Privacy Preserving Payments in Credit Networks

Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei and Kim Pecina

CISPA, Saarland University

NDSS 2015

Real World

Real World

Real World

Real World

Credit Network

NDSS'15

Real World

Real World

Credit Network

NDSS'15

Real World

Credit Network

NDSS'15

Real World

Credit Network

NDSS'15

Real World

	Banking System	Ripple
Transaction	~ 1 day	~ 5 seconds
Multi- currency & worldwide transactions	High fees	Small fees
Integrity	Bank-only verifiable	Publicly verifiable

Ledger

Credit links

Transaction details

Account	Destination	Amount
<pre>rwvctTPLKZqK59f1fXpDkQ</pre>	rMnVZ9maUWp5cAvmqBECZM	300/XRP
rLSBpSquSHKbbfvcKt1c54	rKoDt7VL83AKJZewLxVZEs	75/XRP
r428G9fSSmD4SYmnDra16B	rBeToNo4AwHaNbRX2n4BNC	0.0693402709148/CCK/rB
rhD759dbJMrzMNL4QbvQe9	r95pWKA1K55fy7EJWrqJ9b	300/XRP
r42WJGvV9MJa4t5QcF8Cnx	rBeToNo4AwHaNbRX2n4BNC	0.0821058028231/CCK/rB
rUnr1p7xkuSBxyAqHEopZ5	r3H4rynDShFMRKWuJcadLY	1129.916679154465/EUR/
rw7UfGvzCeZwJxxUEeZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP
rpVVzfSTUJX9CrKBSS2Z5W	rDCgaaSBAWYfsxUYhCk1n2	999.99/XRP

Ledger

Credit links

Transaction details

Account	Destination	Amount
<pre>rwvctTPLKZqK59f1fXpDkQ</pre>	rMnVZ9maUWp5cAvmqBECZM	300/XRP
rLSBpSquSHKbbfvcKt1c54	rKoDt7VL83AKJZewLxVZEs	75/XRP
r428G9fSSmD4SYmnDra16B	rBeToNo4AwHaNbRX2n4BNC	0.0693402709148/CCK/rB
rhD759dbJMrzMNL4QbvQe9	r95pWKA1K55fy7EJWrqJ9b	300/XRP
r42WJGvV9MJa4t5QcF8Cnx	rBeToNo4AwHaNbRX2n4BNC	0.0821058028231/CCK/rB
rUnr1p7xkuSBxyAqHEopZ5	r3H4rynDShFMRKWuJcadLY	1129.916679154465/EUR/
rw7UfGvzCeZwJxxUEeZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP
rpVVzfSTUJX9CrKBSS2Z5W	rDCgaaSBAWYfsxUYhCk1n2	999.99/XRP

Ledger

Credit links

Transaction details

Account	Destination	Amount
<pre>rwvctTPLKZqK59f1fXpDkQ</pre>	rMnVZ9maUWp5cAvmqBECZM	300/XRP
rLSBpSquSHKbbfvcKt1c54	rKoDt7VL83AKJZewLxVZEs	75/XRP
r428G9fSSmD4SYmnDra16B	rBeToNo4AwHaNbRX2n4BNC	0.0693402709148/CCK/rB
rhD759dbJMrzMNL4QbvQe9	r95pWKA1K55fy7EJWrqJ9b	300/XRP
r42WJGvV9MJa4t5QcF8Cnx	rBeToNo4AwHaNbRX2n4BNC	0.0821058028231/CCK/rB
rUnr1p7xkuSBxyAqHEopZ5	r3H4rynDShFMRKWuJcadLY	1129.916679154465/EUR/
rw7UfGvzCeZwJxxUEeZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP
rpVVzfSTUJX9CrKBSS2Z5W	rDCgaaSBAWYfsxUYhCk1n2	999.99/XRP

Ledger

Credit links

Transaction details

Account	Destination	Amount
<pre>rwvctTPLKZqK59f1fXpDkQ</pre>	rMnVZ9maUWp5cAvmqBECZM	300/XRP
rLSBpSquSHKbbfvcKt1c54	rKoDt7VL83AKJZewLxVZEs	75/XRP
r428G9fSSmD4SYmnDra16B	rBeToNo4AwHaNbRX2n4BNC	0.0693402709148/CCK/rB
rhD759dbJMrzMNL4QbvQe9	r95pWKA1K55fy7EJWrqJ9b	300/XRP
r42WJGvV9MJa4t5QcF8Cnx	rBeToNo4AwHaNbRX2n4BNC	0.0821058028231/CCK/rB
rUnr1p7xkuSBxyAqHEopZ5	r3H4rynDShFMRKWuJcadLY	1129.916679154465/EUR/
rw7UfGvzCeZwJxxUEeZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP
rpVVzfSTUJX9CrKBSS2Z5W	rDCgaaSBAWYfsxUYhCk1n2	999.99/XRP

LINKABLE ANONYMITY

Identify privacy problem as an important issue in credit networks

Account	Destination	Amount
rwvctTPLKZqK59f1fXpDkQ	rMnVZ9maUWp5cAvmqBECZM	300/XRP
rLSBpSquSHKbbfvcKt1c54	rKoDt7VL83AKJZewLxVZEs	75/XRP
r428G9fSSmD4SYmnDra16B	rBeToNo4AwHaNbRX2n4BNC	0.0693402709148/CCK/rB
rhD759dbJMrzMNL4QbvQe9	r95pWKA1K55fy7EJWrqJ9b	300/XRP
r42WJGvV9MJa4t5QcF8Cnx	rBeToNo4AwHaNbRX2n4BNC	0.0821058028231/CCK/rB
rUnr1p7xkuSBxyAqHEopZ5	r3H4rynDShFMRKWuJcadLY	1129.916679154465/EUR/
rw7UfGvzCeZwJxxUEeZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP
rpVVzfSTUJX9CrKBSS2Z5W	rDCgaaSBAWYfsxUYhCk1n2	999.99/XRP

Identify privacy problem as an important issue in credit networks

Account	Destination	Amount
rwvctTPLKZqK59f1fXpDkQ	rMnVZ9maUWp5cAvmqBECZM	300/XRP
rLSBpSquSHKbbfvcKt1c54	rKoDt7VL83AKJZewLxVZEs	75/XRP
r428G9fSSmD4SYmnDra16B	rBeToNo4AwHaNbRX2n4BNC	0.0693402709148/CCK/rB
rhD759dbJMrzMNL4QbvQe9	r95pWKA1K55fy7EJWrqJ9b	300/XRP
r42WJGvV9MJa4t5QcF8Cnx	rBeToNo4AwHaNbRX2n4BNC	0.0821058028231/CCK/rB
rUnr1p7xkuSBxyAqHEopZ5	r3H4rynDShFMRKWuJcadLY	1129.916679154465/EUR/
rw7UfGvzCeZwJxxUEeZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP
rpVVzfSTUJX9CrKBSS2Z5W	rDCgaaSBAWYfsxUYhCk1n2	999.99/XRP

Define privacy properties for credit networks: value and receiver privacy

Identify privacy problem as an important issue in credit networks

Account	Destination	Amount
rwvctTPLKZqK59f1fXpDkQ	rMnVZ9maUWp5cAvmqBECZM	300/XRP
rLSBpSquSHKbbfvcKt1c54	rKoDt7VL83AKJZewLxVZEs	75/XRP
r428G9fSSmD4SYmnDra16B	rBeToNo4AwHaNbRX2n4BNC	0.0693402709148/CCK/rB
rhD759dbJMrzMNL4QbvQe9	r95pWKA1K55fy7EJWrqJ9b	300/XRP
r42WJGvV9MJa4t5QcF8Cnx	rBeToNo4AwHaNbRX2n4BNC	0.0821058028231/CCK/rB
rUnr1p7xkuSBxyAqHEopZ5	r3H4rynDShFMRKWuJcadLY	1129.916679154465/EUR/
rw7UfGvzCeZwJxxUEeZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP
rpVVzfSTUJX9CrKBSS2Z5W	rDCgaaSBAWYfsxUYhCk1n2	999.99/XRP

Define privacy properties for credit networks: value and receiver privacy

PrivPay: novel architecture combining trusted hardware and oblivious algorithms

Identify privacy problem as an important issue in credit networks

Account	Destination	Amount
<pre>rwvctTPLKZqK59f1fXpDkQ</pre>	rMnVZ9maUWp5cAvmqBECZM	300/XRP
rLSBpSquSHKbbfvcKt1c54	rKoDt7VL83AKJZewLxVZEs	75/XRP
r428G9fSSmD4SYmnDra16B	rBeToNo4AwHaNbRX2n4BNC	0.0693402709148/CCK/rB
rhD759dbJMrzMNL4QbvQe9	r95pWKA1K55fy7EJWrqJ9b	300/XRP
r42WJGvV9MJa4t5QcF8Cnx	rBeToNo4AwHaNbRX2n4BNC	0.0821058028231/CCK/rB
rUnr1p7xkuSBxyAqHEopZ5	r3H4rynDShFMRKWuJcadLY	1129.916679154465/EUR/
rw7UfGvzCeZwJxxUEeZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP
rpVVzfSTUJX9CrKBSS2Z5W	rDCgaaSBAWYfsxUYhCk1n2	999.99/XRP

Define privacy properties for credit networks: value and receiver privacy

PrivPay: novel architecture combining trusted hardware and oblivious algorithms

Evaluation: feasible to deploy in practice

Routing: determine credit route from a sender to a receiver

- \succ Existing systems use the max-flow approach:
 - Inefficient algorithms: $O(V^3)$ or $O(V^2 log(E))$
- Landmark routing [Tsuchiya, SIGCOMM'98]: calculate only a subset of all possible routes

Routing: determine credit route from a sender to a receiver

- Inefficient algorithms: $O(V^3)$ or $O(V^2 log(E))$
- Landmark routing [Tsuchiya, SIGCOMM'98]: calculate only a subset of all possible routes

Routing: determine credit route from a sender to a receiver

- Inefficient algorithms: $O(V^3)$ or $O(V^2 log(E))$
- Landmark routing [Tsuchiya, SIGCOMM'98]: calculate only a subset of all possible routes

Routing: determine credit route from a sender to a receiver

- ◆ Inefficient algorithms: *O*(*V*³) or *O*(*V*²*log*(*E*))
- Landmark routing [Tsuchiya, SIGCOMM'98]: calculate only a subset of all possible routes

Routing: determine credit route from a sender to a receiver

- ◆ Inefficient algorithms: *O*(*V*³) or *O*(*V*²*log*(*E*))
- Landmark routing [Tsuchiya, SIGCOMM'98]: calculate only a subset of all possible routes

Routing: determine credit route from a sender to a receiver

- ◆ Inefficient algorithms: *O*(*V*³) or *O*(*V*²*log*(*E*))
- Landmark routing [Tsuchiya, SIGCOMM'98]: calculate only a subset of all possible routes

Routing: determine credit route from a sender to a receiver

- ◆ Inefficient algorithms: *O*(*V*³) or *O*(*V*²*log*(*E*))
- Landmark routing [Tsuchiya, SIGCOMM'98]: calculate only a subset of all possible routes

Routing: determine credit route from a sender to a receiver

- ◆ Inefficient algorithms: *O*(*V*³) or *O*(*V*²*log*(*E*))
- Landmark routing [Tsuchiya, SIGCOMM'98]: calculate only a subset of all possible routes

Credit Network: Routing challenge

Routing: determine credit route from a sender to a receiver

- \succ Existing systems use the max-flow approach:
 - Inefficient algorithms: $O(V^3)$ or $O(V^2 log(E))$
- Landmark routing [Tsuchiya, SIGCOMM'98]: calculate only a subset of all possible routes

Credit Network: Privacy Definitions

Transaction Value Privacy

Credit Network: Privacy Definitions

Privacy Preserving Payments in Credit Networks

Query phase

payment

Challenger

Attacker

change link

Query phase

Challenger

Attacker

payment change link

Query phase

Challenger

payment

change link

Attacker

Query phase

payment

change link

Attacker

Query phase

35 5 5

Challenger

payment

Attacker

change link

Query phase

Challenger

Attacker

payment change link

48

Privacy Preserving Payments in Credit Networks

A credit network satisfies transaction value privacy if:

Credit Network: Privacy Challenge

Providing privacy is challenging:

 \blacktriangleright Hide transaction values \rightarrow What is the paid amount?

 \blacktriangleright Hide transaction participants \rightarrow Who are the sender and the receiver?

Account	Destination	Amount
<pre>rwvctTPLKZqK59f1fXpDkQ</pre>	rMnVZ9maUWp5cAvmqBECZM	300/XRP
rLSBpSquSHKbbfvcKt1c54	rKoDt7VL83AKJZewLxVZEs	75/XRP
r428G9fSSmD4SYmnDra16B	rBeToNo4AwHaNbRX2n4BNC	0.0693402709148/CCK/rB
rhD759dbJMrzMNL4QbvQe9	r95pWKA1K55fy7EJWrqJ9b	300/XRP
r42WJGvV9MJa4t5QcF8Cnx	rBeToNo4AwHaNbRX2n4BNC	0.0821058028231/CCK/rB
rUnr1p7xkuSBxyAqHEopZ5	r3H4rynDShFMRKWuJcadLY	1129.916679154465/EUR/
rw7UfGvzCeZwJxxUEeZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP
rpVVzfSTUJX9CrKBSS2Z5W	rDCgaaSBAWYfsxUYhCk1n2	999.99/XRP

Credit Network: Privacy Challenge

Providing privacy is challenging:

 \blacktriangleright Hide transaction values \rightarrow What is the paid amount?

 \blacktriangleright Hide transaction participants \rightarrow Who are the sender and the receiver?

	Destination	Amount		3
kQ	rMnVZ9maUWp5cAvmqBECZM	300/XRP		
r	KoDt7VL83AKJZewLxVZEs	75/XRP		
rBeToNo4AwHaN	oRX2n4BNC	0.0693402709148/CCK/rB	2	
)e9	r95pWKA1K55fy7EJWrqJ9b	300/XRP		
	rBeToNo4AwHaNbRX2n4BNC	0.0821058028231/CCK/rB	G ficlor	
n3	BH4rynDShFMRKWuJcadLY	1129.916679154465/EUR/	BANK	
ZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP		
rKBSS2Z5W	rDCgaaSBAWYfsxUYhCk1n2	999.99/XRP	•••	

In our approach, credit network information

- stored on untrusted server,
- accessed obliviously,
- using trusted hardware

PrivPay: Overview

PrivPay: Overview

PrivPay: Overview

NDSS'15

Privacy Preserving Payments in Credit Networks

ObliBFS: Standard BFS augmented with ORAM to ensure that "**no information is leaked**"

G, G': input graphs of the same size

ObliBFS: Standard BFS augmented with ORAM to ensure that "**no information is leaked**"

G, *G*': input graphs of the same size A(*G*): sequence of ObliBFS memory accesses

ObliBFS: Standard BFS augmented with ORAM to ensure that "**no information is leaked**"

G, *G*': input graphs of the same size A(*G*): sequence of ObliBFS memory accesses

$\mathsf{A}(G) \approx \mathsf{A}(G')$

Credit Network

Transaction

Oblivious transactions: Transaction algorithm augmented with ORAM to ensure that "**no information about input is leaked**"

Privacy Preserving Payments in Credit Networks

Transaction

Oblivious transactions: Transaction algorithm augmented with ORAM to ensure that "no information about input is leaked"

I(G,U), I'(G',U'): input information

Credit Network

Transaction

Oblivious transactions: Transaction algorithm augmented with ORAM to ensure that "**no information about input is leaked**"

I(G,U), I'(G',U'): input information A(I): sequence of oblivious transactions memory accesses
PrivPay: Transaction

Transaction

Landmark Universe

Credit Network

Oblivious transactions: Transaction algorithm augmented with ORAM to ensure that "**no information about input is leaked**"

I(G,U), I'(G',U'): input information A(I): sequence of oblivious transactions memory accesses

$\mathsf{A}(\mathsf{I}) \approx \mathsf{A}(\mathsf{I'})$

Privacy Preserving Payments in Credit Networks

PrivPay: Evaluation

- We have implemented PrivPay as a multithreaded C++ library
- We use Ripple transactions over a period of four months (Oct'13 Jan'14)
 - network: 14,317 nodes and 14,176 links

	Non-Private setting [1]	PrivPay
Payment (ms)	0.078	1510
Change link (ms)	0.005	95
Oblivious BFS (ms) [Background process]	50	22000
Coverage	97%	95%

[1] B. Viswanath, M. Mondal, K. P. Gummadi, A. Mislove, and A. Post. Canal: Scaling Social Networks-based Sybil Tolerance Schemes. *Eurosys'12.*

PrivPay: Evaluation

- > We have implemented PrivPay as a multithreaded C++ library
- \succ We use Ripple transactions over a period of four months (Oct'13 Jan'14)
 - network: 14,317 nodes and 14,176 links

	Non-Private setting [1]	PrivPay	Deployable in practice
Payment (ms)	0.078	1510	(Ripple ~5 sec)
Change link (ms)	0.005	95	
Oblivious BFS (ms) [Background process]	50	22000	
Coverage	97%	95%	

[1] B. Viswanath, M. Mondal, K. P. Gummadi, A. Mislove, and A. Post. Canal: Scaling Social Networks-based Sybil Tolerance Schemes. *Eurosys'12.*

PrivPay: Evaluation

- > We have implemented PrivPay as a multithreaded C++ library
- \blacktriangleright We use Ripple transactions over a period of four months (Oct'13 Jan'14)
 - network: 14,317 nodes and 14,176 links

	Non-Private setting [1]	PrivPay	Deployable in practice
Payment (ms)	0.078	1510	(Ripple ~5 sec)
Change link (ms)	0.005	95	
Oblivious BFS (ms) [Background process]	50	22000	No false positives
Coverage	97%	95%	·

[1] B. Viswanath, M. Mondal, K. P. Gummadi, A. Mislove, and A. Post. Canal: Scaling Social Networks-based Sybil Tolerance Schemes. *Eurosys'12.*

Credit networks have interesting properties and are used in multiple application scenarios

Credit networks have interesting properties and are used in multiple application scenarios

Privacy is an important and challenging problem in credit networks

Credit networks have interesting properties and are used in multiple application scenarios

Privacy is an important and challenging problem in credit networks

Credit networks have interesting properties and are used in multiple application scenarios

Credit Networks Introduction

PrivPay: novel architecture

combining trusted hardware and oblivious algorithms

Privacy is an important and challenging problem in credit networks

Credit networks have interesting properties and are used in multiple application scenarios

Credit Networks Introduction Rew Work Torder deal Tord

PrivPay: novel architecture

combining trusted hardware and oblivious algorithms

Privacy is an important and challenging problem in credit networks

PrivPay is feasible to deploy in practice

as multithreaded C++ code ra period of four months (Oc 14,176 links	ť 13 – Jan' 14)
ite [1] PrivPay	
8 1510	
5 95	
22000	
95%	
	te [1] PrivPay 8 1510 5 95 22000 95%

