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Abstract—Control-Flow Integrity (CFI) is an important se-
curity property that needs to be enforced to prevent control-
flow hijacking attacks. Recent attacks have demonstrated that
existing CFI protections for COTS binaries are too permissive,
and vulnerable to sophisticated code reusing attacks. Accounting
for control flow restrictions imposed at higher levels of semantics
is key to increasing CFI precision. In this paper, we aim to provide
more stringent protection for virtual function calls in COTS
C++ binaries by recovering C++ level semantics. To achieve this
goal, we recover C++ semantics, including VTables and virtual
callsites. With the extracted C++ semantics, we construct a sound
CFI policy and further improve the policy precision by devising
two filters, namely “Nested Call Filter” and “Calling Convention
Filter”. We implement a prototype system called vfGuard,
and evaluate its accuracy, precision, effectiveness, coverage and
performance overhead against a test set including complex C++
binary modules used by Internet Explorer. Our experiments show
a runtime overhead of 18.3% per module. On SpiderMonkey,
an open-source JavaScript engine used by Firefox, vfGuard
generated 199 call targets per virtual callsite – within the same
order of magnitude as those generated from a source code based
solution. The policies constructed by vfGuard are sound and of
higher precision when compared to state-of-the-art binary-only
CFI solutions.

I. INTRODUCTION

Control-Flow Integrity (CFI [1]) is an important program
security property that needs to be ensured to prevent control-
flow hijacking attacks. Because of its importance, several
recent research efforts (e.g., [2]–[6]) have focused on CFI. CFI
solutions roughly fall into two categories: some derive strict
CFI policies from program source code (e.g., SafeDispatch [7],
VTV [8]), and others such as CCFIR [2] and BinCFI [3]
enforce coarse-grained CFI policy to directly protect COTS
binaries. Binary-only CFI solutions are attractive, because in
reality the source code for many commercial software, third-
party libraries, and kernel modules are not available. However,
since high-level program constructs are not necessarily pre-
served into the binaries during compilation, the CFI policies for

these binary-only solutions are unfortunately coarse-grained
and permissive.

While coarse-grained CFI solutions have significantly re-
duced the attack surface, recent efforts by Göktaş et al. [9]
and Carlini [10] have demonstrated that coarse-grained CFI
solutions are too permissive, and can be bypassed by reusing
large gadgets whose starting addresses are allowed by these
solutions. The primary reason for such permissiveness is the
lack of higher level program semantics that introduce certain
mandates on the control flow. For example, given a class
inheritance, target of a virtual function dispatch in C++ must
be a virtual function that the dispatching object is allowed to
invoke. Similarly, target of an exception dispatch must be one
of the legitimate exception handlers. Accounting for control
flow restrictions imposed at higher levels of semantics is key
to increasing CFI precision.

In this paper, we take a first step towards semantic-
recovery-based CFI. We recover C++-level semantics to pro-
vide strict CFI protection for dynamic dispatches in C++
binaries. With protections targeting stack sanity (e.g., Stack
Shield [11]), recent attacks (ab)use indirect call instructions
to target valid function entry points, which act as large gadgets.
It is essential to restrict such call targets to “legitimate” targets
to prevent abuse. We set our focus on C++ binaries because,
due to its object-oriented programming paradigm and high
efficiency as compared to other object-oriented languages like
Java, it is prevalent in many complex software programs.
To support polymorphism, C++ employs a dynamic dispatch
mechanism. Dynamic dispatches are predominant in C++
binaries and are executed using an indirect call instruction.
For instance, in a large C++ binary like libmozjs.so (Firefox’s
Spidermonkey Javascript engine), 84.6% indirect function calls
are dynamic dispatches. For a given C++ binary, we aim to
construct sound and precise CFI policy for dynamic dispatches
in order to reduce the space for code-reuse attacks. Our goals
are similar to SafeDispatch [7] – a recent source code-based
solution to protect virtual dispatches in C++ programs, but we
hope to achieve the same directly on stripped binaries.

Constructing a strict CFI policy directly from C++ binaries
is a challenging task. A strict CFI policy should not miss
any legitimate virtual call targets to ensure zero false alarms,
and should exclude as many impossible virtual call targets as
possible to reduce the attack space. In order to protect real-
world binaries, all these need to be accomplished under the
assumption that only the binary code – without any symbol
or debug information – is available. In order to construct
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a strict CFI policy for virtual calls, we need to reliably
rebuild certain C++-level semantics that persist in the stripped
C++ binaries, particularly VTables and virtual callsites. Based
on the extracted VTables and callsites, we can construct a
basic CFI policy and further refine it. As a key contribution,
we demonstrate that CFI policies with increased precision
can be constructed by recovering C++-level semantics. While
the refined policies may not completely eliminate code-reuse
attacks, by reducing the number of available gadgets, it makes
attacks harder to execute.

To evaluate our technique, we have developed a prototype
called vfGuard. vfGuard is based on an open source
decompilation framework [12] with over 3.4K lines of Python
code. vfGuard successfully recovered all the legitimate VTa-
bles in complex binaries. Moreover, it recovered most of the
legitimate callsites in the binary without false positives. We
generated a CFI policy for each of the callsites and tested
a set of C++ Windows system libraries and show under 250
call targets per binary. In comparison with BinCFI, specifically
for the virtual call instructions, our policy is over 95% more
precise. We show that vfGuard can successfully mitigate
real-world exploits and report an overhead of under 20% for
runtime policy enforcement.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of virtual methods in C++ and
lessons we learned from it. Sections III provides an overview
of our solution, vfGuard. Sections IV and V present the
details of policy generation and enforcement respectively. We
evaluate our solution in Section VI and present a discussion
in Section VII. We present related work in Section VIII and
conclude in Section IX.

II. DYNAMIC DISPATCH IN C++

In this section, using a simple running example in Figure 1
and 2, we present some background on dynamic dispatch and
polymorphism in C++ from a binary perspective. Specifically,
we consider two popular Application Binary Interfaces (ABIs)
– Itanium [13] and MSVC [14] – that modern compilers adhere
to. Figure 1(a) is the source code for a C++ program that was
compiled using the g++ compiler, which adheres to Itanium
ABI. Class C inherits from classes A and B. Figures 1(b),
(c) and (e) present the layout of all the class objects, and
Figure 1(d) is the layout of different VTables. A fraction of
the binary code from the program is presented in Figure 2.

In C++, functions declared with keyword “virtual” are
termed “virtual functions” [15] and their invocation is termed
“virtual call” (or vcall). Virtual functions are in the heart
of polymorphism, which allows a derived class to override
methods in its base class. When a virtual function that is
overridden in a derived class is invoked on an object, the
invoked function depends on the object’s type at runtime.
Modern compilers – e.g., Microsoft Visual C++ (MSVC) and
GNU g++ – achieve this resolution using a “Virtual Function
Table” or VTable1, a table that contains an array of “virtual
function pointers” (vfptr) – pointers to virtual functions. Ita-
nium [13] and MSVC [14] are two of the most popular C++
ABIs that dictate the implementation of various C++ language
semantics.

1It is also called “Virtual Dispatch Table” or “Virtual Method Table”.

(a) Assembly code for A::Afoo.

(b) Thunk code for C::vBfoo.

Fig. 2: Steps GetVT, GetVF, SetThis and CallVF are the
various steps during virtual function call in A::Afoo. Since
virtual call target A::vAduh does not accept any parameters,
SetArg is skipped. thunk to C::vBfoo adjusts the this pointer
before invocation.

During compilation, all the VTables used by a module are
placed in a read-only section of the executable. Furthermore,
a hidden field called “virtual table pointer” (vptr) – a pointer
to the VTable – is inserted into objects of classes that either
directly define virtual functions or inherit from classes that
define virtual functions. Under normal circumstances, the vptr
is typically initialized during construction of the object.

A. Virtual Call Dispatch

Figure 2(a) is marked with steps corresponding to invoca-
tion of a vcall within A::Afoo in Class A in Figure 1(a). A
virtual call dispatch comprises of the following 5 steps:

GetVT Dereference the vptr of the object (this pointer)
to obtain the VTable.

GetVF Dereference (VTable + offset) to retrieve the vfptr
to the method being invoked.

SetArg Set the arguments to the function on the stack or in
the registers depending on the calling convention.

SetThis Set the implicit this pointer either on stack or in
ecx register depending on the calling convention.

CallVF Invoke the vfptr using an indirect call instruc-
tion.

GetVT, GetVF, SetThis and CallVF are required steps in
all vcalls, whereas depending on if the callee function accepts
arguments or not, SetArg is optional. In Figure 2(a), because
A::vAduh does not accept any arguments, SetArg is omitted.
Though there is no restriction with respect to relative ordering
of the steps followed, some steps are implicitly dependent on
others (e.g., GetVF must occur after GetVT).

While it is usual that events GetVT through CallVF (SetArg
being optional) not only occur in order, but also occur within
the same basic block, it is possible – depending on the compiler
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virtual function is invoked in the derived class, the compiler
introduces a thunk that adjusts the this pointer to point to the
derived class object before invoking the actual function. For
example, in Figure 2(b), the thunk subtracts 0xc from the B
subobject to point to C object before invoking C::vBfoo.
We refer the reader to the ABIs for more details on thunks
and inheritance.

D. Calling Conventions

During invocation of a virtual call, the caller must pass the
this pointer to the callee function. Two calling conventions –
stdcall and thiscall [16] – are used to pass the this
pointer to the callee. However, thiscall is exclusive to
the MSVC compiler. In stdcall, the this pointer is passed
as an implicit argument on the top of the stack, whereas, in
the thiscall calling convention, the this pointer is passed
through the ecx register. While MSVC prefers thiscall
over stdcall, it defaults to stdcall for some functons
(e.g., if it callee accepts variable arguments).

E. RunTime Type Information (RTTI)

C++ language allows runtime object type resolution. To
make such resolution possible, for each class, an ABI-defined
type information structure called “RunTime Type Information”
is created and a pointer to the structure is stored in the VTable
for the class. If a class has multiple VTables, each of the
VTables contains a pointer to the same RTTI5 structure. For
example, in Figure 1(d), both VTables for class C contain
RTTI type for C at offset 0x4. While such information can be
very useful in reverse engineering and type reconstruction, it
is an optional feature that is only required if dynamic_cast
and/or type_info operators are used in the program, and is
often absent in commercial software.

Based on the above description, we can make several key
observations:

Ob1: VTables are present in the read-only sections of the
binary.

Ob2: Offset of vfptr within a VTable is a constant and is
statically determinable at the invocation callsite.

Ob3: Since the caller must pass the this pointer, any two
polymorphic functions must adhere to the same calling
convention (e.g., C::vATest and A::vATest).

III. SOLUTION OVERVIEW

A. Problem Statement

Given a C++ binary, we aim to construct a CFI policy
to protect its virtual function calls (or dynamic dispatches).
Specifically, for each virtual callsite in the binary, we need
to collect a whitelist of legitimate call targets. If a call target
beyond the whitelist is observed during the execution of the
C++ binary, we treat it as a violation against our CFI policy
and stop the program execution.

5If the program is compiled with -fno-rtti flag, the RTTI field is present
but contains 0.

More formally, this CFI policy can be considered as a
function:

P = C → 2F ,

where C denotes all virtual function call sites and F all
legitimate call targets inside the given C++ binary. Therefore,
as a power set of F , 2F denotes a space of all subsets of F .
Furthermore, we define callsite c ∈ C to be a 2-tuple, c =
(displacement, offset) with displacement from the base of the
binary to the callsite and the VTable offset at the callsite.

A good CFI policy must be sound and as precise as
possible. The existing binary-only CFI solutions (e.g., BinCFI,
CCFIR, etc.) ensure soundness, but are imprecise, and there-
fore expose considerable attack space to sophisticated code-
reuse attacks [9]. Therefore, to provide strong protection for
virtual function calls in C++ binaries, our CFI policy must be
sound, and at the same time, be more precise than the existing
binary-only CFI protections.

To measure the precision, we can use source-code based
solutions as reference systems. With source code, these solu-
tions can precisely identify the virtual dispatch callsites and
the class inheritance hierarchy within the program. Then, at
each callsite, they insert checks to ensure that (1) the VTable
used to make the call is compatible with the type of the object
making the call [8] or (2) the call target belongs to a set of
polymorphic functions extracted from the inheritance tree for
the type of object making the call [7].

Assumptions and Scope. Since we target COTS C++ bina-
ries, we must assume that none of source code, full symbol
information, debugging information, RTTI, etc. is available.
We must also deal with challenges arising due to compiler
optimizations that blur and remove C++ semantic information
during compilation. In other words, we must rely on strong
C++ semantics that are dictated by C++ ABIs and persist
during the process of code compilation and optimization. Due
to the reliance on standard ABIs, we only target C++ binaries
that are compiled using standard C++ compilers (e.g., MSVC
and GNU g++). Custom compilers that do not adhere to
Itanium and MSVC ABIs are out of scope. Moreover, since
our goal is to protect benign C++ binaries, code obfuscation
techniques that deliberately attempt to evade and confuse our
defense are also out of our scope.

Furthermore, our goal is to protect virtual function calls
and their manifestations through indirect call instructions
in the binary. We do not aim to protect indirect jmp or ret
instructions. However, we aim to provide a solution orthogonal
to existing solutions (e.g., shadow call stack [11], coarse-
grained CFI [2], [3]) so as to provide a more complete and
accurate CFI.

B. Our Solution

In order to tackle the problem stated in Section III-A, we
must leverage the C++ ABIs to recover strong C++ semantics
that persist in a given C++ binary. First of all, we need to
accurately discover virtual callsites C in the binary. Then, we
need to identify all the virtual function entry points, which
form the legitimate call targets F . Because all functions in F
are polymorphic (virtual), and must exist in VTables, we must
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D. VTable Identification

Reconstructing precise inheritance tree from the binary is
ideal but hard. For instance, Dewey et al. [17] locate the
constructors in the program by tracking the VTable initializa-
tions. In commercial software, constructors are often inlined,
therefore such an approach would not yield a complete set of
VTables that we seek. Other approaches use heuristics that are
not only dependent on debug information, but also tailored for
specific compilers like MSVC (e.g., IDA VTBL plugin [18]).

We propose an ABI-centric algorithm that can effectively
recover all the VTables in a binary in both MSVC and Itanium
ABIs. Based on Ob1 in Section II, we scan the read-only
sections in the binary to identify the VTables. The VTables that
adhere to Itanium ABI contain mandatory fields along with the
array of vfpts. The mandatory fields make locating of VTables
in the binary relatively easier when compared to MSVC ABI.
However, VTables generated by the Microsoft Visual Studio
compiler (MSVC ABI) are often grouped together with no
apparent “gap” between them. This poses a challenge to
accurately identify VTable boundaries.

Furthermore, according to Ob2, we first scan the code and
data sections and identify all the “immediate” values. Then,
we check each value for a valid VTable address point. A valid
VTable contains an array of one or more vfptrs starting from
the address point. It is possible that our algorithm identifies
non-VTables – e.g., function tables that resemble VTables
– as genuine VTables. We err on the safe side, because
including a few false VTables does not compromise the policy
soundness and only reduces precision to a certain degree. A
detailed algorithm for VTable identification is presented in
Section IV-B.

E. Target Accumulation and Filtering

All the vfptrs and thunks within all the VTables together
form a universal set for virtual call targets. A naive policy
will include all vfptrs as valid targets for each callsite. For
large binaries, such a policy would contain 1000s of targets
per callsite. While still more precise than existing defenses, it
would still expose a large attack space. We leverage the offset
information at the callsite to obtain a more precise policy.

Given an offset at a callsite, during “Target Accumulation”,
we obtain a basic policy for each callsite that encompasses all
the vfptrs (and thunks) at the given offset in all the VTables in
which the offset is valid. Additionally, we apply two filters to
further improve the policy precision. First, we note that target
vfptrs for a callsite that is invoked on the same object pointer as
the host function must belong to the same VTables as the host
function. With this, we apply our first filter, called “Nested Call
Filter”. Furthermore, from Ob 3, the calling convention that
is presumed at the callsite and the calling convention adhered
to by the target function must be compatible. Accordingly, we
apply the second filter called “Calling Convention Filter”.

We considered several other filters, but did not adopt them
for various reasons. To name a few, we could infer the number
of arguments accepted by each function and require it to match
the number of arguments passed at the callsite; we could
perform inter-procedural data flow analysis to keep track of
this pointers; and we could perform type inference on func-
tion parameters and bind type compatible functions together.

function ::= (stmt)∗
stmt ::= var ::= exp | exp ::= exp | goto exp

| call exp | return
| if var then stmt

exp ::= exp ♦b exp | ♦uexp | var
♦b ::= =,+,−, ∗, /, ...
♦u ::= deref,−,∼
var ::= τreg | τval
τreg ::= reg1_t|reg8_t|reg16_t|reg32_t

τval ::= {Integer}

TABLE I: Intermediate Language used by vfGuard. deref
corresponds to the dereference operation.

However, at binary level, such analyses are imprecise and
incomplete. A function may not always use all the arguments
declared in source code, and thus we may not reliably obtain
the argument information in the binary. Inter-procedural data
flow analysis and type inference are computational expensive,
and by far not practical for large binaries. We will investigate
more advanced filters as future work.

F. Policy Enforcement

To enforce the generated policy, we need to perform
binary instrumentation, which can be either static or dynamic.
Several dynamic binary instrumentation tools (e.g., Pin [19]
and DynamoRIO [20]) are publicly available and are fairly
mature. Therefore, we build our policy enforcement based on
Pin. We did experiment with several static instrumentation
tools such as IDA Pro [21] and Pebil [22]. However, these
tools have not been robust enough to deal with complex large
C++ binaries. Nevertheless, since our main contribution lies in
policy generation, we do not believe that our contribution will
be diminished without static binary instrumentation.

Although the policy enforcement is straightforward, we
still need to deal with several practical issues. It is possible
for modules to inherit from classes that are defined in other
modules. However, the policy generated by vfGuard is
applicable within a module, so when a virtual dispatch invokes
a function in another module, the invocation violates the policy.
To tackle this problem, we maintain a list of modules that a
program depends on, then at runtime, the policies pertaining to
a module are updated based on the load address of the module
and the policies are accordingly merged. More details about
enforcement is presented in Section V.

IV. POLICY GENERATION

Policy generation comprises of first identifying the legit-
imate callsites and the VTables in the binary, then based on
the offset at the callsite and the VTables, a basic policy is
generated for each callsite. Two filters are applied to further
refine the targets.

A. Callsite Identification

Due to the complex nature of x86 binaries and the
complexities involved in recovering the callsites, a simple
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scanning-based approach for callsite identification is insuffi-
cient. vfGuard first identifies all the candidate functions that
could host callsites by identifying functions in the binary that
contain at least 1 indirect call instruction. Each identified func-
tion is subjected to static intra-procedural analysis to identify
legitimate virtual callsites and VTable offsets at such callsites.
In order to perform the data flow analysis, we modified an open
source C decompiler [12]. Below, we present the different steps
in our analysis.

IR Transformation and SSA Form. x86 instruction set is
large, and instructions often have complex semantics. To aid
in analysis and focus on the data flow, we make use of a
simple, yet intuitive intermediate language as shown in Table I.
The IR is simple enough to precisely capture the flow of data
within a function without introducing unnecessary overhead.
Each function is first broken down into basic blocks and a
control-flow graph (CFG) is generated. Then, starting from
the function entry point, the basic blocks are traversed in a
depth-first fashion and each assembly instruction is converted
into one or more IR statements. A statement comprises of
expressions, which at any point is a symbolic representation
of data within a variable. A special unary operator called
deref represents the dereference operation. goto, call
and return instructions are retained with similar semantic
interpretations as their x86 counterparts. Edges between basic
blocks in the CFG is captured using goto.

In its current form, vfGuard supports registers up to 32
bits in size, however, the technique itself is flexible and can
be easily extended to support 64-bit registers. Moreover, note
that the ABIs are not restricted to any particular hardware
architecture. Performing analysis on the IR facilitates our
solution to be readily ported to protect C++ binaries on other
architectures (e.g., ARM) by simply translating the instructions
to IR.

Furthermore, we convert each IR statement into Single
Static Assignment (SSA) [23], [24] form, which has some
unique advantages. IR in SSA form readily provides the def-
use and the use-def chains for various variables and expres-
sions in the IR.

Def-Use Propagation. The definition of each SSA variable
and list of statements that use them constitutes the Def-Use
chains [23]. vfGuard recursively propagates the definitions
into uses until all the statements are comprised of entry point
definitions (i.e., function arguments, input registers and glob-
als). Due to flow-sensitive nature of our analysis, it is possible
that upon propagation, we end up with multiple expressions for
each SSA variable, and each expression represents a particular
code path. For example, for the class hierarchy in Figure 1(a),
consider the code snippet:

...
1. A *pa; A a; C c;
2. if (x == 0)
3. pa = &a
4. else
5. pa = &c
6. pa->vAtest(0);

...

At line 6, depending on the value of x, the vfptr corre-
sponding to vAtest could either be &(&(&c)+0x146) or
&(&(&a)+0x14). Assuming stdcall convention, per step
SetThis, the implicit object pointer could either be &c or &a.
Precise data flow analysis should capture both possibilities,
and for each case ensure the existence of a corresponding this
pointer assignment on the stack. For such cases, vfGuard
creates multiple copies of the statement – one for each prop-
agated expression.

Subsequently, each definition is recursively propagated to
the uses until a fixed point is reached. At each instance of
propagation, the resulting expression is simplified through
constant propagation. For example, deref((ecx0 + c1) + c2)
becomes deref(ecx0 + c3) where c3 = c1 + c2.

Callsite Identification. As per the steps involved in dynamic
dispatch described in Section II-A, we need to capture GetVT
through CallVF using static data flow analysis. More specif-
ically, for each indirect call, we compute expressions for the
call target and expressions for this pointer passed to the target
function. Note that due to flow-sensitive data flow analysis, we
may end up having multiple expressions for each statement or
variable.

For a virtual callsite, after def-use propagation, its call
instruction must be in one of the two forms:

call deref(deref(exp) + τval) (1)

or
call deref(deref(exp)) (2)

In the first form, exp as an expression refers to the vptr
within an C++ object and τval as a constant integer holds the
VTable offset. When a virtual callsite invokes a virtual function
at offset 0 within the VTable, the call instruction will appear in
the second form, which is a double dereference of vptr. Here,
τval is the byte offset within the VTable and must be divisible
by the pointer size. Therefore, if τval is not divisible by 4, the
callsite is discarded.

Next, we need to compute an expression for this pointer
at the callsite. this pointer can be either passed through ecx
in thiscall or pushed onto the stack as the first argument
in stdcall conventions. Expression for this pointer must be
identical to the exp within the form (1) or (2).

Table II presents a concrete example. At 0x7ae, after
propagation and simplification, the call instruction matches
with form (1) and we determine the expression for this pointer
to be deref(esp0+4) and VTable offset as 8. Then at 0x7ab,
we determine that the first argument pushed on the stack is also
deref(esp0+4). Now, we are certain that this callsite is indeed
a virtual callsite, and it uses stdcall calling convention.

It is worth noting that our technique is independent of the
inheritance structure and works not only for single inheritance,
but also multiple and virtual inheritances. This is because
the compiler adjusts this pointer at the callsite to point to
appropriate base object before the virtual function call is
invoked. Therefore, while the expression for this pointer may
vary, it must be of the form (1) or (2) above. Our method aims

6Note that the offset for vAtest from Figure 1(d) is 0x14.
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Address Instruction IR-SSA form After Propagation and Constant Folding
0x798 push ebp deref(esp0) = ebp0 deref(esp0) = ebp0

esp1 = esp0 − 4 esp1 = esp0 − 4
0x799 mov ebp, esp ebp1 = esp1 ebp1 = esp0 − 4
0x79b sub esp, 0x18h esp2 = esp1 − 0x18 esp2 = esp0 − 0x1C
0x79e mov eax, [ebp+ 8] eax0 = deref(ebp1 + 8) eax0 = deref(esp0 + 4)
0x7a1 mov eax, [eax] eax1 = deref(eax0) eax1 = deref(deref(esp0 + 4))
0x7a3 add eax, 8 eax2 = eax1 + 8 eax2 = deref(deref(esp0 + 4)) + 8
0x7a6 mov eax, [eax] eax3 = deref(eax2) eax3 = deref(deref(deref(esp0 + 4)) + 8)
0x7a8 mov edx, [ebp+ 8] edx0 = deref(ebp1 + 8) edx0 = deref(esp0 + 4)
0x7ab mov [esp], edx deref(esp2) = edx0 deref(esp2) = deref(esp0 + 4)
0x7ae call eax call eax3 call deref(deref(deref(esp0 + 4)) + 8)

TABLE II: Callsite identification for A::Afoo() in the sample example in Figure 2(a). After propagation at 0x7ae, deref(esp0+4)
is the this pointer and 8 is the VTable offset.

to resolve this pointer directly for each callsite, and thus can
deal with all these cases.

B. VTable Identification

vfGuard scans read-only sections in the C++ binary for
VTables, using a signature template derived from the Itanium
and MSVC ABI specifications. Moreover, since the VTable
locations are known during compile-time, using mov or an
equivalent instruction, compilers move the “immediate” value
of a VTable’s address point into the object base address
during object initialization. Therefore, VTable base addresses
are a subset of all the “immediate” values that occur in the
binary. vfGuard first scans for all the “immediate” values
that occur in the binary. Then, the value is identified as a
VTable if it belongs to a read-only section and matches with
the signature template. A VTable is considered valid if it
contains an array of one or more vfptrs at the address point.
Figures 1(d) and 4 present the VTables for Itanium and MSVC
ABIs. Under Itanium ABI, the RTTI information and Offset-
to-top – offset from the subobject (B in C) to base object
(C) are contained as mandatory fields within the VTable and
therefore provide a stronger signature template. They also act
as a natural boundary between VTables. MSVC imposes no
such requirement. In binaries compiled by MSVC, groups of
VTables are often contiguously allocated, thereby presenting
the challenge of identifying the boundaries.

The algorithm used to identify VTables is presented in
Algorithm 1. It comprises of two functions. “ScanVTables”
takes a binary as input and returns a list of all the VTables
V in the binary. Each instruction in the code sections and
each address in the data sections of the binary are scanned
for immediate values. If an immediate value that belongs to a
read-only section of the binary is encountered, it is checked
for validity using “getVTable” and V is updated accordingly.
“getVTable” checks and returns the VTable at a given address.
Starting from the address, it accumulates entries as valid vfptrs
as long as they point to a valid instruction boundary within
the code region. Note that not all valid vfptrs may point to
a function entry point. For instance, in case of “pure virtual”
functions, the vfptr points to a compiler generated stub that
jumps to a predefined location. In fact the MSVC compiler
introduces stubs consisting of a single return instruction to
implement empty functions. To be conservative, vfGuard

allows a vfptr to point to any valid instruction in the code
segments. Upon failure, it returns the accumulated list of
vfptrs as the VTable entries. If no valid vfptrs are found,
an empty set – signifying invalid VTable address point – is
returned.

Furthermore, the following restriction is imposed on Ita-
nium ABI: A valid VTable in the Itanium ABI must have
valid RTTI and “OffsetToTop” fields at negative offsets from
the address point. The RTTI field is either 0 or points to a
valid RTTI structure. Similarly, “OffsetToTop” must also have
a sane value. A value -0xffffff ≤ offset ≤ 0xffffff, which cor-
responds to an offset of 10M within an object, was empirically
found to be sufficient. Depending on the specific classes and
inheritance, fields like “vbaseOffset” and “vcallOffset” may
be present in the VTable. To be conservative, we do not rely
on such optional fields. However with stronger analysis and
object layout recovery, these restrictions can be leveraged for
more precise VTable discovery.

While vfGuard may identify some false VTables as
legitimate, its conservative approach does not miss a legitimate
VTable, which is a core requirement to avoid false positives
during enforcement. Moreover, Algorithm 1 is not very effec-
tive at detecting end points of the VTables in the binary (e.g.,
in Figure 4, end points of all VTables would be captured as
0x74). Pruning the VTables based on neighboring VTable start
addresses (e.g., since B starts from 0x50, setting A’s end to be
0x4c) may lead to unsound policies if the neighboring VTables
are not legitimate. While our approach reduces precision, it
keeps the policy sound. Our algorithm terminates a VTable
when the vfptr is an invalid code pointer.

While Itanium ABI provides strong signatures for VTables
due to mandatory offsets, MSVC ABI does not. In theory, any
pointer to code can be classified as a VTable under MSVC
ABI. In practice however, we found that legitimate VTables
contain at least 2 or more entries. Therefore, under MSVC
ABI, we consider VTables only if they contain at least 2
entries.

C. Target Filtering

Basic Policy. Based on the identified callsites and the VTables
V , vfGuard generates a basic policy. For a given callsite c
with byte offset o, we define index k to be the index within
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Algorithm 1 Algorithm to scan for VTables.
1: procedure getVTable(Addr)
2: Vmethods ← ∅
3: if (ABIItanium and isMandatoryF ieldsV alid(Addr))

or ABIMSV C then
4: M ← [Addr]
5: while isV alidAddrInCode(M) do
6: Vmethods ← Vmethods ∪M
7: Addr ← Addr + size(PTR)
8: M ← [Addr]
9: end while

10: end if
11: return Vmethods

12: end procedure
13:
14: procedure ScanVTables(Bin)
15: V ← ∅
16: for each Insn ∈ Bin.code do
17: if Insn contains ImmediateV al then
18: C ← immV alAt(Insn)
19: if C ∈ SectionRO and getV Table(C) 6= ∅ then
20: V ← V ∪ C
21: end if
22: end if
23: end for
24: for each Addr ∈ Bin.data do
25: if [Addr] ∈ SectionRO and getV Table([Addr]) 6= ∅

then
26: V ← V ∪ [Addr]
27: end if
28: end for
29: return V
30: end procedure

VTable:A VTable:C

0x40:  &A::vAfoo 0x58:  &C::vAfoo
0x44:  &A::vAbar 0x5c:  &A::vAbar

0x48: &A::vAduh 0x60: &C::vAduh
0x4c: &A::vAtest 0x64: &C::vAtest

VTable:B 0x68: &C::vBfoo

0x6c: &C::vCfoo

0x50:  _purecall 0x70: &<thunk to 
C::vBfoo(int)>

0x54:  &B::vBbar 0x74: &B::vBbar

Fig. 4: VTables with mandatory fields for running examples
as generated by Visual Studio (MSVC) compiler (no RTTI).
A::Afoo and B::Bfoo are non-virtual member functions
and therefore are not present in the VTables. VTables for A, B
and C are aligned one after the other. It is important to identify
them as separate VTables and not a single large VTable.

the VTable that the byte offset corresponds to (i.e., k = o/4 for
4-bytes wide pointers). The legitimate call targets of c must
belong to a subset of all the functions at index k within in
all the VTables that contain at least (k + 1) vfptrs. Here we
assume VTables to be zero-based arrays of vfptrs. That is:

Targets = {Vi[k] | Vi ∈ V, |Vi| > k},

where Vi is the VTable address point. |Vi| is the number
of vfptrs in the VTable at Vi.

In Figure 4, since class C overrides function vBfoo in base
class B, the compiler introduces a thunk to perform runtime
adjustments (Section II). An astute reader may wonder if thunk
could cause a problem. The answer is no. Since vBfoo is not
present in the VTable for B, it is not a valid target for offset
0. Note that this is the expected behavior since vBfoo is a
pure virtual function that cannot be directly invoked. However,
thunk is a valid VTable entry and therefore captured as a valid
target for offset 0.

Nested Virtual Call Filtering. In some cases, this pointer
used to invoke a virtual function is later used to make one or
more virtual calls within the function body. We refer to such
virtual calls as “Nested Virtual Calls”. vfGuard can generate
a more precise policy for nested virtual calls.

1. class M { virtual void vMfoo() {
//vFn(); or

2. this->vFn(); } };

In the above example, vFn is a virtual function that
is invoked on the same this pointer as its host function
M::vMfoo, which is also a virtual function. Underneath,
the binary implementation reuses the VTable used to invoke
M::vMfoo to retrieve the vfptr (or thunk) pertaining to
vFn. That is, between the nested virtual calls and the host
virtual function, the vptr acts an invariant. Therefore at the
nested callsite, target vFn must belong to a VTable to which
M::vfoo also belongs.

Given a virtual callsite with vfptr index k and host virtual
function f , we can derive a more precise policy for each nested
virtual callsite within f :

Targets = {Vi[k] | Vi ∈ V, f ∈ Vi}

Nested virtual callsites can be easily identified using our
intra-procedural data flow analysis. First, we check whether
the this pointer at the given callsite is in fact the this pointer
for the host function. That is, the expression for this pointer at
that callsite should be ecx0 for thiscall calling convention
or esp0+4 for stdcall calling convention. Next, we ensure
that the host function is virtual. That is, there must exist at
least 1 VTable to which the host function belongs. Finally, the
filtered targets are identified using the equation above.

Note that the filter is applicable only in cases where host
function is also virtual. For example, in Figure 1(a) (and
Table II), A::Afoo reuses the this pointer to invoke vAduh,
a virtual function. Since A::Afoo is not a virtual function,
it is not contained within any VTable and therefore, Targets
will be ∅. If the filter is inapplicable, vfGuard defaults to
basic policy.

Calling-Convention based Filtering. We filter the target list
to be compatible with the calling convention followed at the
callsite. At the callsite, the register that is utilized to pass the
implicit this pointer (CallVF) reveals the calling convention
that the callee function adheres to.
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First, for each of the callsite target functions in the policy,
we identify the calling convention the function adheres to.
Next, for each callsite, we check if there is a mismatch
between the convention at the callsite and the target, if so,
we remove such conflicting targets from the list. If we are
unable to identify the calling convention of the callee – which
is possible if the callee does not use the implicit this pointer
(e.g., A::vAbar, A::vAfoo, etc.), we take a conservative
approach and retain the target.

Incomplete Argument Utilization. Conceptually, all poly-
morphs of a function must accept the same number of argu-
ments. So, one potential filter could be to check if a function
accepts the same number of arguments that are passed at the
callsite. If not, the mismatching functions can be removed from
potential targets for the callsite. However, in the binary, we
only see the number of arguments used by a function and not
the number of arguments it can accept.

Mismatch for legitimate targets arises when a base class
and a derived class operate on unequal number of argu-
ments for a given virtual function. For example, in Fig-
ure 1(a), we identify 3 arguments (2 arguments + this) for
A::vAfoo whereas only 2 arguments (1 argument + this)
for C::vAfoo. Reverse is the case for A::vAtest and
C::vAtest with 1 and 2 arguments repectively. For a callsite
that invokes vAtest, depending on the type of the object,
both A::vAtest and C::vAtest are legitimate targets.
Therefore, argument count is not feasible as a filter.

V. POLICY ENFORCEMENT

We enforce the policy generated by vfGuard by running
the program on Pin: a dynamic binary translator. Other tech-
niques such as Binary Rewriting( [25] and [22]) as used
by [1]–[3], in-memory enforcement by injecting code into
process memory (e.g., using Browser Helper Objects [26]),
etc. are equally feasible.

In our proof-of-concept approach, we intercept the control
flow at every previously identified callsite and check if the call
target is allowable for the callsite. If the target is dis-allowed,
the instance is recorded as a violation of policy. Effective
enforcement must impose low space and runtime overheads.
Under the basic policy, vfGuard captures the policy within 2
maps. The first map Mcs maps a callsite to the VTable offset
at the callsite, and the second map Mtarget maps a given target
to a 160-bitvector7 that represents the valid VTable offsets for
the given target. That is, ith bit set to 1 indicates that the target
is valid for offset i∗4. For a given CS, a Mcs entry is readily
derived from τval in Equation 1 in Section IV-A. Mtarget is
populated from the identified VTables (Section IV-B). For each
VTable entry, the corresponding bitvector is updated to indicate
a 1 for the offset at which the entry exists within the VTable.
vfGuard performs 2 map lookups and 1 bitvector masking
to verify the legitimacy of a given target at a callsite. That is,
for a given callsite (CS) and target (T ), the target is validated
if:

BitMask(Mcs(CS)) & Mtarget(T ) 6= 0 (3)

7The size of the bitvector is dictated by the size of the largest VTable in
the binary. We found 160 to be sufficient.

Such a design enables quick lookup and limits space
overhead from duplication of callsites and targets within the
maps. While the map lookups and bitvector masking result
in constant time runtime overhead, the space requirements of
Mcs and Mtarget are linear with resepct to number of callsites
and targets respectively.

In case of callsites whose targets were filtered, the target
lookup is different from basic policy. Each callsite CS – whose
targets were filtered – is associated with a map MFiltered(CS)
that maintains all the allowable call targets for CS. During
enforcement, vfGuard first checks if the callsite is present
in MFiltered(CS) and validates the target. If callsite is not
present in MFiltered (i.e., targets for the callsite were not
filtered), vfGuard performs the 2 map lookup and verifies
the target through Equation 3. Enforcing the filtered policy
introduces greater space overhead. The main reason being:
targets reappear in multiple MFiltered for each of the callsites
that the targets are valid at. We wish to investigate better
enforcement in our future work.

Effect of ASLR:. vfGuard performs policy enforcement
with or without ASLR enabled. The callsite and targets in
Mcs, Mtarget and MFiltered are stored as (module, offset)
tuple rather than the concrete virtual address. When a module
is loaded, the virtual addresses of callsite and target addresses
are computed from the load address of the module.

A. Cross-Module Inheritance

In practice, classes in one module can inherit from classes
defined in another module [27]. Therefore, as new modules
are loaded into a process address space, the allowable call
targets for callsites in existing modules need to evolve to
accommodate the potential targets in the new module. Given a
list of approved modules that a program depends on, vfGuard
can analyze each of the modules to generate the intra-module
policy. From the execution monitor, vfGuard monitors mod-
ule loads to capture any newly loaded modules and their load
addresses. Intra-module policies are progressively adjusted (for
ASLR) and maps Mcs, Mtarget and MFiltered are updated so
as to capture the allowable targets for various callsite offsets
across all approved modules. If a target in an unapproved
modules is invoked, vfGuard records it as a violation.

B. Other Enforcement Strategies

Policy enforcement performed by vfGuard is only a
proof-of-concept and not the focus. Prior approaches (e.g.,
[1]–[3]) have leveraged static instrumentation to introduce
Inline Reference Monitors (IRMs) to check the legitimacy of a
branch target at runtime. We believe such approaches can im-
prove the performance of vfGuard. Furthermore, depending
on the number of modules loaded, the size of callsite and target
maps can increase to result in significant memory overhead,
specially in case of filtered targets. In such cases, cross-module
dependencies can be analyzed to only allow cross-module calls
in cases where known dependencies exist, thereby controlling
the size of various enforcement maps.

VI. IMPLEMENTATION AND EVALUATION

We implemented vfGuard in the following code modules.
The policy generation part of vfGuard is implemented as a
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Program Ground
Truth vfGuard FP FN

SpiderMonkey 811 942 13.9% 0
dplus-browser 0.5b 270 334 19.1% 0

TortoiseProc.exe 568 595 4.7% 0

TABLE III: VTable Identification accuracy.

Program Ground
Truth vfGuard FP FN

SpiderMonkey 1780 1754 0 1.4%
dplus-browser 0.5b 309 287 0 7.1%

TABLE IV: Callsite Identification Accuracy. Ground-truth
was generated using gcc with -fvtable-verify compile
option.

plugin for IDA-pro v6.2. An open source IDA-decompiler [12]
was modified to perform data flow analysis for callsite iden-
tification. The platform consists of 5.6K lines of Python code
and 3.4K lines were added to it. A PinTool [19] was written
using 850 lines of C++ code to perform policy enforcement.

We evaluated vfGuard in several respects. We first eval-
uated the accuracy of virtual callsite and VTable identification
using several open source C++ programs, because source code
is needed to obtain ground truth. Then, we measured the
policy precision and compare with BinCFI and SafeDispatch.
To evaluate the effectiveness of vfGuard, we tested multiple
realworld exploits. Finally, we measured vfGuard’s coverage
with respect to number of indirect branches protected, and
performance overhead of policy enforcement.

Test Set. To evaluate vfGuard, we consider a set of C++
program modules presented in Tables III, IV and V. Firstly,
our test set comprises of programs containing between 100
and 2000 VTables, thereby providing sufficient complexity for
analysis. Secondly, the modules in the test set are a part of
popular browsers like Firefox and Internet Explorer, which are
known to contain several vulnerabilities. SpiderMonkey is the
JavaScript engine employed by FireFox and Table V presents
some of the modules used by Internet Explorer that contain
reported vulnerabilities. Finally, the test set contains both
open (Table III, IV) and closed source programs (Table V).
While vfGuard operates on raw COTS binaries, open source
programs provide the ground truth to evaluate vfGuard’s
accuracy. Along with SpiderMonkey and the modules used by
IE, the set consists of dplus browser, an open source browser
and TortoiseSVN, an open source Apache subversion client for
Windows.

A. Identification Accuracy

To ensure policy soundness, vfGuard must identify all
legitimate VTables and must not identify any false virtual
callsites. To measure the accuracy, we picked SpiderMonkey
and dplus-browser for the Itanium ABI, and TortoiseProc for
the MSVC ABI. We constructed the “ground truth” by using
compiler options that dump the VTables and their layouts
in the binary. Specifically, -fdump-class-hierarchy

and /d1reportAllClassLayout compiler options were
used to compile the programs on g++ and Visual Studio
2013 respectively. The results are tabulated in Table III. The
compilers emit meta-data for (1) each class object’s layout in
the memory, and (2) each VTable’s structure. We compared
each of the VTables obtained from the ground truth against
vfGuard. None of the legitimate VTables were missed in
each of the cases. In all the cases, VTables identified by
vfGuard contained some noise (from 4.7% to 19%). This
was expected due to the conservative nature of vfGuard’s
VTable scanning algorithm.

To evaluate callsite identification accuracy of
vfGuard, we leveraged a recent g++ compiler option,
-fvtable-verify [8] that embeds checks at all the
virtual callsites in the binary to validate the VTable that
is invoking the virtual call. We compiled SpiderMonkey
with and without the checks, and matched each of the
callsites that contained the compiler check to the callsites
identified by vfGuard. Out of the functions that were
successfully analyzed, vfGuard reported 0 false positives.
It reported 1.4% and 7.1% false negatives (i.e., missed
during identification) for SpiderMonkey and dplus-browser
respectively.

These experiments indicate that the generated policies
should be sound but a little imprecise, due to the noisy VTables
and missing callsites.

B. Policy Precision

To measure how precise our generated policies are, we
generate policies for C++ binary modules in Internet Explorer
8. Table V presents the average number of targets per callsite
under 3 configurations – basic policy, basic policy with Nested
Callsite Filter (NCF) and basic policy with Nested Callsite
Filter and Calling Convention Fiilter (CCF). Additionally, for
each case, we estimated the number of targets in a policy
generated by BinCFI. We included into the policy all the
function entry points in the program. The exact reduction in
the number of targets is tabulated in the last column. We can
see that even with the basic policy generated by vfGuard,
we were able to refine BinCFI’s policy by over 95%. Here, the
refinement numbers pertain to the virtual callsites protected by
vfGuard and not all the indirect branch instructions within
the module. An optimal defense will combine vfGuard’s
policy for virtual callsites along with those generated by
BinCFI (or CCFIR) for other branch instructions.

In general, we found no obvious correlation between the
number of callsites and VTables in the binary to the effec-
tiveness of the filters. While the filters improved precision
in some cases, they did not in others. Graphs in Figure 5
show the scattered distribution of number of callsites with
respect to offset within the VTable at the callsite, and the
number of VTables that contain a particular VTable size for
mshtml.dll and wmvcore.dll. As expected, we found
several VTables with small sizes of less than 10 elements.
However, we also found a significant number of VTables
between sizes 50 and 125. While the algorithm used by
vfGuard is efficient in detecting the VTable start address,
it is not very accurate in detecting the end points. This is the
main hurdle for lowering the average call targets per callsite.
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ABI and language semantics to better demarcate VTables.
For example, colocated functions at a given offset – e.g.,
A::vAfoo and C::vAfoo at offset 0x8 in Figure 1(d) –
must be compatible with each other with respect to types of
arguments accepted and type of value returned. We intend to
pursue this direction in our future work.

Virtual-dispatch-like C calls. Our virtual callsite identifi-
cation has captured all required steps for a virtual dispatch
according to C++ ABI specifications, but it is still possible
that some functions in the C code could resemble a legitimate
C++ virtual function dispatch. For example:

pa->pb->fn(pa);

In the binary, the above C statement resembles a C++ virtual
call dispatch. pa being passed as an argument satisfies SetThis
and could be perceived as a callsite. Commercial compilers
tend to follow a finite number of code patterns during a virtual
call invocation. A potential solution could classify all the
callsites based on code patterns used to perform the dispatch
and look for abnormalities. For example, to dispatch virtual
calls in mshtml.dll, the compiler typically invokes virtual calls
using a call instruction of the form, “call [reg + offset]”
where as, g++ produces code that performs, “add reg, offset;
call reg”. While this is not a standard, a compiler tends to
use similar code fragments to dispatch virtual calls within a
given module. Since a sound policy must prevent false callsites,
one can filter the potential incorrect callsites by looking for
persistent virtual dispatch code fragments.

VIII. RELATED WORK

A. Control Flow Integrity

Control flow integrity was first proposed by Abadi et al. in
2005 [1] as part of the compiler framework to automatically
place in-line reference monitors in the emitted binary code
to ensure the legitimacy of control transfers. Since then, a
great deal of research efforts have built on top of it. Some
efforts extended the compiler framework to provide better
CFI protection. In particular, MCFI [5] enables a concept
of modular control flow integrity by supporting separating
compilation. KCoFI [28] provides control flow integrity for
commodity operating system kernels. RockJIT [4] aims to
provide control flow integrity for JIT compilers.

Other efforts are made to enforce control flow integrity
directly on binary code. Efforts such as PittSFIeld [29] and
CCFIR [2] enforce coarse-grained policy by aligning code.
Based on a CPU emulator, Total-CFI [30] provides CFI pro-
tection for multiple processes running in an entire operating
system by extracting legitimate jump targets from relocation
tables and import tables. MoCFI [6] rewrites ARM binary code
to retrofit CFI protection on smartphone.

B. VTable-Based Analysis

Security solutions have leveraged VTables in C++ pro-
grams both with and without source code. VTV [8] and
SafeDispatch [7] provide compiler-based solutions to analyze
various callsites in C++ source code and instrument virtual
function calls to perform runtime checks to validate VTable or

target virtual function for each callsite. VTGuard [31] inserts
cookies into VTables at compile-time and at runtime, verifies
the cookie at the callsite to ensure legal VTable use.

Callsite identification in our work is similar to T-VIP [32]:
work done independently and concurrently with ours. T-VIP
starts from an indirect call instruction, obtains a backward
slice and analyzes the slice to identify various steps in a virtual
call. They instrument instructions that load VTable to validate
integrity of VTable. Along similar lines, VTint [33] instru-
ments C++ binaries to enforce a policy that requires VTables
to originate from read-only sections. vfGuard identifies the
allowable call targets at callsites to generate a precise CFI
policy. It offers protection at the callsite by restricting targets
as opposed to ensuring VTable integrity.

C. Binary Reverse Engineering

Reverse engineering data structures from binary executa-
bles is very valuable for many security problems. TIE [34] and
Rewards [35] make use of dynamic binary analysis to recover
the type information and data structure definitions from the
execution of a binary program. On the other hand, recovering
C++ level semantics and data structures poses a different set
of problems. It is generally considered hard primarily due to
the underlying complexity in the language semantics when
compared to C.

The problem of C++ reverse engineering was revisited by
Sabanal et al. [36] in 2007. They use heuristic based scanning
approach to identify different C++ code constructs within a
binary and recover C++ level semantics. More recently, Folkin
et al. [37] take a principled approach based on the C++
language properties. They target to reconstruct the C++ class
hierarchy from the binary. Objdigger [38] tracks definition and
uses of this pointer through inter-procedural data flow analysis
to identify various objects instances and member methods of
a class. While these solutions are interested in recovering
the precise C++ semantics, our approach is more tuned in
leveraging the restrictions imposed by such semantics.

D. C++ De-compilation

Several efforts have been made in the direction of C++
decompilation [37], [39], [40]. A key task these tools must
accomplish is to recover the class hierarchy from the binary.
Our goals are significantly different. We take an ABI-driven
platform agnostic approach to infer the restrictions that C++
semantics impose on the binary. While recovery of the class
hierarchy improves our precesion, it is not a requirement.
Availability of RTTI information and other debug informa-
tion can only improve the quality of defense provided by
vfGuard.

IX. CONCLUSION

In this paper, we present vfGuard, a system to generate a
strict CFI policy for virtual calls in C++ binaries. It performs
static analysis on the C++ binary directly to extract virtual
callsites and VTables reliably to ensure the soundness of the
generated policy and achieve high precision at the same time.
According to our experiments with realworld C++ binaries, we
demonstrated that vfGuard can indeed generate a sound CFI
policy for protecting virtual calls. For the callsites protected by
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vfGuard, it can achieve over 97% target reduction, compared
to BinCFI. Even under suboptimal enforcement using Pin,
vfGuard showed an average overhead of 18.3% per module.
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