
Access Pattern disclosure on Searchable Encryption:

Ramification, Attack and Mitigation

Mohammad Saiful Islam, Mehmet Kuzu, Murat Kantarcioglu

Jonsson School of Engineering

and Computer Science

The University of Texas at Dallas

{saiful, mehmet.kuzu, muratk}@utdallas.edu

Abstract

The advent of cloud computing has ushered in an era of

mass data storage in remote servers. Remote data storage

offers reduced data management overhead for data owners

in a cost effective manner. Sensitive documents, however,

need to be stored in encrypted format due to security con-

cerns. But, encrypted storage makes it difficult to search on

the stored documents. Therefore, this poses a major barrier

towards selective retrieval of encrypted documents from the

remote servers. Various protocols have been proposed for

keyword search over encrypted data to address this issue.

Most of the available protocols leak data access patterns

due to efficiency reasons. Although, oblivious RAM based

protocols can be used to hide data access patterns, such

protocols are computationally intensive and do not scale

well for real world datasets. In this paper, we introduce

a novel attack that exploits data access pattern leakage to

disclose significant amount of sensitive information using a

modicum of prior knowledge. Our empirical analysis with

a real world dataset shows that the proposed attack is able

to disclose sensitive information with a very high accuracy.

Additionally, we propose a simple technique to mitigate the

risk against the proposed attack at the expense of a slight

increment in computational resources and communication

cost. Furthermore, our proposed mitigation technique is

generic enough to be used in conjunction with any search-

able encryption scheme that reveals data access pattern.

1. Introduction

Searching over remote encrypted data (commonly re-

ferred to as Searchable Encryption) has been an active area

of research for the last few years. Due to increased popu-

larity of cloud based services, more and more sensitive data

(e.g., health care records, personal emails etc.) are stored

encrypted in the cloud. But, the advantage of cloud data

storage is lost if the user can not selectively retrieve seg-

ments of their data. Therefore, we need secure and effi-

cient search schemes to selectively retrieve sensitive data

from the cloud. The need for such protocols are also rec-

ognized by researchers from major IT companies such as

Microsoft [14].

Although, there are quite a few proposed solutions for

searchable encryption schemes, the basic settings remains

the same. There is a set of clients and an untrusted server. A

client, (e.g., Alice), has a set of sensitive documents which

she wants to store in a remote server owned by Bob. Due to

the sensitive nature of the documents, Alice does not want

Bob to learn the content of any of her documents. Since,

Bob cannot learn the content of the documents, storing the

documents in the server in plaintext is unacceptable. There-

fore, the document set is stored encrypted using a secure

encryption scheme. To facilitate search on encrypted data,

an encrypted index structure is stored in the server along

with the encrypted data. Authorized users in this setting

have access to a trapdoor generation function. Therefore,

they can generate valid trapdoors for any arbitrary keyword.

This trapdoor is used in the server to search for the intended

keyword. It is assumed that the server does not have access

to the trapdoor generation function, and therefore, can not

ascertain the keyword searched for. However, it is imper-

ative to hide the corresponding keyword of a given query1

from an adversary. Otherwise, the adversary learns the set

of documents that contains the given keyword and the set of

documents that does not. In the context of the search over

remote encrypted data, it is generally assumed that Bob is

‘honest but curious’, i.e., Bob tries to learn as much knowl-

edge as he can without deviating from the protocol.

A ‘Searchable Encryption scheme’ is qualified as secure,

if it satisfies the following necessary conditions.

1We use the term ‘query’ to refer to a trapdoor sent by a user to the

remote server as a search request.

1. Query generation function is only known to the autho-

rized data users.

2. The search mechanism works only in conjunction with

a valid query generation function.

The first condition specifies that only Alice is able to gen-

erate a valid query for a given keyword. Furthermore, for a

given 〈keyword, query〉 pair, no entity other than Alice has
a mechanism to predict the validity of the pair with non-

negligible advantage. The second condition guarantees that

the search mechanism only works for a given query only if

the valid query generation mechanism has been used.

There are many proposed solutions to date that satisfies

the conditions outlined earlier. Some models like that of

Oblivious ram (e.g., [11]) do not leak any information to

the attacker, but are too expensive to be practical on large

datasets. Other symmetric key encryption based models,

such as [7,8,10,20] proposes efficient solutions to the prob-

lem, but leaks data access pattern. That is, in all of those

search schemes, given a query x of keyword w, an attacker

does not learn w, but she knows which are the documents

that contains w. Although, this fact has been noted in the

literature (e.g., [8, 10]), none of the previous works system-

atically analyzed the implications of revealing data access

pattern. In this paper, we identify the potential risks of ac-

cess pattern disclosure via a novel attack. Our empirical

analysis with a real world email dataset shows that signif-

icant amount of sensitive information can be compromised

by the proposed attack. Finally, we propose a simple noise

addition technique to mitigate risk against this type of at-

tacks.

We summarize the contributions of this paper as follows.

1. To the best of our knowledge, this is the first study

that investigates the implications of data access pattern

disclosure in searchable encryption schemes.

2. We formalize a query identity inference attack model

based on access pattern disclosure.

3. We prove that such an inference attack is NP −
complete in general and give a heuristic solution that

can identify approximately 80% of the queries with

minimal background knowledge.

4. Finally, we propose a simple noise addition technique

to limit the effect of inference attacks due to access

pattern disclosures and empirically show the efficiency

of our proposed model.

2. Related Work

In [11], Goldreich et. al. presented their oblivious RAM

model, where a user can securely perform search over en-

crypted data without revealing their access patterns. Al-

though, their technique is theoretically sound, it incurs poly-

logarithmic overhead on all parameters. They also proposed

a lighter version of the Oblivious RAM protocol which

works in 2 rounds, but this protocol comes with a very high

square root overhead [8]. Therefore, even this lighter ver-

sion is computationally very expensive for large datasets.

Boneh et. al. proposed a public key encryption based key-

word search in [4], where data access pattern is revealed.

Later, Boneh et. al. presented a public key solution that can

hide access patterns in [5]. Again, these public key encryp-

tion based solutions are computationally expensive and not

always practical for large datasets.

Song et. al. proposed a special symmetric key based

searchable encryption technique in [20]. The authors them-

selves acknowledged the fact that certain statistical analysis

can be performed to successfully leak valuable knowledge

over the encrypted documents but did not provide a detailed

analysis of such attacks.

In [10], Goh et. al. proposed a security definition to for-

malize the security requirements of Searchable Symmetric

Encryption (SSE), and proposed a search technique based

on Bloom Filters. Unfortunately, Bloom Filters can lead

to false positives, a fact the authors themselves pointed out

in [10]. Also, since this technique requires separate indexes

for each of the documents, it is not very space (or time) ef-

ficient.

At the same time as [10] , Chang et. al. proposed a sim-

ulation based definition of SSE in [7]. But, their proposed

definition does not take into account how an adversary can

generate queries adaptively, i.e. an adversary can choose

his subsequent queries after seeing the outcome of all the

queries he has submitted so far. This shortcoming have been

addressed by Curtmola et. al. in [8]. Furthermore, they also

proposed SSE techniques that satisfy their improved defini-

tions. We remark that although their security definition al-

lows adversaries to generate queries adaptively, it does not

guarantee hiding of access pattens of any particular user. It

has been mentioned in [8, 10] that none of these symmetric

key based SSE hides access pattern from the server.

In [17], Kumar et. al. used statistical techniques to com-

promise the anonymization of query logs using token-based

hashing. The authors used a reference query log to infer sta-

tistical properties of words in the log-file. They used these

properties to process an anonymized query log and tried to

invert the underlying hash values to their respective tokens.

Although, both their methods and ours employ statistical

properties of words, the inference method is quite differ-

ent. Again, the context of these attacks and even the attack

themselves are quite different.

Again, access pattern is a fundamental issue in the con-

text of Steganographic File Systems. The concept of a

steganographic file system was first proposed by Anderson

et. al. in [1]. The main goal of such a system is to hide the

very existence of the files it stores from an attacker so that

the users can be protected from compulsion attacks2. Xuan

et. al. presented a steganographic system in [23] that can

hide data access from an attacker who has continuous ac-

cess to the underlying storage system. Unfortunately, it has

been later shown by Troncoso et. al. in [21] that the pro-

posed file system is susceptible to traffic analysis attacks.

Although, the attack presented in [21] may seem related to

our work, the fundamental objective of these two models

is quite different. In [21], the authors proposed a pattern

recognition model which tries to identify block access pat-

terns in the midst of a seemingly random sequence of block

accesses. That is, their attack model tries to identify the

block access patterns during the repeated access of a given

file. Once a pattern is identified, the model successfully ex-

tracts the blocks of that file, and thus proves the existence

of that file. Therefore, the scope of this attack model is sig-

nificantly different from ours. Their attack model tries to

discover the data access pattern from a sequence of seem-

ingly random data accesses. Our model, on the other hand,

discovers additional sensitive information using the data ac-

cess patterns. Quite naturally, the attack methodologies are

also quite different for these two attack models.

Therefore, to our best of knowledge, none of the previous

works in the literature analyzed the potential security risks

due to access pattern disclosure in searchable encryption

schemes. We show that an attacker can gain significant ad-

vantage by utilizing access patterns with the help of some

background knowledge on the document set. We further

elaborate this point in the following section with an exam-

ple.

A preliminary version of this work has appeared in the

18th ACM Conference on Computer and Communications

Security (CCS ′11) as a 3-page poster abstract [12]. Com-

pared to the CCS paper, we provide a generalized version

of the attack model, a complete mitigation scheme, formal

proofs and additional experiments in this final version of the

paper.

3. Motivation

Let us assume Alice stores a set of sensitive documents

regarding Major League Baseball to a remote server (e.g.,

Bob) using a searchable encryption technique that leaks data

access pattern. Furthermore, an attacker Mallory can in-

tercept data access pattern of Alice for an arbitrarily un-

bounded amount of time. Let us also assume that the un-

derlying searchable encryption protocol is safe in the sense

that it does not reveal any information about the document

contents other than the user access patterns. We argue that

2In compulsion attack, the users are forced to hand over the decryption

keys of an encrypted file.

Mallory can infer some valuable knowledge about query

identities using these access patterns with the help of some

background knowledge on the keyword distribution of the

underlying document set.

Considering the type of the documents stored, let us as-

sume an highly likely scenario, where the words ‘New’,

‘York’ and ‘Yankees’ appear in any given document with a

higher probability than any other subset of words of length 3
in the document set. Now, let us assume Alice sends search

request for these three words interspersed among a set of

other keywords in a particular period of time. After all the

communication rounds are finished, Mallory sees a list of

trapdoors and the set of documents they appear in. Quite

naturally, Mallory can calculate the probability of any two

of these queried words appearing together in a document

by noticing the number of documents the corresponding

trapdoors appear together. Now, by observing these prob-

abilities, Mallory can easily isolate the three trapdoors rep-

resenting the keyword set {‘New’, ‘York’, ‘Yankees’} be-

cause of their high probabilities. Furthermore, it is likely

that the pair of words ‘New’ and ‘York’ appear together

in some documents to refer to the state or the city, not the

baseball team. Therefore, the probability of both ‘New’ and

‘York’ appearing in a document will be higher than that of

‘New’ and ‘Yankees’ or ‘York’ and ‘Yankees’. This impor-

tant observation enables Mallory to uniquely identify the

trapdoor for the word ‘Yankees’. Furthermore, if Mallory

learns the identity of the trapdoor for ‘New’, she will also

be able to infer the trapdoor for ‘York’. Therefore, it is quite

evident that a modicum of prior knowledge can lead to the

revelation of many encrypted queries and thus lead to sig-

nificant document contents disclosure.

The above mentioned trivial motivating example con-

siders the information revealed by only a few number of

queries. But, an attacker with significantly large computing

power can intercept hundreds of 〈query, response〉 pairs

and combine these access patterns with every piece of in-

formation she has about the document contents to launch a

very successful attack.

In this paper, we show a practical demonstration of such

an attack where an attacker can build a model to identify a

significant portion of the queries by combining access pat-

terns with some known background knowledge. Further-

more, we show that conceptually very simple noise addi-

tion techniques can successfully thwart such attacks from

happening.

4. Simplified Model

To explain the attack concept described in this paper,

we present a simple model to simulate ‘search over re-

mote encrypted data’. A similar type of model was briefly

mentioned in [20]. Before describing the model, we like

Figure 1. Simplified model of search over re

mote encrypted data from Mallory’s point of
view.

to elaborate one very important fact. Our attack model

does not depend on the underlying searchable encryp-

tion scheme. Our attack model succeeds as long as the

searchable encryption scheme reveals data access patterns

to the attacker. Therefore, the model we describe in the

next paragraph is internal to us, and hence should not be

interpreted as a necessary condition for the attack to be suc-

cessful.

In our simplified model, Alice has a set of keywords she

wishes to search over the document set. At first, Alice builds

a modified Inverted Matrix over the set of documents. That

is, Alice builds a binary matrix, where the rows are indexed

by the keyword set, while the columns are indexed by the

document set. Throughout this paper, we refer to this binary

matrix for an particular instance of ‘search over encrypted

data’ as Index Map (ID). The (i, j)th entry of this Index

Map is 1 iff the ith keyword appears in the jth document,

and 0 otherwise. In our model, the server Bob performs

searches for different keywords based on this Index Map.
Since, sending the Index Map in plaintext reveals document

contents, Alice encrypts the rows of this matrix indepen-

dently. Furthermore, she also applies a trapdoor function

on the set of keywords. Finally, Alice sends each of the en-

crypted rows of the matrix along with the trapdoor value of

the corresponding keyword.

When Alicewants to search for a particular keyword, she

applies the keyword to the trapdoor function and sends Bob

the result. Bob performs a simple text matching and sends

Alice the encrypted row of the Index Map. Alice decrypts

the row, and asks for the appropriate set of documents. The

search concludes by Bob sending back the requested docu-

ments.

We like to underscore the statement that we do not pro-

pose a new search scheme by the above discussion. Al-

most identical schemes like this one has been outlined by

various papers including [20] and [10]. Rather, we simply

outline a simple scheme that can simulate the access pattern

disclosures of existing solutions to the ‘search over remote

encrypted data’ so that we may use this scheme to explain

our attack concept.

Now, we can visualize the above scheme as a two step

process. Alice wants to search a keyword w on an en-

crypted document set stored in the server. She evaluates

Trapdoorw and sends it to the server. The server sends her

the document set that contains the word w. It is worth not-

ing that we purposefully omitted some intermediate com-

munication steps between Alice and Bob. The rationale be-

hind this omission is, any third party attacker who has ac-

cess to the communication channel, can omit those interme-

diate communication steps and see the whole protocol as de-

scribed in Fig. 1. Furthermore, we argue that any solution to

the ‘search over encrypted text’ that does not hide the access

pattern of the client, can be viewed as the protocol shown

in Fig. 1. To see why, please note that an attacker, during

keyword search process, can record the documents accessed

to answer the query. Of course, protocols will have differ-

ent processes inside the black box, but when viewed from a

third party attacker, their interaction with Alice will be the

same as Fig. 1.

Hence, we assume that Mallory intercepts messages of

the form 〈Trapdoorw, {Doc1, · · ·Dock}〉. As we will

show next, Malory can infer the underlying keyword w of

the query Trapdoorw that appears in each of the documents

in the set {Doc1, · · · ,Dock} with the help of some back-

ground knowledge.

5. Notations

Table 1 summarizes a short list of notations we use in

this paper.

In this paper, we informally treat a document as a set of

keywords. So, notations like x ∈ d are extensively used

to mean that keyword x appears in the document d. Fur-

thermore, we assume D and K are a total ordering on the

document set and keyword set respectively. That is why, we

uniquely identify a document by Di for i ∈ [1, n]. Simi-

larly, we can uniquely identify a keyword by specifying Ki

for i ∈ [1,m].
We mathematically denote the ith keyword Ki as an

m bit row vector [K1
i ,K

2
i , ...,K

m
i], such that Ki

i = 1 and

Kj
i = 0 for ∀j 6= i. Again, we denote Q = 〈Q1, · · · Ql〉

be the ordered sequence of queries submitted by Alice for

a given period of time. Here, ∀i ∃j,Qi = TrapdoorKj
.

We refer Rq = 〈d1, · · · , dn〉 as the result sent by the

server in response to a query q = TrapdoorKj
such that

di = 1 iff the ith document contains the keyword cor-

responding to the query q and di = 0 otherwise. That

is, if Rq = 〈d1, · · · , dn〉 be the response for query q and

Table 1. Notations
Notation Meaning

|x| The cardinality of the set x.
xT The transpose of the matrix x.
D An ordered sequence of all the documents stored in the server.

n The number of documents in D. That is, n = |D|.
K An ordered sequence of all the keywords.

m The number of keywords in K. That is, m = |K|.
Di The ith document in D.

Ki The ith keyword in K.

Trapdoorw The output of the trapdoor function with argument w ∈ K.

Rq The result sent by the server in response to a query q.
Q A sequence of queries in a given time.

q = TrapdoorKj
, then each di is defined by the following

function.

di =

{

0 : if Kj /∈ Doci

1 : if Kj ∈ Doci

Since, Q = 〈Q1, · · · Ql〉 is the sequence of queries the

client poses to the server at some given interval, the server

sends the corresponding documents as the query answer in

response to each of these queries. It should be noted that in

our settings, the attacker can intercept the queries Qi, can

uniquely identify them, but do not know which keywords

they are associated with. Similarly, he/she can intercept the

documents, but is not able to learn the contents of the docu-

ments.

6. Threat Model

In our model, the attacker, Mallory observes a sequence

of l queries Q = 〈Q1, · · · Ql〉 submitted by the client to

the server. Naturally, Mallory has also access to the se-

quence of query responses RQi
, ∀i ∈ [1, l], since he has

full access to the communication channel. The goal ofMal-

lory is to successfully ascertain the sequence of keywords

KA = 〈Ka1
, · · · Kal

〉, where KA ⊂ K and ∀i ∈ [1, l],
T rapdoorKai

= Qi. That is, Mallory wishes to uniquely

identify the underlying keywords of each of the queriesQi.

In this paper, we show that Mallory has a very high proba-

bility of succeeding if she has access to the following back-

ground knowledge on the document set.

• Mallory knows the underlying keywords for k of

the queries in the sequence Q. That is, Mallory

has access to the set KQ ⊂ KA × Q, where KQ

= {〈x, y〉 |(x ∈ KA) ∧ (y ∈ Q) ∧ (y = Trapdoorx)}
and k = |KQ|. We later show thatMallory can be suc-

cessful with very high probability even when k << l.
Furthermore, we empirically show that Mallory has

high probability of being successful even when she

does not know the identity of any of the queries in Q,

i.e., k = 0.

• Mallory has an m × m matrix M . Please recall

that m is the number of possible keywords in our

model. Each (i, j)th cell in matrix M contains the ex-

pected probability of both ith and jth keywords ap-

pearing in any random document d ∈ D. That is,

Mi,j = Pr [(Ki ∈ d) ∧ (Kj ∈ d)], where d is a doc-

ument sampled uniformly from the set D.

An attacker can simulate the matrix M by carrying out

a probabilistic analysis over the large publicly available on-

line datasets. Sophisticated frequency analysis techniques

can also be used to approximate M . Again, an inside at-

tacker may already have access to a sizable subset of the

original dataset in his/her disposal. Therefore, he can cre-

ate the background matrix from this subset. In this case,

there is a significant probability that this matrix is a reason-

able approximation of the background matrix M our model

requires. We later empirically show that our model works

reasonably well for a noisy background knowledge matrix.

Therefore, we argue that the background matrix M does not

have to be completely accurate. Rather, any close approxi-

mation of M is sufficient for an successful attack. For ex-

ample, there are quite a substantial number of WikiLeaks

documents in public domain now. An adversary can use

a related subset of documents to come up with a matrix

that can approximate a background matrix M for a dataset

that involves dimplomatic affairs. We plan to explore the

ways to build the background matrix and their effects on

our model in further details in the future.

Again, obtaining a set of known queries might prove

to be a difficult task for an attacker under some scenario.

But, we still find it appropriate to add it as a background

knowledge in our model for the following reasons. First,

we empirically show that our model performs quite well

even when the adversary does not have access to a set of

known queries. Therefore, an attacker only uses this known

query set when he has access to it. He still does quite well

when he does not have access to this set. Second, under

some scenario, it is quite possible for an inside attacker to

know a known query set. And finally, we believe that any

secure searchable encryption scheme should not reveal any

additional query content given a set of known queries. The

Oblivious RAM [11] is one such secure protocol. There-

fore, we find it justified to consider the set of known queries

as a part of the background knowledge the adversary has in

our model.

To best explain our proposed model, we introduce the

attack concept with a simplified but effective version of the

model in the following section. Later, we proceed to present

a more generalized attack model in the subsequent section

of this paper.

7. Simplified Attack Model

In this section, we describe how Mallory can formu-

late an attack to identify query identities as an optimiza-

tion problem with constraints. Here, Mallory has access to

the communication channel, and thus intercepts a set of l
queriesQ = 〈Q1, · · · ,Ql〉 and has access to KQ and M as

defined earlier. Let us assume that Mallory already knows

the corresponding keywords for each of the queries in the

set S ⊂ Q. That is, S = {y|∃x 〈x, y〉 ∈ KQ}. Now, the

goal for Mallory is to assign keywords to all the queries

q ∈ (Q − S) such that the joint keyword distribution as

seen by the message responses Rq fits our prior knowledge,

namely the background knowledge matrix, M .

Hence, Mallory tries to find a sequence of l indices

〈a1, · · · , al〉 s.t. Mallory believes that ∀j : Qj =
TrapdoorKaj

, given the matrix M . We present the sim-

plified attack model as an optimization problem by Eq. 1.

argmin
〈a1,··· ,al〉

∑

Qi,Qj∈Q

(

RQi
· RT

Qj

n
−
(

Kai
· M · KT

aj

)

)2

(1)

Constraints : ∀j s.t. Qj ∈ S, aj = xj s.t. 〈Kxj
,Qj〉 ∈ KQ

∀j, ‖ Qj ‖= 1

The first constraint in Eq. (1) guarantees that the known
queries will be assigned to their correct known keywords.

While the second one makes sure that all the queries in the

set has an assignment of a valid keyword format, i.e., each

query Qj conforms to the query format outlined in section

5.

The result of this constraint satisfying optimization prob-

lem is an assignment of keywords to the queries that

achieves minimum distance from our background knowl-

edge matrix M .

To explain the model described in Eq. (1), let us con-
sider the following example. Suppose, Qs and Qt are two

encrypted queries. Therefore, Mallory can calculate the

probability of the underlying keywords appearing together

in a given document by β =
RQs ·RQt

n
, here · operation

denotes the “dot” product between two vectors. Now, for

any two given keywords Kf and Kg , Mallory can calculate

the probability of these two keyword appearing together by

γ = Mf,g . When, the keywords Kf and Kg are presented

by their proper bit-vector representation, γ can be equiva-

lently written as γ = (Kf · M · KT
g). Here, · operation de-

notes matrix multiplication. Naturally, Mallory will assign

Kf , Kg to the queries Qs, Qt iff the observed probability

from the query response β is close to the known probabil-

ity γ. This closeness can be measured by a simple arith-

metic distance function (β − γ)
2
, where a lower value of

this function is preferred over a higher value. So, the aim of

Mallory will be to assign keywords to queries such that this

distance function is minimized. Our model given by Eq.
(1) is just a formalization of this objective function.

8. Generalized Model

In this section, we outline the generalized version of the

proposed attack model. Here, instead of taking the joint

probability distribution of keyword pairs, we consider joint

probability distributions up to r keywords. In this model,

instead of the background matrix M , Mallory has access to

a family of r functions F = {Fi}. The ith function in the

family F , denoted as Fi : Ki → [0, 1] takes i keywords as
arguments and returns the probability of all of these i key-
words appearing in a document d sampled uniformly from

the document set D. That is, Fi can be defined by the fol-

lowing equation.

Fi(K1, · · · ,Ki) = Pr [(K1 ∈ d) ∧ · · · ∧ (Ki ∈ d)] (2)

Before we present our generalized attack model, let us

define a crude version of “dot” product for p equal length

vectors3.

Definition The MSP (Multi Scalar P roduct) function, de-

noted by⊙, takes as argument p equal length binary vectors

V1, · · · , Vp and returns a positive integer. Let us assume

that each vector Vi is a q bit vector s.t. Vi = 〈V 1
i · · ·V q

i 〉.
Then, ⊙ is defined as follows.

⊙(V1, · · ·Vp) =

q
∑

i=1

p
∏

j=1

(V i
j) (3)

3The value of p can be arbitrarily greater than 2.

It should be noted that the MSP function defined above

degenerates to the conventional “dot” product operation for

the limiting case of p = 2.

Also in this generalized model, Mallory aims to find a

sequence of l indices 〈a1, · · · , al〉 s.t. Mallory believes that

∀j : Qj = TrapdoorKaj
, given the function family F .

Let us define ci for i ∈ [1, k] for a given sequence of

indices 〈a1, · · · , al〉 in the following way.

ci =
∑

Q1,···Qi∈Q

(

⊙(RQ1
· · ·RQi

)

n
− (Fi(Ka1

, · · · ,Kai))

)2

(4)

Here, ⊙(RQ1
· · ·RQi

) returns the number of documents

where all of the underlying keywords corresponding to the

query response sequence RQ1
· · ·RQi

appear in. Again,

let us define w = (w1, w2..., wk) be a real-valued weight

vector. Our model can be expressed in terms of Eq. (4) in
the following way.

argmin
〈a1,··· ,al〉

k
∑

i=1

wi · ci (5)

Subject to: ∀i∀j s.t. Qj ∈ S, aj = xj s.t. 〈Kxj
,Qj〉 ∈ KQ

∀i∀j , ‖ Qj ‖= 1

Unfortunately, the optimization problem presented in our

generalized model isNP −Complete. In fact, we show in

Theorem 1 that even a smaller subset of the given problem,

i.e., the optimization problem given for the simplified model

in Eq. (1), is NP − Complete.

Theorem 1. Finding an optimal assignment of keywords to

a given set of queries w.r.t. the objective function defined by

Eq. (1) is NP − Complete.

For interested readers, the proof of Theorem 1 is pre-

sented in Appendix A.

Therefore, it is quite evident that solving the optimiza-

tion problem outlined earlier is computationally infeasi-

ble for large dataset. Quite naturally, we propose an effi-

cient approximation of this problem that uses Simulated An-

nealing [15]. Simulated Annealing is a probabilistic meta-

heurestic which is frequently used to find good approxima-

tion to the global optimum of some given function when the

search space is large. It turns out that if we run the optimiza-

tion problem long enough, a significant subset of the query

set Q can be successfully revealed. A detailed description

of the algorithm of our optimizer for the simplified attack

model is given in Fig. 2 at page 8.

9. Experiment Results

In this section, we present an empirical evaluation of our

proposed simplified attack model on various instances of

‘search over remote encrypted data’. In our experiments,

we use a real world dataset, namely, the Enron dataset as

our corpus [16]. We also use a well known stemming tech-

nique such as Porter Stemming Algorithm [19] to ascertain

the root of every keyword. Our experimental results sug-

gest that even the simplified model can predict the identity

of over 80% queries for large datasets. On the other hand,

the execution time of the implemented model suggests that

the proposed approximation of the model is quite efficient.

Rest of this section is organized as follows. We describe our

methodology first, then describe various experiments and

explain their results.

9.1. Experimental Setup

9.1.1 Dataset Used

As we have already mentioned, we use Enron dataset as

our corpus [16]. This dataset was originally prepared by

the CALO Project (A Cognitive Assistant that Learns and
Organizes). This dataset has already been extensively used

in various study in the past [3, 6, 9]. Enron dataset contains

emails of about 150 different users. The dataset is organized
into various folders. We have chosen all the 30109 emails

contained in the sent mail folder of all the users as our

experimental dataset. This dataset was made public by the

Federal Energy Regulatory Commission during its investi-

gation.

The most important characteristic of this dataset is that

each of the documents is a real email sent by a person. One

of the motivations [20] behind ‘search over encrypted data’

is to store emails to a remote server in encrypted format

and search the emails from time to time. Therefore, we find

it appropriate to run our experiments on real email dataset

like that of enron. The first few lines for each of the emails

contains some metadata about that mail. Since, these lines

are not part of the original email, we strip these lines off the

email documents as a preprocessing step.

9.1.2 Stemming Algorithm

Since, most of the emails are personal in nature, they cap-

ture informal communication made between two individu-

als. Therefore, we use a stemming algorithm, namely the

Porter Stemming Algorithm [19] to find the root of each

of the words in the document set. Throughout this sec-

tion, it will be implicitly assumed that all the processing

step on the keywords have been done after the keywords

have gone through the porter stemming algorithm. It should

Figure 2. Algorithm for Optimizer.

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500

A
c
c
u
ra

c
y
 (

%
)

Keyword Set Size (m)

Accuracy for different Keyword Set Size

(a)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

A
c
c
u
ra

c
y
 (

%
)

Query Set Size

Accuracy for different Query Set Size

(b)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

A
c
c
u
ra

c
y
 (

%
)

Known Query Size (%)

Accuracy for different known query size

(c)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

A
c
c
u
ra

c
y
 (

%
)

Known Query Size (%)

Accuracy for low known query size

(d)

Figure 3. Accuracy for various (a) Keyword Set Size. (b) Query Set Size. (c) Known Query Set Size.

(d) Low Known Query Set Size.

be noted that we have used an implementation of Porter’s

Stemming [19] written by its author Martin Porter.

9.1.3 Keyword Generation

Our whole corpus of 30109 documents contains 77000
unique keywords after getting rid of most common 200
words like ‘the’, ‘a’, ‘from’ etc. We sort these keywords

based on the decreasing number of their occurrences and

always use the first x number of words as our keywords.

We refer to this x as the keyword set size. It should be

noted that the value of x differs from experiment to exper-

iment. But, unless noted otherwise, the keyword set size

are always chosen as the most frequent x words out of the

77000 unique words.

9.1.4 Query Generation

Query patterns of individual users are expected to vary quite

significantly. Therefore, it is hard to adopt a methodology

that is able to capture the idiosyncratic behaviors of all the

users. To make matter worse, we did not find any real-world

query set on the Enron dataset. Therefore, we use Zipfian

Distribution to create synthetic query sets from our key-

word set. Fortunately, our attack scheme does not use query

frequency. Therefore, our attack can be equally applicable

to any other query distribution. Furthermore, we suppress

query repetition from the attack model to undermine the ef-

fects of our query generation process on the model accu-

racy. That is, we generate the query set in such a way that

no keyword is chosen as a query more than once. It should

be noted that such suppression does not limit the applica-

bility of our model in anyway. This is because, an attacker

can always identify the duplicate queries and discard them

before applying to the attack model.

To generate the query set, we sort the keyword set in

non-increasing order of occurrences. If a particular key-

word appears in the jth position in this list, we call the rank

of this keyword j. According to the Zipfian distribution, the
probability of this keyword being chosen as query (Prj) is
given by the following4.

4If the keyword chosen is already in the query set, we discard it to

suppress query repetition.

Prj =

1

j

Nx

=
1

j × Nx

.

Here, the denominator Nx =
∑x

i=1

1

j
is the normaliza-

tion factor. According to the Zipf’s law, in a corpus of nat-

ural language utterances, the frequency of appearance of an

individual word is inversely proportional to its rank [24].

Since, we run our experiments on natural language corpus,

we argue that the queries might follow zipfian distribution.

But, we like to stress that our attack scheme does not use

query frequency. Therefore, our attack can be applicable

to any other query distribution.

9.1.5 Execution Time

We use a serial implementation of our model for all the

experiments mentioned in this paper. This implementation

took no more than 14 hours to finish for any of the exper-

iments in a AMD Phenom II X6 1045T Windows 7 ma-

chine clocked at 2.70 GHz with 8 GB of system memory.

Our model is supposed to run even faster if we allow paral-

lel computation. Therefore, we argue that the attack model

we present in this paper is quite efficient.

9.2. Experiment & Results

9.2.1 Accuracy over varying Keyword Set Size

Fig. 3(a) in page 9 shows the accuracy (%) for various key-

word set size. Here, we have chosen the keyword set size to

be multiples of 500 with the maximum value of 2500. Key-
words were generated according to the Keyword Generation

step described earlier. The number of queries for this exper-

iment was set at 150 and 15% of the queries were known

beforehand. It is quite evident that for relatively smaller

keyword set size, the attack model can correctly identify al-

most all the queries. But, as the keyword set size increases,

the identification accuracy is decreased. But, even for key-

word set size of 2500, the model can successfully identify

most of the queries.

9.2.2 Accuracy over varying Query Set Size

Fig. 3(b) in page 9 shows the accuracy (%) for various

query set size. Here, we have chosen query set size to the

multiples of 50 with the maximum being 250. Queries were
generated using the Zipifian distribution as described ear-

lier. Our model works fairly well for a small query set size

of 50. But, as the query set size goes up, the accuracy of

the model goes higher as well. This is due to the fact that

higher query set size indicates that higher portion of the

background matrix M is used to predict the query identity.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

A
c
c
u
ra

c
y
 (

%
)

Noise Scaling Factor (C)

Accuracy for different values of Scaling Factor (C)

Figure 4. Accuracy (%) for different Noise
Scaling Factor C.

x, the keyword set size is chosen to be 1500 for this exper-

iment and 15% of the queries were assumed to be known

beforehand.

9.2.3 Accuracy for varying Known Query (%)

In this experiment, we have run experiments for varying

known query (% of Query set size). We start off with 5%
known query and increase it upto 25%. It is quite appar-

ent from Fig. 3-(c) in page 9 that increasing the known

query size does not improve accuracy that much. Rather,

the accuracy measurement are almost similar for different

known query sizes. Fig. 3-(d) in page 9 shows the accuracy
for very low known query percentage. We can see that the

model can successfully identify nearly 80% of the queries

correctly even if there are no known queries. This proves

that the model is quite useful even without the knowledge

of known queries. For this experiment, we fix the keyword

set size to 1500 and the query set size to 150.

9.2.4 Accuracy for Noisy Matrix

All the experiments described up to this point has an im-

plicit assumption that the attacker has access to a perfect

background matrix M . But, getting a perfect matrix M
may proved to be difficult under some scenario, even im-

possible under others. That’s why, we have investigated

the accuracy of our model under a noisy matrix M . Let,

σ2 = V ar{Mi,j}. That is, σ2 is the variance of the set of

elements in the matrix M . We modeled the noise for the

elements of the matrix M as a Normal Distribution with

mean 0 and variance C × σ2. Here, C is a constant, which

we refer to as ‘noise scaling factor’. That is, the noise will

increase as C increases. We added noise to the element of

the matrixM according to the distributionN (0, C ·σ2). For
this experiment, we fixed our keyword set size to be 1500,

Query set size to be 150 and (%) known query to be 15%.

We varied noise scaling factor C and present the result in

Fig. 4. It can be deduced from Fig. 4 that our model works

fairly well for low values of C. Even when the noise scal-

ing factor is 1.0, our model predicts a reasonable number of

query identities accurately.

10. Preventing Inference Attack

In this section, we develop a framework to thwart ‘In-

ference Attacks’ described earlier. Our proposed frame-

work aims to make query responses as similar as possible

at the expense of a few false positives. We assume, even

a very small false negative rate is unacceptable in the con-

text of search over remote encrypted text. But, a few false

positives, on the other hand, is acceptable in the sense that

the client can easily detect these false positives and discard

them upon decrypting the documents.

It should be noted that our proposed mitigation scheme

only aims to thwart the inference type of attacks described

earlier. It does not guarantee the overall security of a search-

able encryption scheme. For example, even with our mit-

igation scheme in place, an attacker may still be able to

extract some sensitive information by applying a different

attack model that uses query frequencies and some other

useful domain knowledge. Guarantee of the overall secu-

rity requires rigorous study of all the vulnerable aspects of

a searchable encryption schemes. We leave such a study as

a possible future work. Therefore, in the following sections,

we propose a mitigation scheme that provides security only

against the inference attack described earlier in this paper.

10.1. Our Framework

To explain our framework, we like to use the simplified

model we have described in Section 4. But, it worths not-

ing that the framework, does not depend on the underlying

model in anyway. That is, our concept can be easily applied

to any searchable encryption scheme.

In our simplified model, we assume that the server holds

a bitmap for each of the query words. Of course, these

bitmaps are stored encrypted for the sake of privacy. Once a

query is serviced by a server, the client decrypts the bitmap

and request the relevant documents. Thus, the server has

a mechanism to relate a particular encrypted keyword and

the list of documents that contain the keyword. Our ap-

proach formulates a mechanism to add fake documents in

the bitmaps so as to prevent attacks described above by the

server, or any third party eavesdropper.

Let us assume ID ∈ m×{0, 1}n be an index matrix s.t.

each (i, j)th entry IDi,j is defined in the following way.

IDi,j =

{

0 : if Ki /∈ Dj

1 : if Ki ∈ Dj

Here, Ki is the ith keyword and Dj is the jth document.

Again, we denote the ith row of the matrix ID by IDi.

Given two bit strings A and B of same length k, we de-

fine the function dH : {0, 1}k × {0, 1}k → N to be the

function that returns the Hamming Distance between its

arguments.

11. Privacy Definition

Definition (α, t)−secure index. We say an m×n binary

index matrix ID is (α, t) − secure for a given α ∈ [1,m]
and t ∈ N , if there exists a set of partitions {Si} s.t. the

following holds.

1. The partition set is complete. That is,
⋃

i Si = [1,m].

2. The partitions in the set are non-overlapping. That is,

∀i, j, Si ∩ Sj = ∅.

3. Each partition has at least α rows. That is, ∀j, |Sj | ≥
α.

4. Finally, the hamming distance between any two rows

of a given partition j is at most t. That is, ∀i1, i2 ∈ Sj ,
dH(IDi1 , IDi2) ≤ t.

It should be noted that an m × n matrix ID is (m, 0) −
secure if all the rows of the matrix ID is identical to each

other. On the other extreme, any matrix ID is (α, n) −
secure for any value of α ≤ m. Informally speaking, an

(α, 0) − secure index matrix guarantees that for each key-

word, there are at least α−1 keywords which appear exactly
in the same set of documents. Therefore, it’s hard for an at-

tacker to distinguish a keyword given the query response of

that particular keyword.

Theorem 2. Let ID be an m × n (α, 0) − secure index

for some 0 < α ≤ m. Given the response of a query

qi = Trapdoorw for some keyword w and the complete ID
matrix, an attacker can successfully identify the keyword w
with probability at most 1

α
by just using background infor-

mation related to ID matrix.

Proof The attacker has the complete ID matrix and the

query response of qi. Now, the query response of qi is a

row of ID matrix. Let’s assume, without loss of general-

ity, the response of qi is the jth row of the ID matrix for

some unique j s.t. 1 ≤ j ≤ m. Since, the matrix ID is

(α, 0) − secure, there are at least α − 1 rows of ID which

are exactly identical to each other. Hence, the attacker can

find this set S of at least α rows that are exactly similar to

IDj . Since, we assume that our trapdoor function is secure,

the attacker can at best select an element from the set S ran-

domly. Therefore, the attacker can successfully identify w
with probability at most 1

α
.

Theorem 2 states that an attacker can successfully iden-

tify a keyword from a query response with probability at

most 1

α
even in the unlikely case of having full access to

the index matrix. Here, we assume that the query repetition

is visible to the attacker. Naturally, the attacker has signif-

icantly smaller chance of success when he does not have

full access to the complete index matrix, rather has access

to some partial information, for example, the background

knowledge matrix used in previous sections. Therefore, we

argue that making an index matrix (α, 0)−secure can make

keyword frequency based attack significantly harder.

12. Securing Index Matrix

In this section, we outline our approach to transform a

given m × n index matrix into a (α, 0) − secure matrix.

It should be noted that an existing index matrix may not

be modified by putting 0′s in place of 1′s for any row in-

dexed by a keyword w. Otherwise, search results for this

keyword w will be incomplete. That is, the resultset will

not contain some documents in which the keyword belongs

to, namely, the documents corresponding to those 1′s which
has been made 0′s. Furthermore, the user may well be un-

aware of these documents. Therefore, we assume that false
negatives are not allowed, which in turn prohibits replac-

ing 1′s with 0′s in any row of the matrix. On the other hand,

replacing 0′s with 1′s may induce some false positives in

the resultset, which can be detected later by the user upon

decrypting the documents. Therefore, the user can safely

discard these false positives. Hence, introducing some

false positives in the resultset will only affect performance,

not accuracy.

Definition The function tα : {0, 1}m×n → {0, 1}m×n

takes an m × n binary index matrix ID and re-

turns a (α, t) − secure matrix ID′ s.t. the function

(
∑m

i=1
wi · dH(IDi, ID′

i)) is minimized for a given weight

vector w, and if ∀i, j, (IDi,j = 1) =⇒ (ID′
i,j = 1) holds.

It should be noted that in the process of making rows of

the index matrix similar, we are adding false positives. This

will result in increased communication overhead as well as

processing overhead. The function tα is defined in a way

so that it converts a given ID matrix to the closest (α, t) −
secure matrix. We define the cost of an transformation as

follows.

Definition If an m×n index matrix ID is transformed into

an m×n (α, 0)−secure index matrix ID′ by applying the

Input : A index matrix ID
Output: A (α, 0) − secure index matrix ID′

Run clustering algorithm on the rows of ID to get

p clusters.;

while Any cluster Cp have less than α elements do
combine the cluster Cp to the nearest cluster.

end

for each of the cluster Cp do
Feed the set of elements of Cp to the tα
function to obtain a new set of elements S ;

Replace the set Cp by S in ID ;

end

return ID;

Algorithm 1: Approximation algorithm to trans-

form a index matrix into a (α, 0) − secure matrix

function tα, the cost of such a transformation is denoted by

the function ct, defined as follows.

ct(ID, ID′) =
m
∑

i=1

dH(IDi, IDi
′).

Informally speaking, the function ct returns the total

number of elements IDi,j where a 0 bit has been changed

to a 1 bit to obtain the matrix ID′. Thus, minimizing the ct

function will ultimately result in a less number of false pos-

itives to be injected into the (α, 0) − secure matrix ID′. It

can be easily showed that tα function converts a given ID
matrix to a (α, 0) − secure matrix s.t. the cost function ct

is minimized.

Based on this observation, we can convert a given index

matrix ID to a (α, 0)− secure matrix ID′ by applying the

tα function on the matrix ID.

The main hurdle of finding an optimal conversion of

a given matrix to a (α, 0) − secure matrix is that find-

ing an optimal partitioning of rows is hard. It turns out,

the problem of finding such optimal partitioning belongs to

NP − hard [13]. Therefore, we propose an approximation

algorithm given in Algorithm 1 to convert an index matrix

ID to a (α, 0) − secure index matrix.

Although, Algorithm 1 returns a (α, 0) − secure in-

dex matrix, the ct measure is not optimally minimized. But,

since the optimal reduction of ct is computationally infea-

sible, Algorithm 1 is a very good approximation of the

optimal conversion. To test the efficiency of our approach,

we have implemented Algorithm 1 and present our results

in the following section. We use agglomerative hierarchi-

cal clustering algorithm [2] with average distance. Further-

more, we use cosine distance as our distance measure.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6

A
c
c
u
ra

c
y
 (

%
)

α

Accuracy for different values of α

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6

C
o
s
t

α

Cost for different values of α

(b)

Figure 5. Accuracy and cost for different α values.

13. Experiment & Results

In this section we present the efficiency of our approach

of evading attack model described in the earlier sections

for different values of α. We run the experiments for

α ∈ {2, 3, 4, 5}. Fig. 5(a) shows the accuracy for dif-

ferent values of α. For these experiments, we have fixed the

keyword set size to be 1500, query set size to be 150 and

the (%) known query to be 15% (i.e., best possible scenario

for attacker as identified by previous experimental results).

Furthermore, we assume the background matrix M to be

perfect, that is, no element of M contains any noise (again,

this is optimal from attackers point of view). From Fig. 5-

(a), it is evident that the accuracy is almost equal to that of

the (%) known query. That is, the attacker failed to suc-

cessfully identify queries any other than the known queries.

Fig. 5-(b) presents the increased cost because of the con-

verted ID′ matrix. We define cost as the ratio of increase in

number of documents retrieved by the new ID matrix to the

number of documents retrieved by the old matrix. That is,

Let, p = (number of documents returned for the old matrix

ID), and q = (number of documents returned for the new

matrix ID′). Then, the cost is defined as, cost = q−p
p

. It

is apparent from Fig. 5-(b), that the percent increase in the

cost is increased as the value of α is goes up.

To compare the cost of our proposed mitigation strategy

with ORAM based solutions, we analyzed the ORAM con-

struction given in [22]. To our knowledge, the ORAM solu-

tion proposed by Williams et. al. in [22] is one of the most

efficient ORAM constructions available in the literature.

The protocol in [22] has a computational overhead of

O(log n log log n) per request for n data items. This over-

head includes the constant factor of 1.44c for an allowed

error probability of 2−c along 5 with other constant factors

5If we assume, c = 64, then the constant 1.44c is 92 itself. Please

see [18] for more details.

in the big O [18]. Based on this analysis, we can accurately

approximate the value of the constant associated with this

overhead to be around 100. Now, let us assume the number

of data items to be 1024 or (210). That is, n = 1024. There-
fore, log n = 10. Then, even the most efficient ORAM pre-

sented in [22] requires more than 100 × 10 = 1000 data

items to be retrieved for a single data access. Furthermore,

this overhead grows much larger when the number of data

items (n) increases. In our approach, on the other hand, the
required overhead is only 3 − 5 accesses per request and

does not change as n increases. Therefore, our approach

is more efficient than the ORAM constructions. But, un-

like our case, ORAM approach hides all the access pattern

disclosure.

Therefore, it is evident from the above discussion that

adding noise to the index matrix is quite efficient in thwart-

ing Inference Attacks. But, this approach incurs some ad-

ditional computational overhead. However, this overhead is

still quite negligible when compared to that of the most effi-

cient ORAM constructions. Therefore, we argue that noise-

addition based mitigation scheme is quite useful where ef-

ficiency is a major concern. However, if an user is only

concerned about privacy, efficient versions of ORAM is per-

haps a better choice.

14. Conclusions

In this paper, we investigate the potential vulnerabil-

ity posed by the disclosure of data access patterns during

‘search over encrypted text’. We formalize a model that can

be used to launch an inference attack utilizing this vulnera-

bility and empirically show their efficiency in successfully

predicting query identities. Furthermore, we present a sim-

ple noise addition scheme to thwart such attacks with the ex-

pense of retrieving a slightly more documents than needed.

We conclude that ‘hiding access pattern’ is extremely im-

portant in encrypted keyword search and therefore is a nec-

essary characteristics of a secure encrypted search scheme.

15. Acknowledgements

This work was partially supported by Air Force Office of

Scientific Research MURI Grant FA9550-08-1-0265, Na-

tional Institutes of Health Grant 1R01LM009989, National

Science Foundation (NSF) Career Grant CNS-0845803,

NSF Grants CNS-0964350,CNS-1016343.

References

[1] Anderson, Needham, and Shamir. The steganographic file

system. In IWIH: International Workshop on Information

Hiding, 1998.

[2] P. Berkhin. Survey of clustering data mining techniques.

Technical report, Accrue Software, San Jose, CA, 2002.

[3] M. Berry and M. Browne. Email surveillance using non-

negative matrix factorization. Computational & Mathemat-

ical Organization Theory, 11(3), 2005.

[4] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano.

Public key encryption with keyword search. In proc. of EU-

ROCRYPT, 2004.

[5] D. Boneh, E. Kushilevitz, and R. Ostrovsky. Public key en-

cryption that allows PIR queries. In proc. of CRYPTO, 2007.

[6] K. Borgwardt, H. Kriegel, and P. Wackersreuther. Pattern

mining in frequent dynamic subgraph. In ICDM, pages 818–

822. IEEE Computer Society, 2006.

[7] Y. Chang and M. Mitzenmacher. Privacy preserving key-

word searches on remote encrypted data. In International

Conference on Applied Cryptography and Network Security

(ACNS), LNCS, volume 3, 2005.

[8] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Search-

able symmetric encryption: improved definitions and effi-

cient constructions. In proc. of the 13th ACM Conference on

Computer and Communications Security, CCS 2006, pages

79–88. ACM, 2006.

[9] J. Diesner, T. Frantz, and M. Carley. Communication net-

works from the enron email corpus. Computational &Math-

ematical Organization Theory, 11(3), 2005.

[10] E. Goh. Secure indexes. Cryptology ePrint Archive, (Report

2003/216), 2003.

[11] O. Goldreich and R. Ostrovsky. Software protection and

simulation on oblivious RAMs. JACM: Journal of the ACM,

43, 1996.

[12] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Poster: In-

ference attacks against searchable encryption protocols. In

CCS, pages 845–847. ACM, 2011.

[13] B. Jackson, J. Scargle, C. Cusanza, D. Barnes, D. Kanygin,

R. Sarmiento, S. Subramaniam, and T. Chuang. Optimal

partitions of data in higher dimensions. In proc. of the Con-

ference on Intelligent Data Understanding, pages 98–108.

NASA Ames Research Center, 2010.

[14] S. Kamara and K. Lauter. Cryptographic cloud storage.

In Financial Cryptography Workshops, volume 6054, pages

136–149. Springer, 2010.

[15] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization

by simulated annealing. Science, 220(4598):671–679, May

1983.

[16] B. Klimt and Y. Yang. Introducing the enron corpus. In

CEAS, 2004.

[17] R. Kumar, J. Novak, B. Pang, and A. Tomkins. On

anonymizing query logs via token-based hashing. In Pro-

ceedings of the 16th International Conference on World

Wide Web, WWW, pages 629–638. ACM, 2007.

[18] B. Pinkas and T. Reinman. Oblivious RAM revisited. IACR

Cryptology ePrint Archive, 2010:366, 2010.

[19] M. Porter. An algorithm for suffix striping. Program,

14(3):130–137, 1980.

[20] D. Song, D. Wagner, and A. Perrig. Practical techniques for

searches on encrypted data. In IEEE Symposium on Security

and Privacy, 2000.

[21] C. Troncoso, C. Dı́az, O. Dunkelman, and B. Preneel. Traf-

fic analysis attacks on a continuously-observable stegano-

graphic file system. In Information Hiding, volume 4567,

pages 220–236. Springer, 2007.

[22] P. Williams, R. Sion, and B. Carbunar. Building castles out

of mud: practical access pattern privacy and correctness on

untrusted storage. In Proceedings of the 2008 ACM Confer-

ence on Computer and Communications Security, Alexan-

dria, Virginia, USA, October 27-31, 2008, pages 139–148.

ACM, 2008.

[23] X. Zhou, H. Pang, and K.-L. Tan. Hiding data accesses in

steganographic file system. In ICDE, pages 572–583. IEEE

Computer Society, 2004.

[24] G. Zipf. Selected studies of the Principle of Relative Fre-

quency in Language. Harvard U.P., 1932.

Appendix A

Proof of Theorem 1 Let C = {e1, e2, ..., en}, P =
{p1, p2, ..., pm} be the encrypted and plain keyword lists

and MC , MP be the pair similarity matrices for E and P

respectively such that n ≤ m. Let B = {(i, j)|f(ei) =
pj , 1 ≤ n, 1 ≤ j} be a set of pairs where f is a bijection

from E to P and cost : B 7→ Integer be the evaluation

function which is defined as follows:

cost(B) =
n
∑

i=1

n
∑

j=i

(MC [i, j] − MP [k, l])2

s.t. (i, k) ∈ B, (j, l) ∈ B

Notice that constructed setting is equivalent to formu-

lated optimization problem. We can formulate the decision

version of the problem as follows: Given C, P along with

MC and MP , does there exist any B such that cost(B) ≤
k?

It is easy to see that the problem is in NP. The certificate

is the mapping set (B) and a certifier can check if the cost(B)

is at most the given bound (k) in polynomial time.

We now show that the problem is NP-Hard by a reduc-

tion from the Hamiltonian path problem. Given an instance

of Hamiltonian path problem specified by graph G(V, E), we

can construct an input < C,P,MC ,MP , k > for decision

version of the optimization problem as follows.

C = V (6)

P = {1, 2, ..., n}, n = |V | (7)

MC [i, j] =

{

w if (vi, vj) ∈ E and i < j
0 otherwise

}

(8)

where, 1 ≤ i ≤ n, 1 ≤ j ≤ n (9)

MP [i, j] =

{

w if j = i + 1
0 otherwise

}

1 ≤ i ≤ n, 1 ≤ j ≤ n

(10)

k =

{

0 if |E| < |V | − 1
w2(|E| − |V − 1|) otherwise

}

(11)

We claim that there is a mapping set B for the input <
C,P,MC ,MP , k > such that cost(B) ≤ k if and only if G

has a Hamiltonian path.

Without loss of generality, suppose G has a Hamilto-

nian path v1, v2, ..., vn. Since G has an Hamiltonian

path, it should have at least |V | − 1 edges. Thus, k =
w2(|E| − |V − 1|). In this case, cost of assignment set

{(1, 1), ...(i, i), ..., (n, n)} is bounded by k. In such a case,

cost(B) =

n
∑

i=1

n
∑

j=i

(MC [i, j] − MP [k, l])2

s.t. i = j

case i : j = i + 1
By the construction of MP , MP [i, j] = w, similarly

MC [i, j] = w for this case since there exists an edge

between (vi, vi+1). Therefore,
∑n

i=1

∑n
j=i(MC [i, j] −

MP [i, j])2 = 0 for this case.

case ii : j 6= i + 1

By the construction of MP , MP [i, j] = 0, MC [i, j] = w
if (vi, vj) ∈ E and i < j, MC [i, j] = 0 otherwise for this

case. There exist |V | − 1 edges (vi, vj) such that j = i + 1
which implies the existence of (|E| − |V − 1|) edges such
that i 6= j+1. Hence, MC [i, j] = w for (|E|−|V −1|)(i, j)
pairs. Therefore

∑n

i=1

∑n

j=i(MC [i, j] − MP [i, j])2 =

w2(|E| − |V − 1|) for this case.

Cases i and ii covers all possible (i,j) pairs. Therefore

cost(B) = w2(|E| − |V − 1|) = k

Conversely, suppose cost(B) ≤ k for some B, then G

has a Hamiltonian path. For the sake of contradiction, sup-

pose G has no Hamiltonian path, then

case i : |E| < |V | − 1 → k = 0
By the construction of MP , MP [i, i + 1] = w for each

(i, i+1) pair for i, i + 1 ∈ P . If vk is matched with i and
vl is matched with i + 1 for vk, vl ∈ C, then (MC [k, l] −
MP [i, i + 1])2 = 0 if and only if (vk, vl) ∈ E. Since there

exist |V |−1 (i, i+1) pairs, we need (|V −1|) edges to satisfy
cost(B) = 0 for any B. However, |E| < |V | − 1 for this

case and cost(B) > 0

case ii : |E| ≥ |V | − 1 → k = w2(|E| − |V − 1|)
Notice that cost(B) becomes smaller if consecutive el-

ements (i, i + 1) of P is matched with some vk, vl ∈ C
such that (vk, vl) ∈ E. However, there exist at least one

(i, i + 1) pair for i, i + 1 ∈ C, such that i is matched

with vk and (i + 1) is matched with vl for vk, vl ∈ C and

(vk, vl) /∈ E. Otherwise G has a Hamiltonian path which is

not the case. Therefore, at most |V |−2 consecutive pairs in

P can be matched with some vk, vl for vk, vl ∈ C such that

(vk, vl) /∈ E. Notice that cost(B) ≥ w2(|E|− |V −1|+2)
in such a case. Hence cost(B) > w2(|E| − |V − 1|) = k
for this case.

Both case i and ii shows that cost(B) > k for any B

if G has no Hamiltonian path. Therefore, we can conclude

that G should have a Hamiltonian path if there exist some

assignment set B such that cost(B) ≤ k.

