskDroid[USENIX Security’13]: “Flexible and Fine-Grained
Mandatory Access Control on Android for Diverse Security and Privacy
Policies”

 SEAndroid[NDSS’13]: “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android”

 TaintDroid[OSDI’10]: “TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones”

 AppFence[CCS’11]: “These aren't the droids you're looking for:
retrofitting android to protect data from imperious applications”

 I-ARM-Droid[MoST’12]: “I-ARM-Droid: A Rewriting Framework for In-
App Reference Monitors for Android Applications”

 Aurasium[USENIX Security’12]: “Aurasium: Practical Policy
Enforcement for Android Applications”

 AppGuard[TACAS’13]: “AppGuard: Enforcing User Requirements on
Android Apps”

