
Low-cost Standard Signatures in Wireless Sensor
Networks: A Case for Reviving Pre-computation

Techniques?
G. Ateniese+, G. Bianchi∗, A. Capossele+, C. Petrioli+

+ Univ. Roma La Sapienza, ∗ Univ. Roma Tor Vergata
Rome, Italy

Email: ateniese, capossele, petrioli@di.uniroma1.it, giuseppe.bianchi@uniroma2.it

Abstract—Effective pre-computation techniques have been pro-
posed almost 15 years ago for trimming the cost of modular
exponentiations at the basis of several standard signature and
key management schemes, such as the (Elliptic Curve) Digital
Signature Algorithm or Diffie-Hellman key exchange. Despite
their promises, the actual application of such techniques in the
wireless sensor security arena has been apparently overlooked,
and most of the research effort has rather focused on the
identification of alternative lightweight constructions. However,
modern sensor are equipped with relatively large flash memories
which make memory consumption a less critical requirement,
and emerging energy harvesting technologies provide occasional
energy peaks which could be exploited for anticipating otherwise
costly computational tasks. These trends push for a reconsider-
ation of pre-computation techniques, which are explored in this
paper as follows: (1) we further optimize prior pre-computation
techniques by exploiting more recent results on Cayley graph
expanders, (2) we implement an ECDSA scheme relying on
pre-computations over two different wireless sensor node plat-
forms (TelosB and MICA2), and (3) we experimentally assess
the relevant performance and energy costs. In the traditional
scenario of wireless sensor networks without energy harvesting,
our prototype ECDSA implementation, despite still not fully
optimized, outperforms prior work by almost 50%, and achieves
an efficiency superior to NTRU signatures, natural candidates for
low-power devices. Finally, (4) we quantitatively discuss ways to
exploit harvested energy peaks to further improve efficiency.

Index Terms—Sensor network security; secure communication
architecture; digital signatures.

I. INTRODUCTION

Wireless sensor networks (WSN) are nowadays being de-
ployed in a large number of application domains [1], ranging
from military environments and perimeter sensing [46], to
weather and ambient control [18], industrial applications [24],
power grids [19], health care [2], and so on. Security support
appears of paramount importance in critical settings. More-
over, diverse scenarios call for different security requirements
[47], [31], [42], [44] which are best supported by equipping
the sensor nodes with a flexible set of security primitives
rather than an one-size-fits-all security protocol. Indeed, some
contexts may require secure point-to-point communication
from sensor nodes to an infrastructure sink or between net-
work node pairs; conversely, other deployments mandate for
message integrity via digital signatures, e.g., when data source
authentication is required.

The most crucial design aspects in wireless sensor nodes
is energy consumption. The research community has been
therefore challenged to envision cheap sensor node architec-
tures, along with carefully crafted communication and sensing
protocols, able to permit an extremely sparing usage of the
available energy resources. Security support makes no ex-
ception to such a design strategy. Several among the current
wireless sensor network deployments may operate unattended
for extremely long periods, and may tackle contexts where
even the physical access to a sensor, once released in the field,
may be impossible. Clearly, the energy constraints in a WSN
should not come along with weakened security protocols. For
instance, if a critical application scenario mandates for the
transmission of digitally signed gathered data to guarantee
source authentication, we believe it is not appropriate to
weaken such a requirement, e.g., by using HMAC message
authentication with a key pre-shared across multiple sensors.
Rather, security protocols and supported cryptographic primi-
tives should be designed to retain effectiveness while using as
little energy as possible.

One way to accomplish this design goal, a way we do
not pursue in this work, consists of devising novel, energy-
friendly, lightweight security primitives. The literature in the
WSN arena is extremely rich in such a direction (see e.g., [29],
[12], [48], [21], [32] to sample just very few recent papers,
[33] for the first implementation of elliptic curve cryptogra-
phy on WSN, and [13] for a comprehensive assessment of
lightweight signature schemes considered appealing in WSN
- a thorough state of the art in the area being well out of
our scopes here). However, in security, a novel construction
is not always advisable: despite its possible technical merits,
acceptance of a novel approach requires time for a thorough
scrutiny, and may require multiple revisions along this path
(for instance, the NTRU signature was broken multiple times
[17] when initially proposed). Moreover, real world sensor
network deployers are more easily willing to leverage stan-
dardized security constructions, rather than novel approaches
not challenged by a long-lasting real-world practice.

Precomputation techniques: In this paper we rather take
a complementary way: how to practically achieve low cost
security in real-world wireless sensor nodes, without requiring
substantial changes in the security protocols set forth. This is

by itself far from being a new idea. Actually, a large amount of
schemes based on pre-computation, and devised to accelerate
standard digital signatures or key exchange protocols, were
proposed as much as two decades ago [40], [6], [39], [27].

The scheme we mostly rely upon in this paper was pro-
posed by Boyko, Peinado and Ventakesan in 1998 [5], and
subsequently thoroughly investigated in [37], [38], as well as
in [9], which extended it to the Elliptic Curve setting. We
will refer to this scheme as BPV. The authors of [5] show
the applicability of BPV to both RSA and Discrete log based
schemes. Restricting, for convenience of presentation, to the
latter case, the idea is to precompute and store a set of n
Discrete Log pairs in the form (ki, g

ki mod q). A “random”
pair (r, gr mod q) is then generated by randomly choosing
a subset of k terms ki, setting r =

∑
ki, and computing the

corresponding exponential term gr =
∏
gki mod q via just

k − 1 multiplications, hence with a significant computational
gain.

Despite its simplicity and appeal, to the best of our knowl-
edge, neither BPV nor similar variants were so far consid-
ered in practical sensor node implementations. The reason
seems apparently obvious and stems from the severe memory
constraints of sensor nodes. As detailed in [38], the number
of precomputed pairs must be sufficiently large to guarantee
an acceptable level of security and thwart Lattice reduction
attacks. Thus, BPV may require an amount of memory un-
available in a sensor node.

Technological trends: But is it true that modern sensor
nodes are severely memory constrained? A 2009 comparative
survey of wireless sensor node platforms [4] reveals that 4
out of the 8 analyzed platforms were already equipped with
relatively large flash memories, ranging from 512 to 2048 KB.
And such trend is deemed to increase, owing to the ever in-
creasing application demands for local storage and processing
of collected measurements, and the vanishing cost of flash
memory chips. As a consequence, while a few tens of KB (in
our specific case, we would need about 12 KB) to reserve
for “just” an acceleration of security-related computations
were simply unaffordable in first-generation motes, this extra
memory consumption amounts to a relatively small fraction of
the memory available over a today’s mote.

Moreover, a second technological trend plays in favor of
pre-computation techniques. Recently, cost-effective energy
harvesting technologies have faced the WSN arena, in the
form of techniques devised to supplement the battery power
with energy gathered from the environment (e.g., solar, wind,
etc. [45]). With harvesting technologies, energy peaks are
occasionally available. In some cases the available energy can
be even excessive, i.e., greater than the amount that can fit into
the sensor node’s supercapacitor, and thus it would be wasted
if not immediately used. As a consequence, such emerging
technologies very well fit pre-computation based schemes, as
they permit to push part of the computation (or recomputation
of already stored parameters for re-keying purposes) in the
high/excess energy periods, and appear to be a very intriguing
deployment playground for a variety of schemes leveraging an

offline/online approach [15], [43], [23], [29].
Our contributions: In the paper, for concreteness, we specif-

ically focus on ECDSA signatures (Elliptic Curve Digital
Signature Algorithm), given their widespread consideration
in emerging security protocols for low power devices (see,
e.g., the IETF working groups ROLL and CORE-CoAP).
In addition, we remark that NSA-approved products must
employ ECDSA 1. We focus on the signature generation cost
given that verification is usually performed by infrastructure
devices in WSN deployments. Our specific contributions are
the following.
• We improve the memory overhead of the “full” BPV

generator [5] using more recent theoretical results con-
cerning Cayley graph expanders. As in the case of [5], the
expander improves the randomness of the basic generator
at the cost of extra storage, originally of the same mag-
nitude of the precomputed table of n pairs. By applying
such new results, we show that the extra storage can be
reduced by a factor of 5.

• We implement ECDSA with pre-computations on two
off-the-shelf sensor node platforms, TelosB and MICA2
motes, characterized by widely different design aspects,
and provide an in-depth experimental assessment of the
performance, energy cost, and emerging trade-offs. The
resulting implementation performs a signature in 0.35 s
and consumes about 8 mJ, outperforming the ECDSA
implementations assessed in [13] on a comparable sensor
node architecture (MICAz, using the same processor
of MICA2), by almost 50%. Moreover, and perhaps
surprisingly, our performance is superior to that of the
NTRUSIGN scheme which is considered a quite natural
candidate for low-power devices. This appears to be
a very promising result, considering that our current
implementation has still plenty of room for technical
optimization.

• Finally, we experimentally quantify the amount of energy
harvested through two technologies, micro solar cells and
small wind turbines, which can be exploited for pre-
computation purposes, and we preliminary show possible
usages of harvesting capabilities.

II. BACKGROUND

In this section we review known results which we further
extended (see section III) and which we have exploited in our
implementation and experimental assessment.

Pre-computation of Dlog pairs - simple generator: Let
g ∈ Gq be a generator of a cyclic group of order q.
In what follows, unless otherwise specified, we resort to
multiplicative notation. Boyko, Peinado and Venkatesan first
introduced in [5] a surprisingly simple technique for speeding
up the generation of pairs of the form (r, gr), frequently the
most expensive operation in Discrete log based schemes. The
scheme does not depend on the specifically chosen group,
and, as shown in [9], it can thus be directly applied to

1http://www.nsa.gov/ia/programs/suiteb cryptography/

the Elliptic Curve setting, and the relevant Elliptic Curve
Diffie-Hellman (ECDH) and Elliptic Curve Digital Signature
Algorithm (ECDSA) constructions.

The technique proposed in [5], hereafter referred to as
BPV generator, speeds up the computation by preliminary
precomputing, and storing in a table, a number n of randomly
chosen pairs (ki, g

ki). Whenever a random pair (r, gr) is
needed, the generator randomly selects k out of the n pre-
computed pairs, sets the ’random’ value r as the sum of the
chosen terms ki, and computes the corresponding term gr, by
simply multiplying the corresponding precomputed values gki .
More formally, the BPV generator is composed of two distinct
phases illustrated in what follows.

Preprocessing:
Generate n integers k1, . . . , kn ∈ Zq .
∀j ∈ (1, n), compute gkj .
Store the pairs (kj , g

kj) in a table.

Online Pair generation:
Randomly generate S ⊂ [1, n] such that |S| = k.
Set r =

∑
i∈S ki mod q.

Set gr =
∏

i∈S g
ki using the tabulated values gkj .

Return the pair (r, gr) = (
∑
ki, g

∑
ki).

The algorithm is extremely efficient, as it requires k − 1
multiplications only. Of course, the generated value r is not
uniformly distributed. However, with an appropriate choice
of parameters n, k, the distribution of the generated values
is statistically close to the uniform random distribution. The
reader may refer to [37] for a thorough quantification of such
closeness.

Full generator with Random Walk: The above generator is
further extended in [5] by combining it with a random walk on
a Cayley graph expander. Hereafter, we refer to this extension
with the name full BPV generator.

We recall that, intuitively, a graph is an expander if it is
easy to reach any vertex from any other in very few steps. In
other words, a graph is an expander when, starting from any
initial probability distribution on its vertices, a random walk
on the graph will rapidly converge to the uniform distribution
on all vertices. Obviously, expanders are of practical interest
whenever their degree is low but their expansion ’speed’ is
large. The expansion performance of a graph can be quantified
via a (vertex) expansion parameter γ. Let S be an arbitrary
subset of vertices, and let N(S) be the set of neighbors of
S, i.e., the set of vertices connected to elements in S through
a graph edge. A graph V is a γ-vertex expander if, for any
subset S of vertices, |N(S)| ≥ γ|S|(1 − |S|/|V |). Clearly,
we wish to have γ > 1 as large as possible. Most of the
results concerning expanders (including all results presented
in the next section III) are expressed in terms of an alternative
(spectral) parameter ε < 1, an ε-spectral expander being a
γ-vertex expander with γ = 2/(1 + ε2).

The full BPV generator builds on a theorem proved by Alon
and Roichman in [3]. Let Gq be a group of order q, and let S
be a random set of group elements. Let X(Gq,S) be a Cayley
graph of the group Gq with respect to a set S of elements. For

any 1 > ε > 0 there exists a constant c(ε) > 0 such that, for
any random set S of c(ε) log2 q elements of Gq , the Cayley
graph is an ε-spectral expander almost surely.

Based on this result, the full BPV generator includes an
additional table comprising ne randomly chosen pairs. The
two phases of the full BPV generator are modified as follows
(n, k, g, q are defined as in the previous simple generator).

Preprocessing:
Generate n integers k1, . . . , kn ∈ Zq .
∀j ∈ (1, n), compute gkj .
Store the pairs (kj , g

kj) in a table.
Further generate ne = c(ε) log2 q integers d1, . . . , dne ∈ Zq .
∀j ∈ (1, ne), compute gdj .
Store the pairs (dj , g

dj) in a second table.
Initialize a value t to a random element in Zq .
Initialize a value T to gdj .

Online Pair generation:
Randomly generate S ⊂ [1, n] such that |S| = k.
Select a random di, i ∈ [1, ne].
Set t := t+ di mod q and T := T · gdi .
Set r = t+

∑
i∈S ki mod q.

Set gr = T ·
∏

i∈S g
ki using the tabulated values gkj .

Return the pair (r, gr).

The generator has an extra cost in terms of storage due to the
additional table (dj , g

dj) and the pair (t, T), and requires two
extra multiplications in addition to the k − 1 ones. However,
for an appropriate choice of ne ≈ log2 q, i.e., c(ε) = 1, it
permits to reduce the value k by a factor of two, i.e., the full
generator with parameters n, k behaves as the simple generator
with parameters n, 2k.

Application to ECDSA: The security of the generator relies
on the hardness of the Hidden Subset Sum problem, studied in
[38]: Given integers M, b1, · · · , bm ∈ ZM , find α1, · · · , αn ∈
ZM such that each bi is some subset sum of α1, · · · , αn

modulo M . This problem is conjectured to be hard if the ratio
n/ log2M is sufficiently large, more precisely greater than a
given threshold approximately equal to 0.94.

As noted in [38], the reliance upon the Hidden Subset Sum
problem holds also when the generator is used such that the
integers bi are not directly disclosed, but indirectly provided
to a passive attacker via Discrete log terms such as gbi . This is
indeed a case of significant practical interest, for instance when
the generator is used for digital signatures such as ElGamal
or the Digital Signature Algorithm (DSA). We devote the
remainder of the section to discuss the specific application
of the generator to Elliptic Curve DSA, which is of specific
interest in this paper.

We recall that an ECDSA signature [22] is constructed as
follows. Select an elliptic curve E defined over Zp such that
the number of points in E(Zp) is divisible by a large prime
q. Let g ∈ E(Zp) be a point of order q. Let the integer x ∈
[1, q−1] be a randomly chosen private key, and let the elliptic
point gx ∈ E(Zp) be the corresponding public key (along with
the public setup information q, E, g). Let H(.) be a secure hash
function.

ECDSA Signature for a message m:
select a random value r ∈ [1, q − 1];
compute the elliptic point gr = (x1, y1);
compute w = x1 mod q (if w = 0, restart);
compute r−1 mod q;
compute s = r−1(H(m) + xw) mod q (if s = 0, restart).
The pair of integers (w, s) is the signature for message m.
Security of ECDSA relies on the choice of the integer r, which
must be unique and unpredictable for each signature. Indeed,
if r can be predicted, then it would be trivial to derive the
secret key x from the linear modular equation

s = r−1(H(m) + xw) mod q →

→ x = w−1(sr −H(m)) mod q

Similarly, if a same r is used for signing two different
messages m and m′, then the secret key x would be readily
derived from the known signatures (w, s) and (w, s′) by
solving in the only unknown x the modular equation

(H(m′) + xw)s′−1 = (H(m) + xw)s−1 mod q →

→ x = [H(m)s′−H(m′)s] ·w−1 · (s− s′)−1 mod q

When the truly random terms r are replaced with those
produced by the generator, security of signature schemes
such as Schnorr, ElGamal and DSS was shown in [38] to
depend on a slightly modified variant of the Hidden Subset
Sum problem, called the Affine Hidden Subset Sum problem,
and which does not appears to be more complex than the
original problem (the Lattice reduction attack in [38] being
successfully adapted also to this problem): given a positive
integer q, and b1, · · · , bm, c1, · · · , cm ∈ ZM , find integers
x, α1, · · · , αn ∈ ZM , such that each bi + xci is some subset
sum modulo M of α1, · · · , αn. Indeed, this obviously holds
for ECDSA. It is sufficient to note that r, which, owing to the
generator, it is a hidden subset sum, can be expressed as:

r = s−1(H(m)+xw) = s−1H(m)+xws−1 = b+xc mod q

where, for each signed message, b = s−1H(m) mod q and
c = ws−1 mod q are known to a passive attacker.

III. IMPROVED BVP GENERATOR

The BPV full generator combines the basic generator with a
random walk on expanders based on Cayley graphs on abelian
group. The distribution of the outputs of the basic generator
is shown to be at most 2−(e+1) statistically distinguishable
from the uniform distribution, where e = 1

2

(
log
(
n
k

)
−m

)
and m = |p| for a prime p. Thus, for large values of

(
n
k

)
, the

outputs of the basic generator follow essentially the uniform
distribution. In BPV, the basic generator is improved by
using expanders which will preserve randomness even when
decreasing k. This is due to the Alon–Roichman theorem [3]
which asserts that random Cayley graphs are expanders: for
every ε > 0 there exists a constant c(ε) such that the Cayley
graph, obtained by selecting ne elements independently and

uniformly at random from a finite group G, has expected
second largest eigenvalue less than ε (i.e., it is an expander
with high probability), whenever ne ≥ (c(ε) + o(1)) log |G|.
Because of this theorem, the value ne is set to c(ε) log |G| in
BPV. Here the leading constant c(ε) is 4e/ε2 which is about
10.87/ε2.

The full BPV generator can be improved by showing that ne
can be smaller, thus saving in space. Our improved generator,
which we call I-BPV, relies on the following results:

1) Landau-Russel [25] and Schulman-Loh [30] that showed
that the log |G| term in ne can be replaced by logD,
where D ≤ |G| is the sum of the dimensions of the
irreducible representations of G. Note that a finite group
G has only a finite number of irreducible representations
(up to equivalence) and that

√
|G| < D ≤ |G|.

2) Christofides-Markstrom [7] that showed that the constant
c(ε) can be reduced from 10.87/ε2 to 2/ε2.

3) A proof that I-BPV is still safe against birthday attacks
even though ne is significantly smaller than previously
intended.

We observe that, if G is a cyclic group of order q then there
are exactly q inequivalent irreducible complex representations
of G. Thus, in this specific case, D = |G| but we can still
benefit from the reduction of the constant c(ε). Namely, fixed
an ε, the value ne in I-BPV will be about 1/5 of the ne used
in BPV. In practice, this means that the extra table stored in I-
BPV will be five times smaller than the table in BPV, reducing
the space overhead of the generator.

When the ratio n/ log2 q is in the order of 1 or more, based
on [38], the security of the I-BPV generator depends on its
resistance to birthday attacks, which directly derives from the
relevant theorem in BPV.

Theorem [From [5]]: If G is a cyclic group of order q,
then the expected number of repetitions in a run of I-BPV of
length l is at most(

l

2

)
q

+
l(
n

k

) (1

1− 2−c
+

1

c
k log n

)

for some constant c.
Our choice of parameters n and k is justified by the study of

Phong Nguyen and Jacques Stern in [38], where they used the
discrete Fourier transform to prove that the distribution of the
BPV output is indistinguishable from the uniform distribution,
and this holds without the addition of the expander.

IV. EXPERIMENTAL PLATFORMS

To gain practical insights on the effectiveness of precompu-
tation techniques, we have implemented, and experimentally
assessed (in terms of performance and energy consumption),
the ECDSA signature on two widely deployed off-the-shelf
wireless sensor node families: TelosB and MICA2 motes.
In the case of TelosB nodes, we could further carry out an
integrated assessment of security mechanisms and energy har-
vesting technologies thanks to the availability of two testbeds,

Feature M25P80 AT45DB
Erase Slow (seconds) Fast (ms)

Erase unit Large (64kB-128kB) Small (256B)
Writes Slow (100 kB/s) Slow (60 kB/s)

Write unit 1 bit 256B
Bit-errors Low Low

Read Bus limited Slow+Bus limited
Erase cycles 104 − 105 104

Energy/byte 1µJ 1µJ

Table I
MAIN FEATURES OF M25P80 (TELOSB) AND AT45DB (MICA2) FLASH

MEMORY TECHNOLOGIES.

comprising nodes equipped with micro solar cells and wind
microturbines, respectively. Technical details concerning the
sensor node platforms and the harvesting technology employed
are provided in the next subsections.

TelosB motes: TelosB [11] is a low power wireless sensor
module developed and initially distributed to the research
community by UC Berkeley and later on commercialized by
Crossbow, inc. TelosB features an 8MHz MSP430 micro-
controller, a 16b RISC processor, 10 kB of RAM, 48 kB
of program memory (ROM), 1024 kB of external flash, and
an IEEE 802.15.4 compliant wireless transceiver, the Chipcon
CC2420.

The availability of relatively large storage flash memory
chips embedded in modern sensor nodes plays a crucial role
in permitting memory/performance trade-offs which were not
possible in previous generation platforms due to the very
scarce memory available. A flash memory is a specific type
of EEPROM (Electrically Erasable Programmable Read-Only
Memory) that enables access to n-bytes blocks in a single
operation, instead of one operation per byte like conventional
EEPROM memories. This memory is non-volatile, which
means that energy is not needed to maintain the information
stored in the chip. Telos B uses the ST M25P80 40MHz
Serial code flash for external data and code storage. The flash
memory holds 1024 kB of data and is decomposed into 16
segments, each 64 kB in size. The flash enables the random
access for readings but shares SPI communication lines with
the CC2420 transceiver. Flash erasure is block-oriented in that
the minimum unit to be erased is a block. This means that all
cells in a block must be erased together. Writing is performed
on a per-byte basis, but it requires that the block be erased
before writing on it.

MICA2 motes: The MICA2 Motes [10] are a second family
of nodes commercialized by Crossbow, inc. MICA2 motes
are equipped with a 4MHz Atmel ATmega128L 8b micro-
controller, 4 kB of RAM, 128 kB of ROM, 512 kB of external
flash and the Chipcon CC1000 low-power wireless transceiver.

MICA2 uses the Atmel AT45DB041 Serial DataFlash chip.
Atmel AT45DB041 Serial DataFlash provides 512 kB of
storage and it is divided into four sectors of 128 kB. Every
sector is also divided into pages. Each page is 264 bytes long
(256 bytes for data and 8 bytes for metadata). The pages can
only be written or erased as a whole and, to maintain con-

Figure 1. TelosB node with wind micro turbines.

sistency, pages should be erased before being written. Unlike
conventional flash memories, that enable random access to the
data, this memory chip uses a serial interface and enables
only sequential access. Table I compares the flash memory
technologies used in the two considered platforms (M25P80
for TelosB, AT45DB for MICA2).

Managing the flash memory: Care must be taken when
accessing the flash in both read or write mode. In fact, in the
considered sensor node platforms, the same SPI bus is used to
access both the flash and the radio chip. We thus developed a
software arbitration protocol to manage the SPI bus access in
both of the two considered platforms. This access problem, of
course, may not necessarily impact other platforms.

In order to manage the data stored in the flash, we relied on
TinyOS 2.x primitives [26]. Specifically, TinyOS 2.x provides
three basic storage abstractions: small objects, circular logs,
and large objects. TinyOS 2.x divides the flash chip into
one or more fixed-size volumes. Each volume provides a
single type of storage abstraction (e.g., configuration, log,
or block storage). The abstraction type defines the physical
layout of data on flash memory. We used the LogStorage and
ConfigStorage abstractions to write and read data.

Energy Harvesting Hardware: Experiments involving en-
ergy harvesting technologies were carried out using a testbed
consisting of TelosB motes equipped with IXOLAR XOB17-
04x3 micro solar cells [20] and a 10F Maxwell HC Power
series capacitor [34]. We also integrated TelosB nodes with
wind micro turbines as shown in Figure 1. In this case a 5F
super capacitor from the same manufacturer is used. More
details are discussed in Section V-C.

V. PERFORMANCE ASSESSMENT

In the next subsection we first provide some details on
the optimizations employed in our ECDSA implementation.
We then report, in section V-B, performance and energy con-
sumption results for the criptographic primitives, considering
both the case when they are run stand-alone and the case
when the whole sensor is operational. Finally, section V-C

explores the usage of harvesting technologies and envisions
some ways to further reduce the energy cost of the security
related computations.

A. Implementation

We have implemented our solution in nesC for the operating
system TinyOS 2.x [26]. In our implementation, based on the
TinyECC library [28], the elliptic curve is an MNT curve,
which can be written in the simplified Weierstrass form as

E(Fp) : y
2 = x3 + ax+ b. (1)

The elliptic curve E is defined over a prime field Fp where
p = 2160−231−1 as recommended by SECG [41]. According
to NIST, this guarantees a security level of 80 bits.

Owing to the limited computational capabilities and the
internal (RAM/ROM) memory constraints of sensor platforms,
optimizations in the implementation are necessary. We used
curve-specific optimizations to speed up modular multiplica-
tion and modular square, applicable to our case of group size
p being a pseudo Mersenne prime.

To decrease the high computational cost to perform a
modular inversion, we implement elliptic curve operations
in projective coordinates using Jacobian representation. The
affine coordinates can be transformed into projective coordi-
nates which use three elements to represent a point (X,Y, Z),
allowing the numerator and the denominator to be calculated
separately. The elliptic curve defined in (1) is converted to
Jacobian coordinates as follows:

E(Fp) : Y
2 = X3 + aXZ4 + bZ6, (2)

where X = xZ2, Y = yZ3.
We used the OS function to generate randomness. We also

experimented with PRNGs and both HMAC-SHA1, as a PRF,
and SHA-512 truncated at 384 bits to behave like a ”random
oracle”.

B. Performance

To assess the practical feasibility of our solution we have
computed its computational overhead, expressed in terms of
time needed to perform the needed operations. We have
also evaluated the energy consumption associated with the
operations performed by our solution.

Methodology: Energy consumption can be evaluated by
means of the formula E = U ∗ I ∗ t, where t is the time
to perform an operation, U is the voltage and I is the current
intensity. The time t has been experimentally evaluated by
performing tests which execute the selected operations 10.000
times, and recording the time needed to perform the overall
cycle. This allows us to estimate the average time needed to
perform each operation. The values U and I may be derived
from both datasheet values as well as actual measurements.
We have considered both: measurements were performed by
taking the voltage difference between the sensor and a set
of resistors used to clean up the signal from the noise coming
from the lab environment. During the measurements the sensor
was powered by a 3V generator. We have observed a negligible

Telos B MICA2
Exponentiation 3701ms/19.98mJ 2244ms/53.85mJ
Multiplication 193ms/1.04mJ 130ms/3.12mJ
A/P/A conv. 179ms/. 121ms/.

Table II
COMPUTATIONAL OVERHEAD AND ENERGY CONSUMPTION OF ECC

OPERATIONS ON TELOS B AND MICA2 MOTES.

difference between the actual measurements and the values
reported in the data sheet for both the platforms. For MICA2
motes, when the processor is in active mode, I = 8mA. TelosB
instead consumes I = 1.8mA when in active mode. Typically,
U = 3.0V with two new AA batteries.

Cost of atomic Elliptic Curve operations: Table II shows
the computational overhead and energy cost of ECC operations
over the TelosB and MICA2 platforms, respectively. Consis-
tently with the previous sections, we use multiplicative group
notation rather than the more established additive one. The
two basic operations are exponentiation (i.e., computation of
an EC group point gs with s a randomly chosen integer in
[1, q − 1]) and multiplication between two randomly chosen
group points. Exponentiation is used in ordinary ECDSA,
whereas our scheme only uses multiplications.

Exponentiation is, as expected, the most expensive opera-
tion. Table II shows that one exponentiation is executed in
about 3.7s over a Telos B mote, and in about 2.2s over a
MICA2. The difference between these values is due to hard-
ware differences between the two platforms, as well the inter-
nal distinct optimizations of the assembly code. The energy
consumption associated with exponentiation is 19.98mJ and
55.mJ for TelosB and MICA2 motes, respectively. This large
difference is mostly due to the different current intensity in the
two platforms (1.8 mA for TelosB versus 8 mA for MICA2).
Our experimental evaluation also shows that a multiplication
roughly costs about a factor 20 less than an exponentiation,
in terms of both time and energy. A multiplication requires
193ms with an energy consumption of 1.04mJ on TelosB
motes, and 130ms with an energy consumption of 3.12mJ on
MICA2 motes.

By themselves, these results might (erroneously) suggest
that the saving in using precomputations might be limited to
the case of up to about 20 terms. As shown later on in table III
this is not the case, and, for instance, 60 multiplications are
performed in almost 1/4 of an exponentiation time. Indeed, our
implementation performs (faster) operations in the Jacobian
projective coordinates. The cost in converting from affine
coordinates to projective coordinates and vice versa (labeled
as A/P/A conversion in table II) is thus a fixed overhead which
applies once to both exponentiation and multiplication. This
cost is non negligible: in terms of time, it accounts to 179ms
for TelosB and 121ms for MICA2 sensor node platforms. Note
that the conversion of coordinates affine→ projective→ affine
accounts for almost all the cost of performing a multiplication,
being the latter step (projective → affine) the dominant cost.
Nevertheless, backward conversion to affine is recommended

as security may be affected by leaving results in projective
coordinates (see Naccache et al. [36]).

Cost of the precomputation-based ECDSA: the cost in
terms of memory, time, and energy consumption of an ED-
CSA signature relying on precomputation depends on the
parameters used in the generator, namely the number n of
precomputed pairs (kj , g

kj), the number ne of the elements
(dj , g

dj) comprising the set used for the random walk over the
Cayley graph expander, and the number k of elements drawn
at each signature.

The parameters n and ne are only related to storage, and
hence do not impact the cost of an ECDSA signature in terms
of time and energy consumption. Rather, the parameter k is
related to the number of multiplications to be performed and
hence affects performance results.

Table III provides an overview of the various time/energy
costs involved in an ECDSA signature based on precompu-
tations, along with the cost of the whole signature, for four
values of the security parameter k, with n = 160. Specifically
the table reports, for each sensor node platform, the time and
energy consumption needed to perform: i) the modular sum of
the coefficients kj ∈ Zq , ii) the product of the k corresponding
elliptic points gkj , and iii) the total ECDSA signature cost.
Results show that the cost, as expected, grows with the size
of the parameter k, but it remains significantly lower than the
cost of an exponentiation even for large k. Note that the first
row for MICA2 is left blank because MICA2 does not support
k = 60 entirely in RAM.

Comparison with other techniques: Table IV compares
the performance attained by our ECDSA signature based on
precomputations (parameters: n = 160, ne = 32, and k = 8)
with alternative signatures, as well as other ECDSA implemen-
tations. The data reported in the table for the schemes different
from ours are adapted from [13], which provides a comparative
assessment of the reported schemes when implemented over
a MICAz sensor node. Note that the MICAz platform, used
in [13], relies on the same micro-controller employed in the
MICA2 platform. Thus, it is reasonable to directly compare
the signature time of the other schemes running on MICAz
motes to that of our scheme on the MICA2 mote. However,
MICAz has a different energy consumption than MICA2.
Hence, for a fair comparison, we adapted the data of [13] to
the consumption parameters of the MICA2 platform. MICA2
and MICAz [10] are both platforms relying on the very same
hardware and CPU, clocked at the same 7.4 MHz. Their
(substantial) difference resides only in the wireless transceiver,
whose consumption was (indeed for fairness) NOT accounted
in the table. MICA2/z energy consumption equivalence for
computation is easily verified by data sheets, and well estab-
lished in relevant literature (for a recent example involving
crypto computations, see table 2 in [16]). The remaining
entries in the table are provided for the reader’s convenience,
and report the size —Sig—, in bytes, of the considered
signatures, along with the size, in bytes, of the private key
—kpriv— and the public key —Kpub—.

In the comparison, we further accounted for the fact that

the n pre-computed pairs (kj , g
kj) and the ne pairs (dj , g

dj)
cannot be entirely stored in the RAM. Indeed, MICA2 motes
have only a 4kB RAM, whereas each pair requires 63 bytes of
memory: 19 bytes for the integers kj , and 22 bytes for each of
the two coordinates of the elliptic points gkj . Even if 2.8kB
were in principle available (the implementation of our scheme
requires 18.2kB of ROM and 1.2kB of RAM), we considered
the worst-case approach of storing all the pairs in the flash
memory. Access to the flash brings about an extra time/energy
cost. Specifically, reading one pair takes 1.94 ms and causes
an energy consumption of 0.023 mJ. This supplementary flash
access overhead explains the slightly worse results with respect
to the performance reported in Table III for the same setting
of the parameters.

Table IV clearly shows that pre-computation permits to
significantly increase the speed with respect to any other
scheme reported in the table: our signature is almost three
times faster than the best ECDSA implementation reported
in the table, and almost two times faster than NTRUSIGN.
Similar improvements are shown also in terms of energy
consumption, reduced by almost 50% when compared against
the most energy-effective implementation alternative. Also,
considering that our current implementation can be further
improved, we believe that this result makes a significant case
for (re)considering pre-computation techniques for making
standard signatures practical in the wireless sensor domain,
rather than choosing alternative signature schemes.

Finally, note that performance improvements would still
remain significant even when using larger k values (expected
performance may be estimated from the values reported in
Table III and the cost of the flash memory access).

Integrated performance assessment: We have investigated,
using the TelosB motes, the cost of signing messages out of
the overall sensor node energy consumption, when considering
operational nodes involved in sensing activities and transmis-
sion of collected data.

All the precomputed pairs, accounting to about 12 kB, are
stored in the flash memory. This is a worst case scenario, as
part of them could be eventually stored in the 10 kB RAM
of the TelosB platform. The storage requirement is readily
determined as follows. The number n of pairs (k, gkj), each
using 63 bytes, must be set to a value not lower than 160,
the size in bit of the Elliptic Curve group, to prevent lattice
reduction attacks [38]. Thanks to our optimization, the number
ne of supplementary pairs for constructing the Cayley graph
are set to 32, one fifth of the group size in bits. Hence, 192×63
bytes are used in total.

Energy consumption due to communication can be accu-
rately approximated based on the actual duty cycle followed by
the considered protocol stack. Current state of the art protocols
such as [35], [14], [8] operate with good performance at

Telos B MICA2
k

∑
kj mod q

∏
gkj ECDSA sign

∑
kj mod q

∏
gkj ECDSA sign

60 10ms/0.05mJ 1026ms/5.54mJ 1229ms/6.63mJ / / /
30 5ms/0.03mJ 604ms/3.26mJ 802ms/4.33mJ 3ms/0.07mJ 381ms/9.14mJ 523ms/12.55mJ
15 2ms/0.01mJ 391ms/2.11mJ 586ms/3.16mJ 2ms/0.05mJ 252ms/6.05mJ 393ms/9.43mJ
8 1ms/ε 291ms/1.57mJ 485ms/2.62mJ ∼=1ms/∼=0.02mJ 191ms/4.58mJ 331ms/7.94mJ

Table III
ANATOMY OF THE ECDSA SIGNATURE COST - TELOSB MOTES

Author(s) Scheme ROM RAM —Sig— —kpriv— —kpub— tsign ECPU (tsign)

Gura et al., RSA 7.4kB 1.1kB 128B 128B 131B 10.99s 263.8mJ
Liu et al., ECDSA 19.3kB 1.5kB 40B 21B 40B 2.001s 14.8mJ

Driessen et al.,
NTRUSign 11.3kB 542kB 127B 383B 127B 0.619s 22.3mJ

ECDSA 43.2kB 3.2kB 40B 21B 40B 0.918s 22.0mJ
XTR-DSA 24.3kB 1.6kB 40B 20B 176B 0.965s 23.2mJ

This work ECDSA 18.2kB 1.2kB 40B 21B 40B 0.346s 8.1mJ

Table IV
COMPARISON WITH NTRUSIGN, OTHER OPTIMIZATIONS OF ECDSA, AND XTR-DSA - DATA TAKEN FROM [13], ENERGY COST ADAPTED TO THE

MICA2 CONSUMPTION PARAMETERS FROM THE ORIGINAL ONES BASED ON A MICAZ MOTE

around 1% duty cycle2. For this reason, in our experiments we
have considered that nodes follow a duty cycle d = 0, 5%, 1%.
We have also considered two scenarios differing in the type of
sensors integrated in the node : i) sensor node equipped with
humidity and temperature sensors, and ii) videocamera taking
shots at a rate of 60 frames per hour. In the first scenario the
average energy consumption due to sensing operation is 1.65
mW, while in the second the sensing energy consumption is
higher, equal to 44 mW. By varying the duty cycle and the type
of sensors (and associated sensing cost) we can explore the
parameter space of the different wireless sensor applications
and understand better the energy cost incurred by our scheme
in different settings.

Specifically, figures 2, 3, 4, 5 report the percentage of
the per-day energy consumption associated with sensing and
communication, signature generation, and pair (kj , gkj) read-
ings from the flash. Each figure displays three concentric
circles which represent the impact of the different energy
consumption components when the number of signatures a
node performs per day varies between 300, 1000, 3000. The
300 signatures case corresponds to the inner circle while the
3000 signatures per day case corresponds to the outer circle.
Each set of figures displays results for a given pair (duty cycle,
type of sensor and associated frequency of reporting). Three
figures are displayed in each set, which correspond to different
settings of the security parameter k.

Results displayed in Figures 2, 3 show that the relative cost
of signatures is large, up to 40% with k = 30, for a high
number of required signatures (3000) and a low duty cycle of
0.5%. The saving obtained by reducing k to 8 is appreciable,
but the overall cost of signatures still accounts to about 25%.

2The duty cycle is defined as d = TON
(TON+TOFF)

, where TON is the
fraction of time when the transceiver is active, and TOFF denotes the fraction
of time when the transceiver is in a low power ”asleep state”. In the latter
state the energy consumption is negligible but the node cannot transmit or
receive messages.

When the duty cycle is higher (see Figure 2) the cost of sensing
and communicating increases, reducing the fraction of energy
consumed by the signatures.

Figures 4, 5 show the case where the sensor node is
equipped with a videocamera taking 60 shots per hour. In this
case, the sensing cost is significantly higher, and the extra
overhead required by the signatures is in the order of 10% or
less even when considering a very large signature-generation
rate.

C. Harvesting

As a second set of experiments, we have investigated
how energy harvesting can be exploited for precomputations.
We have integrated TelosB nodes with XOB17-04x3 solar
cells [20] and a 10F Maxwell HC Power series capacitor [34].
The motes were deployed close to the windows of a building
for several months, at variable weather conditions. A dedicated
TinyOS application was developed to periodically track the
amount of energy generated by the solar cell. The resulting
traces of harvested solar energy were used in our experiments
(labeled as ’solar traces’). We also integrated TelosB nodes
with wind micro turbines, as shown in Figure 1, and with a
5F super capacitor. Experiments were performed in this case
for 3 months outside a building. Results run in the scenario of
wind energy harvesting, based on real life traces, are labeled
as ’wind traces’.

Since the supercapacitor suffers from leakage, energy which
is harvested and not used progressively leaks and is wasted.
Also, energy is lost if the supercapacitor is full and the
harvested energy exceeds the node energy consumption. It
is therefore convenient to precompute as much as possible
values when harvested energy is available. To estimate how
energy harvesting can be used to reduce the energy toll
associated with security operations we run simulations using
the real traces of harvested energy we experimentally obtained.
Signatures are assumed to be uniformly distributed during the

2%	 0%	

98%	

7%	 1%	

92%	

21%	

3%	

76%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(a) n = 160 - k = 30.

2%	 0%	

98%	

5%	 1%	

94%	

15%	

2%	

83%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(b) n = 160 - k = 15.

1%	 0%	

99%	

4%	 0%	

96%	

13%	

1%	

86%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(c) n = 160 - k = 8.

Figure 2. Duty cycle 1% - Sensing temperature and humidity.

4%	 1%	

95%	

14%	

2%	

84%	

40%	

7%	

53%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(a) n = 160 - k = 30.

3%	 0%	

97%	

10%	
1%	

89%	

30%	

4%	 66%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(b) n = 160 - k = 15.

3%	 0%	

97%	

8%	
1%	

91%	

25%	

2%	

73%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(c) n = 160 - k = 8.

Figure 3. Duty cycle 0.5% - Sensing temperature and humidity.

1%	 0%	

99%	

3%	 1%	

96%	

10%	
2%	

88%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(a) n = 160 - k = 30.

1%	 0%	

99%	

3%	 0%	

97%	

8%	
1%	

91%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(b) n = 160 - k = 15.

1%	 0%	

99%	

2%	 0%	

98%	

6%	 1%	

93%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(c) n = 160 - k = 8.

Figure 4. Duty cycle 1% - Sensing camera.

day. Whenever there is harvested energy in the supercapacitor
and there is free space in the RAM, we read (kj , g

kj) pairs
from the flash, perform point addition and store the result
in RAM, which can then be directly used to sign a future
message. When we use a value stored in RAM to sign a
message, the corresponding RAM memory is deallocated. We
also exploit harvested energy, if available, to perform the actual
message signature. Given the available RAM in TelosB nodes,
we can precompute and store in RAM the values needed for
up to Ds = 81 future signatures.

Table V displays the ratio between the energy drawn from
battery to perform operations related to our scheme when
energy harvesting is exploited, and the energy which would
be needed to perform the same operations by a node with
no harvesting capability. The scenario displayed in the table
corresponds to the case when n = 160,k = 8. Results are
shown for low power and high power sensing, and for wind
and solar energy harvesting.

Results show that even a small solar cell such as the
IXOLAR XOB17- 04x3, or a small wind turbine is able to

2%	 0%	

98%	

4%	 1%	

95%	

14%	

2%	

84%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(a) n = 160 - k = 30.

1%	 0%	

99%	

4%	 0%	

96%	

10%	
1%	

89%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(b) n = 160 - k = 15.

1%	 0%	

99%	

3%	 0%	

97%	

8%	
1%	

91%	

signs	 reads	 MCU	 +	 rx/tx	 +	 	 sensor	

(c) n = 160 - k = 8.

Figure 5. Duty cycle 0.5% - Sensing camera.

solar wind
signs temp. & hum. video temp. & hum. video
300 0.06 0.44 0.74 0.91

1000 0.08 0.44 0.76 0.91
3000 0.12 0.47 0.80 0.92

Table V
RATIO BETWEEN ENERGY DRAWN FROM BATTERY WITH HARVESTING

AND WITHOUT HARVESTING

provide enough harvested energy for the node to perform
extensive pre-computations, reducing the energy consumption
needed to sign messages. Reduction in the energy consumption
ranges from 88% to 94% using temperature and humidity
sensors, and from 53% to 56% when the node is equipped
with a videocamera taking 60 shots an hour.

In the wind energy harvesting scenario the energy consump-
tion reduction is more limited, ranging from 20% to 26% in
case temperature and humidity sensors are used, and from 8%
to 9% when using videocamera sensor.

The reason is in the lower amount of energy which can be
harvested by exploiting wind microturbines. Figures 6 and 7
display the solar and wind energy harvested in three days,
based on our traces. Wind generated energy is more constant
over time, while solar energy is generated only during daytime
but this effect is partially compensated by the availability of
the supercapacitor for temporary energy storage. What makes
the difference is therefore the overall amount of harvested
energy over a typical day which is much higher when using
solar cells than microturbines. This explains why we can
achieve a higher reduction in battery energy consumption in
the former case.

D. Harvesting and Full Exponentiations

Since we are using energy harvesting, one may ask: Why
not computing directly a full exponentiation as part of pre-
computation (with no increase in storage)?

The idea is that since we have extra energy, which would
be wasted if not used, we could just compute pairs (k, gk) and
store them in RAM and FLASH until they are both filled up.
When the pick of energy is over, we stop pre-computing pairs

 0

 2

 4

 6

 8

 10

 12

 14

12:00 pm

03:00 pm

06:00 pm

09:00 pm

12:00 am

03:00 am

06:00 am

09:00 am

12:00 pm

03:00 pm

06:00 pm

09:00 pm

12:00 am

03:00 am

06:00 am

09:00 am

12:00 pm

03:00 pm

06:00 pm

09:00 pm

12:00 am

03:00 am

06:00 am

09:00 am

P
o
w

e
r

[m
W

]

Figure 6. Solar energy harvested over three days.

 0

 2

 4

 6

 8

 10

 12

 14

12:00 pm

03:00 pm

06:00 pm

09:00 pm

12:00 am

03:00 am

06:00 am

09:00 am

12:00 pm

03:00 pm

06:00 pm

09:00 pm

12:00 am

03:00 am

06:00 am

09:00 am

12:00 pm

03:00 pm

06:00 pm

09:00 pm

12:00 am

03:00 am

06:00 am

09:00 am

P
o
w

e
r

[m
W

]

Figure 7. Wind energy harvested over three days.

and start consuming them to generate signatures (one pair per
signature, in this setting). We show next that this alternative
solution would be much less performing. To do this, we must
first fix certain parameters and devise a proper experiment.

Let’s consider a node that is continuously signing messages,
that is, the node keeps sensing and signing messages con-
taining information captured by its sensors. The node may
have only two states: (1) The first state is when the node
has extra energy from harvesting. In this state, we assume
the node’s only task is to pre-compute and store pairs (k, gk).
This makes sense since the intention is to use energy in excess
to populate the available memory with pairs. (2) The second
state is when the node has no extra energy, namely when the
supercapacitor is charging or discharging. In this state, the
node will keep generating and transmitting signatures. In the
event the node uses up all pairs, it will compute new ones on
the fly. That is, the node first generates a pair (k, gk) and then
uses it to compute a single signature. The on-the-fly generation

Naive BPV
Precomputations Signatures FLASH Precomputations Signatures FLASH

Day 1 6823 6823 0 19428 12726 6702
Day 2 77 77 0 0 597 6105
Day 3 3778 3778 0 6354 12459 0
Day 4 5302 5302 0 16038 13506 2532
Day 5 4758 4758 0 12936 15454 14
Day 6 5351 5351 0 17528 10783 6759
Day 7 5468 5468 0 15276 16664 5371

Average 4310 4310 0 11758 11532 2525

Table VI
COMPARISON OF NAIVE AND BPV-BASED APPROACHES

continues until the node reaches the first state again.
We run the two-state node above with pairs (k, gk) com-

puted using full exponentiation (naive approach) and our BPV-
based technique (with n = 160 and k = 8). Results are
shown in Table VI for a TelosB node with temperature and
humidity sensing. In particular, the aim is to determine how
many signatures the node can generate and transmit in a typical
day. The days in the table are seven consecutive days taken
from our traces while the average is computed over a month.
In summary, with our approach the node can compute and
transmit 11, 532 signatures per day as opposed to 4, 310 with
the naive approach. Note also that with the naive approach,
the node uses up all pre-computed pairs and does not make
use of the FLASH. At the end of a typical day, the entire
memory is completely empty. With our approach, instead, pair
production is much faster than pair consumption, thus the node
never needs to compute new pairs on the fly. In addition, at
the end of a typical day, the node is left with a surplus of pairs
(both in RAM and in FLASH) that can utilize afterward.

VI. CONCLUSIONS

In this paper, with focus on a concrete implementation of
an ECDSA signature over two mote platforms (TelosB and
MICA2) and its extensive assessment, we have shown that
pre-computations permit to significantly reduce the energy cost
and accelerate the speed of signatures in wireless sensor nodes.
The extra memory cost, which we constrained to about 12
kB thanks to the application of new results on Cayley graph
expanders, can be easily accommodated in flash memories
which most of modern sensors currently employ.

We achieved an ECDSA-signature generation time below
350 ms over MICA2 motes, with an energy consumption
below 10 mJ. We believe that, with further technical opti-
mizations in the elliptic curve implementation, non-marginal
additional improvements are possible. Our results have further
shown that, with pre-computations, an ECDSA signature at-
tains performance superior to lightweight approaches such as
NTRUsign.

Finally, as a further argument in favor of pre-computation,
we pointed out the emergence of energy harvesting technolo-
gies that opportunistically draw energy from the environment.
In the paper, we provided an experimental quantification of
the energy that micro solar cells and wind microturbines can

make available to cryptographic processing. We believe that
the exploitation of harvested energy for security protocols is a
very compelling playground for future creative constructions.

ACKNOWLEDGMENT

This paper has been partially supported by the FP7 project
GENESI (GrEen sensor NEtworks for Structural monItor-
ing), by the ARTEMIS project #1000128 CHIRON (Cyclic
and person-centric Health management: Integrated appRoach
for hOme, mobile and clinical eNvironments) and by the
PRIN project TENACE. G. Ateniese, in addition, gratefully
acknowledges support from a Google Faculty Research Award
and an IBM Faculty Award.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38(4):393 – 422, 2002.

[2] H. Alemdar and C. Ersoy. Wireless sensor networks for healthcare: A
survey. Computer Networks, 54(15):2688 – 2710, 2010.

[3] N. Alon and Y. Roichman. Random cayley graphs and expanders.
Random Structures Algorithms, 5(2):271–284, 1994.

[4] R. Bischoff, J. Meyer, and G. Feltrin. Wireless Sensor Network
Platforms. John Wiley & Sons, Ltd, 2009.

[5] V. Boyko, M. Peinado, and R. Venkatesan. Speeding up discrete log
and factoring based schemes via precomputations. In Advances in
Cryptology - EUROCRYPT ’98, pages 221–235, 1998.

[6] E. Brickell, D. Gordon, K. McCurley, and D. Wilson. Fast exponenti-
ation with precomputation. In Advances in Cryptology - EUROCRYPT
’92, volume 658 of Lecture Notes in Comp. Sci., pages 200–207, 1993.

[7] D. Christofides and K. Markstrom. Expansion properties of random
cayley graphs and vertex transitive graphs via matrix martingales.
Random Structures Algorithms, 32(1):271–284, 2008.

[8] U. M. Colesanti, S. Santini, and A. Vitaletti. DISSense: An Adaptive
Ultralow-power Communication Protocol for Wireless Sensor Networks,
pages 1–10. 2011.

[9] J. S. Coron, D. M. Raihi, and C. Tymen. Fast generation of pairs (k,
[k]p) for koblitz elliptic curves. In Selected Areas in Cryptography,
pages 151–164, 2001.

[10] Crossbow Technology. MICA2 mote platform datasheet. Document Part
Number: 6020-0042-04.

[11] Crossbow Technology. TelosB mote platform datasheet. Document Part
Number: 6020-0094-01 Rev B.

[12] G. Dini and I. M. Savino. Lark: A lightweight authenticated rekeying
scheme for clustered wireless sensor networks. ACM Trans. Embed.
Comput. Syst., 10(4):41:1–41:35, 2011.

[13] B. Driessen, A. Poschmann, and C. Paar. Comparison of innovative
signature algorithms for wsns. In ACM WiSec. 2008.

[14] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis.
Design and evaluation of a versatile and efficient receiver-initiated link
layer for low-power wireless. In Proc. 8th ACM Conf on Embedded
Networked Sensor Systems, SenSys ’10, pages 1–14, 2010.

[15] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures.
In Proceedings on Advances in cryptology, CRYPTO ’89, pages 263–
275, 1989.

[16] D. Galindo, R. Roman, and J. Lopez. On the energy cost of authenticated
key agreement in wireless sensor networks. Wireless Communications
and Mobile Computing, 12:133–143, 2012.

[17] C. Gentry and M. Szydlo. Cryptanalysis of the revised ntru signature
scheme. In Proc. of the Int. Conf. on the Theory and Applications of
Cryptographic Techniques: Advances in Cryptology, EUROCRYPT ’02,
pages 299–320, 2002.

[18] A. Ghobakhlou, S. Shanmuganthan, and P. Sallis. Wireless sensor
networks for climate data management systems. In 18th World IMACS
/ MODSIM Congress, Cairns, Australia 13-17, 2009.

[19] V. C. Gungor, B. L. B. Lu, and G. P. Hancke. Opportunities and
challenges of wireless sensor networks in smart grid. IEEE Transactions
on Industrial Electronics, 57(10):3557–3564, 2010.

[20] IXYS Corporation. XOB17 IXOLAR High Efficiency Solar Bits
technical information, Jun 2009.

[21] R. Jiang, J. Luo, F. Tu, and J. Zhong. Lep: A lightweight key
management scheme based on ebs and polynomial for wireless sensor
networks. In IEEE Int. Conf. on Signal Processing, Communications
and Computing (ICSPCC), pages 1–5, 2011.

[22] D. B. Johnson and A. J. Menezes. Elliptic curve dsa (ecsda): an enhanced
dsa. In Proc of the 7th conference on USENIX Security Symp., SSYM’98,
1998.

[23] M. Joye. An efficient on-line/off-line signature scheme without random
oracles. In Proc. of the 7th Int. Conf. on Cryptology and Network
Security, CANS ’08, pages 98–107, 2008.

[24] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan,
N. Kushalnagar, L. Nachman, and M. Yarvis. Design and deployment of
industrial sensor networks: experiences from a semiconductor plant and
the north sea. In 3rd int. conf. on Embedded networked sensor systems,
SenSys ’05, pages 64–75, 2005.

[25] Z. Landau and A. Russell. Random cayley graphs are expanders: a
simple proof of the alon-roichman theorem. Electronic Journal of
Combinatorics, 11(1), 2004.

[26] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for
sensor networks. In in Ambient Intelligence. Springer Verlag, 2004.

[27] C. H. Lim and P. J. Lee. More flexible exponentiation with precompu-
tation. In Proc. of the 14th Annual International Cryptology Conference
on Advances in Cryptology, CRYPTO ’94, pages 95–107, 1994.

[28] A. Liu and P. Ning. Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks. In Proceedings of the 7th
international conference on Information processing in sensor networks,
IPSN ’08, pages 245–256, Washington, DC, USA, 2008. IEEE Computer
Society.

[29] J. Liu, J. Baek, J. Zhou, Y. Yang, and J. Wong. Efficient online/offline
identity-based signature for wireless sensor network. International
Journal of Information Security, 9(4):287–296, 2010.

[30] P.-S. Loh and L. J. Schulman. Improved expansion of random cayley
graphs. Discrete Mathematics and Theoretical Computer Science,
6:523–528, 2004.

[31] J. Lopez, R. Roman, and C. Alcaraz. Analysis of security threats,
requirements, technologies and standards in wireless sensor networks. In
Foundations of Security Analysis and Design V, volume 5705 of Lecture
Notes in Comp. Sci., pages 289–338, 2009.

[32] Y.-F. Lu, C.-F. Kuo, and A.-C. Pang. A half-key key management
scheme for wireless sensor networks. In Proc. of the 2011 ACM Symp.
on Research in Applied Computation, RACS ’11, pages 255–260, 2011.

[33] D. J. Malan, M. Welsh, and M. D. Smith. A public-key infrastructure
for key distribution in tinyos based on elliptic curve cryptography, 2004.

[34] Maxwell Technologies. Datasheet HC power series ultracapacitors,
August 2009.

[35] R. Musaloiu-E., C.-J. M. Liang, and A. Terzis. Koala: Ultra-low power
data retrieval in wireless sensor networks. In Proc of the 7th int. conf. on
Information processing in sensor networks, IPSN ’08, pages 421–432,
Washington, DC, USA, 2008. IEEE Computer Society.

[36] D. Naccache, N. Smart, and J. Stern. Projective coordinates leak. In
Advances in Cryptology - EuroCrypt 2004, pages 257–267. Springer
Verlag LNCS 3027, April 2004.

[37] P. Nguyen, I. Shparlinski, and J. Stern. Distribution of modular sums
and the security of server aided exponentiation. In Proc. of the Workshop
on Comp. Number Theory and Crypt., pages 1–16, 1999.

[38] P. Nguyen and J. Stern. The hardness of the hidden subset sum problem
and its cryptographic implications. In M. Wiener, editor, Advances in
Cryptology - CRYPTO 99, volume 1666 of Lecture Notes in Computer
Science, pages 786–786. Springer Berlin / Heidelberg, 1999.

[39] P. Rooij. Efficient exponentiation using precomputation and vector
addition chains. In Advances in Cryptology - EUROCRYPT ’94, volume
950 of Lecture Notes in Computer Science, pages 389–399. Springer
Berlin Heidelberg, 1995.

[40] C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991.

[41] SECG. Sec 2: Recommended elliptic curve domain parameters version
2.0.

[42] J. Sen. A survey on wireless sensor network security. CoRR,
abs/1011.1529, 2010.

[43] A. Shamir and Y. Tauman. Improved online/offline signature schemes.
In Proc. of the 21st Int. Conf. on Advances in Cryptology, CRYPTO
’01, pages 355–367, 2001.

[44] S. Sharma, A. Sahu, A. Verma, and N. Shukla. Wireless sensor network
security. In Advances in Computer Science and Information Technology,
volume 86, pages 317–326, 2012.

[45] J. M. Weaver, K. L. Wood, and R. H. Crawford. Design of energy
harvesting technology: Feasibility for low power wireless sensor net-
works. In Proc. of the ASME 2010 Int. Design Engineering Tech. Conf.
& Computers and Information in Engineering Conf. - IDETC/CIE, 2010.

[46] M. Winkler, K.-D. Tuchs, K. Hughes, and G. Barclay. Theoretical
and practical aspects of military wireless sensor networks. Journal of
Telecommunications and Information Technology, pages 37 – 45, 2008.

[47] Y. Zhou, Y. Fang, and Y. Zhang. Securing wireless sensor networks: a
survey. IEEE Communications Surveys & Tutorials, 10(3):6 – 28, 2008.

[48] T. A. Zia and A. Y. Zomaya. A lightweight security framework
for wireless sensor networks. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications, 2(3):53–73, 2011.

