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Abstract

Protocol reverse engineering has often been a manual
process that is considered time-consuming, tedious and
error-prone. To address this limitation, a number of solu-
tions have recently been proposed to allow for automatic
protocol reverse engineering. Unfortunately, they are ei-
ther limited in extracting protocol fields due to lack of pro-
gram semantics in network traces or primitive in only re-
vealing the flat structure of protocol format. In this paper,
we present a system called AutoFormat that aims at not only
extracting protocol fields with high accuracy, but also re-
vealing the inherently “non-flat”, hierarchical structures of
protocol messages. AutoFormat is based on the key insight
that different protocol fields in the same message are typi-
cally handled in different execution contexts (e.g., the run-
time call stack). As such, by monitoring the program exe-
cution, we can collect the execution context information for
every message byte (annotated with its offset in the entire
message) and cluster them to derive the protocol format. We
have evaluated our system with more than 30 protocol mes-
sages from seven protocols, including two text-based proto-
cols (HTTP and SIP), three binary-based protocols (DHCP,
RIP, and OSPF), one hybrid protocol (CIFS/SMB), as well
as one unknown protocol used by a real-world malware.
Our results show that AutoFormat can not only identify indi-
vidual message fields automatically and with high accuracy
(an average 93.4% match ratio compared with Wireshark),
but also unveil the structure of the protocol format by re-
vealing possible relations (e.g., sequential, parallel, and hi-
erarchical) among the message fields.

∗Part of this research has been supported by the National Science Foun-
dation under grants CNS-0716376 and CNS-0716444. The bulk of this
work was performed when the first author was visiting George Mason Uni-
versity in Summer 2007.

1 Introduction

The knowledge about network protocol specification is
valuable to many security applications: Network-based in-
trusion detection systems (e.g., Snort [4] and Bro [24])
or vulnerability-specific filters (e.g., Shield [28]) require
knowledge about protocols to perform deep packet in-
spection; Network management software depends on such
knowledge to correctly recognize and classify monitored
network traffic; Fuzz testing (e.g., Packet Vaccine [29] and
ShieldGen [14]) can take advantage of such knowledge to
improve the fuzzing process by generating “malicious” in-
puts more efficiently.
In practice, however, it is mostly a manual and error-

prone process to derive protocol specifications. For an open
protocol (e.g., HTTP), the specification can be acquired
from public documentation such as RFCs. For a closed pro-
tocol (e.g., SMB or Skype), the specification has to be re-
verse engineered manually and complexities arise: (1) A
single protocol message usually contains a large number
of fields (e.g., the Samba NTLMSSP AUTH message con-
tains about 50 fields); (2) An individual field may not be
static and may have varying size; and (3) More importantly,
there may exist complex relationships (e.g., sequential, par-
allel, and hierarchical) or dependencies among the fields.
As such, protocol reverse engineering is widely known as
a challenging task and existing manual approaches tend to
be tedious, time-consuming, and error-prone. As an exam-
ple, after numerous trials and errors, it took 12 years for
the open-source Samba project to reverse engineer the Mi-
crosoft SMB protocol [1].
To address this challenge, new solutions, including Pro-

tocol Informatics (PI) [3], Discoverer [12], and Polyglot [9],
have recently been proposed to automate the process of re-
verse engineering network protocols. The PI project adopts
sequence alignment – a technique widely used in bioinfor-
matics to find certain patterns in large sequences of strings



– to infer protocol format from network traces. Discoverer
takes a step further by applying recursive clustering tech-
niques to group messages with similar formats such that,
with the help of a type-based sequence alignment algorithm,
it can produce more concise results in the revealed protocol
format. However, as pointed out in [9], the lack of protocol
semantics in network traces fundamentally limits the accu-
racy of the extracted protocol format. Moreover, any net-
work trace-based approach becomes ineffective when net-
work traffic is encrypted.
From another perspective, Polyglot recognizes the fact

that the way a protocol is implemented for handling in-
coming protocol messages reveals a wealth of information
about protocol format. Therefore, the protocol implementa-
tion can be naturally analyzed to uncover protocol format.
Specifically, Polyglot proposes a dynamic binary analysis
approach that exploits the semantics of payload-processing
instructions to identify detailed message fields. Although
instruction-level semantic information is indeed useful in
extracting message fields, it is still limited in only reveal-
ing the “flat” structure of protocol format. To reverse en-
gineer network protocols more accurately and thoroughly,
in addition to the extraction of detailed protocol fields, it
is equally important to expose inherently hierarchical struc-
tures of “non-flat” protocol messages and reveal cross-field
relations.
We note that the above protocol information is natu-

rally specified in protocol specifications. For example, the
Backus - Naur Form (BNF), which has been widely used
to express network protocol syntax, is designed to be ex-
pressive enough in describing the hierarchical structure of a
protocol message and cross-field relations within the mes-
sage. Meanwhile, a number of existing techniques can ben-
efit from the richer knowledge about protocol format. For
example, fuzz testing can greatly reduce the fuzzing space
with the knowledge of possible cross-field relations; Dis-
coverer and PI can leverage the knowledge to achieve better
alignment among collected traces.
In this paper, we present AutoFormat, a new host-based

approach that aims at uncovering not only detailed protocol
fields in a protocol message, but also the inherent hierarchi-
cal structure as well as cross-field relations. AutoFormat is
based on the key observation that different protocol fields
in the same message are typically handled in different ex-
ecution contexts such as the run-time call stack and loca-
tion of the instruction being executed. In other words, adja-
cent message bytes belonging to the same protocol field are
usually handled in the same execution context. Therefore,
by monitoring program execution, we can collect execution
context information for every message byte annotated with
its offset in the entire message, and then cluster them to dis-
cover protocol fields. Further, based on the same context
information, we can uncover the structural hierarchy of the

message format as well as possible cross-field relations in
the message.
We have implemented a proof-of-concept prototype and

evaluated it with more than 30 protocol messages from
seven protocols, including two text-based protocols (HTTP
and SIP), three binary-based protocols (DHCP, RIP, and
OSPF), one hybrid protocol (CIFS/SMB), and one unknown
protocol used by a real-world malware. The experimen-
tal results are encouraging: For the six known protocols,
AutoFormat is able to identify protocol fields automatically
with high accuracy (an average 93.4% match ratio com-
pared with the message fields derived by Wireshark [5]).
Furthermore, it unveils the hierarchical structure of the en-
tire message as well as cross-field relations. For the un-
known malware protocol, AutoFormat results match well
with our manual static analysis results. AutoFormat does
not require accessing protocol source code and is therefore
applicable to analyzing proprietary or unknown protocols.
The rest of the paper is organized as follows. Section 2

describes the problem scope and defines the terminologies
used in the paper. The system design and key techniques for
the extraction of protocol format will be presented in Sec-
tion 3. In Section 4, we show the evaluation results. The
related work will be discussed in Section 5. We examine
limitations of AutoFormat and suggest possible improve-
ment in Section 6. Section 7 concludes this paper.

2 Problem Scope and Terminologies

In this section, we first discuss the general goals of net-
work protocol reverse engineering and outline our specific
problem scope. We then define the terminologies that will
be used throughout the paper.

2.1 Problem Scope

In network protocol reverse engineering, there exist two
main challenging tasks: (1) The first task focuses on each
individual protocol message and aims at identifying the
boundary (or size) of every single protocol field as well
as the entire structure built on the fields; (2) The second
task involves multiple protocol messages and the goal is to
build the entire protocol state machine, which includes var-
ious protocol-specific states and their transitions. Since the
first task lays the foundation for protocol reverse engineer-
ing and its accuracy and completeness affects the second
task, we in this paper focus on the first task and leave the
second one as future work.
To articulate the challenges that arise from the first task,

we use a real-world example. Figure 1 shows the standard
BNF structure of the HTTP Request message documented
in RFC2616 (“Hypertext Transfer Protocol – HTTP/1.1”).
Particularly, an HTTP Request message contains multiple



Request = Request-Line
*(( general-header
| request-header
| entity-header ) CRLF) CRLF
[ message-body ]

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Figure 1. The BNF structure of the HTTP Re-
quest message documented in RFC2616.

high-level fields: Request-Line, general-header,
request-header, entity-header, CRLF, and op-
tionally message-body. Notice that (1) A field can con-
tain multiple sub-fields. For example, the Request-Line
field contains the method (Method) to be applied to
the requested resource, the identifier (Request-URI)
of the requested resource, and the protocol version
(HTTP-Version) in use, as well as several separa-
tors such as SP and CRLF. (2) The “*” (iterative)
and “|” (alternative) symbols in Figure 1 reflect the
intrinsic parallel relationship among certain high-level
fields, e.g., general-header, request-header, and
entity-header. As such, a solution to protocol reverse
engineering should not only identify the boundary of each
field in the protocol message, but also structure the identi-
fied fields so that the overall message skeleton and the rela-
tions among message fields can be uncovered.

2.2 Terminologies

Considering the recursive nature of defining a protocol
field, this paper uses the term finest-grained field to rep-
resent the smallest subsequence that cannot be further di-
vided into smaller sub-fields. For ease of representation,
we use Φ(x) to represent a field x in a protocol format
(Φ(x) can be thought of as the name of field x), and its
value is a set which contains all the offsets in the proto-
col message belonging to Φ(x) (hence, the size of field x
can simply be denoted as |Φ(x)|). Using the same example,
we use Φ(Request-Line) and Φ(Method) to represent
two different fields even though Φ(Method) is a sub-field
of Φ(Request-Line). In the following, we define three
important types of relation between protocol fields and the
determination of these relations is a main focus of this pa-
per.
Hierarchical: The hierarchical relation reflects the

fact that a field can be further divided into multiple
sub-fields. As mentioned earlier, Φ(Request-Line)
in Figure 1 contains a number of sub-fields includ-
ing Φ(Method), Φ(SP), Φ(Request-URI), Φ(SP),
Φ(HTTP-Version), and Φ(CRLF). For simplicity, we
call the field with a number of sub-fields a hierarchical field.

Φ(Request-Line) is a hierarchical field.
Sequential: The sequential relation captures the order-

ing between two adjacent fields in a protocol message.
For example, in the hierarchical fieldΦ(Request-Line),
Φ(Method) is always followed by Φ(SP) which is in turn
followed by Φ(Request-URI). We call such adjacent
fields sequential fields.
Parallel: The parallel relation reflects the fact that

the positions of two or more fields are exchangeable
in the protocol specification. As an example, Figure
1 shows that in an HTTP Request message, the posi-
tions of the following three fields, Φ(general-header),
Φ(request-header) and Φ(entity-header) can
be exchanged without affecting the message’s semantics. In
this paper, we call such position-exchangeable fields paral-
lel fields.

3 System Design

The intuition behind our approach is simple but effec-
tive: A binary implementing the protocol is programmed
to recognize the protocol format of received messages. As
such, the specific way of handling an incoming message can
be examined to uncover its format. As an example, Figure
2 shows the code snippet from a real-world web server
(i.e. the NullHTTPd server) that processes the header fields
of an HTTP Request message. Based on the BNF format
shown in Figure 1, the first line of the request payload
(received in the context of the sgets() function – line 129)
contains the Φ(Request-Line) field, which is divided
into multiple sub-fields Φ(Method), Φ(Request-URI),
and Φ(HTTP-Version) (line 137). In other words,
the fields Φ(Method), Φ(Request-URI), and
Φ(HTTP-Version) are sequential fields and their
combination forms a hierarchical field. Similarly, the
next few lines (lines 147-162) handle various other header
fields and the way of handling them leads to the exposure
of several parallel fields – Φ(Cookie) (lines 154-155),
Φ(Host) (lines 156-157), Φ(If-Modified-Since)
(lines 158-159), and Φ(User-Agent) (lines 160-161).
AutoFormat is interested in how field-specific execu-

tion context information can be collected and analyzed to
extract protocol format. Figure 3 shows an architectural
overview of AutoFormat, which has two main components:
a context-aware execution monitor and a protocol field iden-
tifier. Given a binary that implements the protocol to be an-
alyzed, AutoFormat works as follows: (1) On receiving an
incoming protocol message, it first marks the received data
and keeps track of their propagation at the byte granularity;
(2) Once a message byte is read, the execution monitor logs
that particular byte, its offset in the entire message, and the
run-time execution context at that moment, which includes
the call stack and the location of the instruction being ex-



119 int read_header(int sid) {
...

/* read a line with no more than size(line)-1 bytes; the return character ’\n’ signals the end of the line. */
129 sgets(line, sizeof(line)-1, conn[sid].socket);
...

/* break down the first line of the HTTP Request message, i.e., the f(Request-Line) field, into different message fields. */
137 if (sscanf(line, "%[ˆ ] %[ˆ ] %[ˆ ]", conn[sid].dat->in_RequestMethod, conn[sid].dat->in_RequestURI, conn[sid].dat->in_Protocol)!=3)
138 printerror(sid, 400, "Bad Request", "Can’t Parse Request.");
...
147 while (strlen(line)>0) {

/* read the next line, which is either a general-header, request-header, or entity-header. */
148 sgets(line, sizeof(line)-1, conn[sid].socket);
...

/* break down the line into more specific subfields, e.g., f(Cookie), f(Host), f(If-Modified-Since), and f(User-Agent). */
154 if (strncasecmp(line, "Cookie: ", 8)==0)
155 strncpy(conn[sid].dat->in_Cookie, (char *)&line+8, sizeof(conn[sid].dat->in_Cookie)-1);
156 if (strncasecmp(line, "Host: ", 6)==0)
157 strncpy(conn[sid].dat->in_Host, (char *)&line+6, sizeof(conn[sid].dat->in_Host)-1);
158 if (strncasecmp(line, "If-Modified-Since: ", 19)==0)
159 strncpy(conn[sid].dat->in_IfModifiedSince, (char *)&line+19, sizeof(conn[sid].dat->in_IfModifiedSince)-1);
160 if (strncasecmp(line, "User-Agent: ", 12)==0)
161 strncpy(conn[sid].dat->in_UserAgent, (char *)&line+12, sizeof(conn[sid].dat->in_UserAgent)-1);
162 }
...
187 }

Figure 2. Code snippet in a real-world web server parsing the incoming HTTP Request message









 

 














 




 

 














 
 








  

Figure 3. AutoFormat: An architectural overview

ecuted; (3) With the collected context information, the off-
line protocol field identifier is invoked to identify protocol
fields and extract the structural layout of the message.

3.1 Context-Aware Execution Monitor

By monitoring program execution, we can intercept the
network-related system calls (e.g., sys socket), mark the
messages received, and annotate every message byte with
its offset in the entire message. Moreover, throughout the
message processing life-time, we instrument the data move-
ment instructions (e.g., mov) as well as arithmetic/logic in-
structions (e.g., add, mul, and) to propagate the annota-
tion. More specifically, for a data movement instruction,
we check whether the source operand is marked. If yes,
we will annotate the destination operand, which can be a
register or a memory location, with the source operand’s
annotation, i.e. its offset in the original message. If the
source operand is not marked, we will simply unmark the
destination operand. If two marked operands appear in the
same instruction, we will union their annotations (e.g., for
the add operation, the result is the union of the operands
if they are both marked). Note that the marking and propa-
gation operations are based on the taint analysis technique,

which has been widely adopted. We refer interested readers
to related literature such as [8, 10, 11, 15, 23, 26, 27, 31].

AutoFormat is interested in two types of execution con-
text information: the run-time call stack and the address of
the instruction that accesses a marked memory location. By
monitoring program execution, we can easily record the in-
struction location when it is referencing a marked memory
location. However, to acquire the run-time call stack in-
formation, we need to traverse the stack frames: For each
function stack frame, we can obtain the return address in-
side the frame and, if the symbol information is available,
we can further derive the function name from the return
address. Note that such technique works except when the
program is compiled without the stack frame pointer sup-
port, which prevents us from traversing the stack. However,
we can overcome this problem by instrumenting the func-
tion call and return instructions and maintaining a shadow
stack frame inside the execution monitor. The shadow stack
frame contains the return addresses for all the functions
called so far. From this shadow stack frame, we are able
to derive the run-time call stack.



...
0040   cd 46 47 45 54 20 2f 6e  65 77 73 2e 68 74 6d 6c  .FGET /news.html
0050   20 48 54 54 50 2f 31 2e  30 0d 0a 55 73 65 72 2d   HTTP/1.0..User-
0060   41 67 65 6e 74 3a 20 57  67 65 74 2f 31 2e 31 30  Agent: Wget/1.10
0070   2e 32 20 28 52 65 64 20  48 61 74 20 6d 6f 64 69  .2 (Red Hat modi
0080   66 69 65 64 29 0d 0a 41  63 63 65 70 74 3a 20 2a  fied)..Accept: *
0090   2f 2a 0d 0a 48 6f 73 74  3a 20 31 32 39 2e 31 37  /*..Host: 129.17
00a0   34 2e 38 38 2e 37 31 0d  0a 43 6f 6e 6e 65 63 74  4.88.71..Connect
00b0   69 6f 6e 3a 20 4b 65 65  70 2d 41 6c 69 76 65 0d  ion: Keep-Alive.
00c0   0a 0d 0a                                          ...

(a) A raw HTTP Request message captured by TCPDUMP (b) The protocol format identified by Wireshark

Figure 4. A raw HTTP Request message and the protocol format identified by Wireshark

Algorithm 1 Protocol Field Tree Generation
1: Input: the log array log (with totalN records). For the ith record log[i], it has members: (1) log[i].o – the byte offset, (2) log[i].s – the call-stack, and (3) log[i].l – the
instruction location;

2: Output: ftree – the protocol field tree.
3: Field Tree Creation (log) {
4: ftree ← ROOT ; /* Create the ROOT node, which contains all the offsets of input data */
5: ROOT ←{0, 1, 2, ...m − 1};
6: Get log[0].o, log[0].s; /* Process the 1st record */
7: p← {log[0].o};
8: for (i←1; i < N ; i++){ /* Process the ith record */
9: Get log[i].o, log[i].s;
10: q← {log[i].o};
11: if ( (log[i].o == (log[i − 1].o)+1) && (log[i].s == log[i − 1].s) )
12: p←UNION(p, q);
13: else{
14: Create a new node v with offset interval p;
15: Find a node u in ftree, such that u, but not its children (if any), subsumes (the offset interval of) v;
16: if(u has children) move those children whose offset intervals are each a subset of v as children of v;
17: Insert v as the child of u;
18: p ← q;
19: }
20: }
21: Return ftree;
22: }

3.2 Protocol Field Identifier

In this subsection, we walk through an example to
demonstrate how AutoFormat works. This example is re-
lated to an HTTP Request message that is sent by the Linux
wget command to ask for an HTML file named news.html
from an Apache-based (version 2.0.59) web server. Fig-
ure 4(a) shows the raw request payload in the TCPDUMP
form and Figure 4(b) shows the message format identified
by Wireshark [5]. Note that the execution of the web server
is monitored by AutoFormat.

3.2.1 Identifying Finest-Grained Fields and Hierarchi-
cal Fields

When a marked memory location is being read, AutoFor-
mat will log the execution context and save it as a record in
the form of < o, c, s, l >, where o is the offset of the ref-
erenced memory in the entire message, c is its content, s is
the run-time call stack when the memory reference occurs,
and l is the location of the memory reference instruction.
When processing the log file, we can simply consider the
log file as an array, log, withN elements and each element,

say log[i], has four members: log[i].o, log[i].c, log[i].s, and
log[i].l. Because of the locality property of program execu-
tion, certain offset may be intensively referenced and there
may exist several continuous log records that are identical.
In that case, we will first pre-process the log file to discard
all but one of the successive identical log records. Some
pre-processed log records are shown in Appendix I.

Our next step is to build a protocol field tree ftree and
use the protocol field tree to store the identified fields and
express possible hierarchical relations among them. More
specifically, each node of ftree represents either a finest-
grained field or a hierarchical field. Each field is associated
with an offset interval denoted by the starting position and
the size of the field. A node is a child to a parent if and
only if the former’s offset interval is a subset of the latter’s
offset interval. Our protocol field tree generation algorithm
is shown in Algorithm 1.

Essentially, Algorithm 1 scans the entire log file and
checks whether two successive records (log[i] and log[i−1])
are related to two consecutive offsets (line 12: log[i].o ==
(log[i − 1].o) + 1) of the input data and have the same ex-
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(b) Step 2: Refining the protocol field tree with the identified finest-grained fields and hierarchical fields
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Host:

User−Agent:  Wget/1.9+cvs−stable (Red Hat modified) \r\n

 */* \r\n

 129.174.88.71 \r\n

Connection:  Keep−Alive \r\n

\r\n

(c) Step 3: Presenting the protocol format with the discovered parallel and sequential fields

Figure 5. Steps of AutoFormat when reverse engineering the HTTP Request message format

ecution context (line 12: log[i].s == log[i − 1].s)1. If so,
we merge the corresponding offset intervals into one (line

1We note that, when analyzing text protocols, we use log[i].s as ex-
ecution context. However, when analyzing binary protocols, we replace
log[i].s with log[i].l – the current instruction location – as execution con-
text.

13: p ← UNION(p, q)). If not, a new protocol field node
will be created (line 14). To link the new node to the tree,
an existing node will be chosen as the new node’s parent
node (lines 15-18). This chosen node – but not its child (if
any) – should contain the new node’s offset(s). If we cannot
find such a node, we will insert the new node as a child of



the ROOT node which contains all offsets (line 6). For the
parent of the new node, some of its children may be moved
down to become the new node’s children (lines 16-17). The
reason for the move is to maintain the hierarchical property
of the protocol field tree. The result of running Algorithm 1
on the collected log for the wget request message is shown
in Figure 5(a).
Ideally, we would like to have each leaf node as a finest-

grained field. However, Figure 5(a) shows that not all the
leaf nodes are finest-grained fields. Furthermore, the proto-
col field tree built by Algorithm 1 raises the following three
issues: (1) Some leaf nodes might be of overly fine gran-
ularity. The reason is that the implementation code typi-
cally contains functions that do not always reference all the
field offsets – examples are strcmp, strcasecmp, and
strlen. In the HTTP Request example, the “culprit” func-
tion is ap rgetline core, which, in the Apache-2.0.59
implementation, reversely reads an input line and naturally
introduces a few overly-fine-grained fields. These factors
thus lead to some strange nodes in the tree such as H, U, W, A,
‘\r’ and ‘\n’; (2) Certain fields may be referenced multi-
ple times at different time instances (e.g.,‘\’, news.html,
H, U) and thus they are redundant; (3) There exist some
fields that may not be referenced at all. One example is
the space in the “ \” field. For each of the above issues,
we propose a corresponding heuristic to refine the protocol
field tree.

• Tokenization: Text-based protocols usually have de-
limiters to separate protocol fields and the characters
in each field can usually form a token. As such, if the
content in two neighboring child nodes can form one
token, we will merge these two child nodes into one.
However, this heuristic may not be applicable to binary
protocols.

• Redundant node deletion: An internal node in the
field tree is redundant if and only if it has only one
child (e.g., the left child of ROOT and the parent nodes
with only one leaf node child in Figure 5(a)). Such
redundancy can be removed by merging the internal
node with its child. This refinement continues until no
further elimination can be conducted.

• New node insertion: If the offsets of all children do
not exactly match the offsets of their parent, we will
insert a new child node with the missing offsets (the to-
kenization heuristic may apply). There exists another
possibility of node insertion, which occurs when iden-
tifying parallel fields. We defer its description to Sec-
tion 3.2.2.

Based on the above three heuristics, we can refine the
protocol field tree and the result is shown in Figure 5(b). It
is encouraging to notice that all the identified finest-grained

fields are now leaf nodes of the tree. Thus, a simple tree
traversal algorithm on the leaf nodes can immediately re-
veal the flat structure of the protocol message. To unveil the
“non-flat” nature of the same protocol message, we need to
identify the hierarchical fields. In fact, many existing pro-
tocol analyzers including Wireshark have provided this fea-
ture to facilitate the understanding of the protocol. Conve-
niently, the way we build the protocol field tree readily pro-
vides such information. We can simply perform a breadth-
first traversal on the protocol field tree: Any non-leaf node
represents a hierarchical field.

3.2.2 Identifying Parallel and Sequential Fields

Parallel fields are those whose positions are exchangeable
in the message structure. The identification of parallel fields
is particularly useful for protocol fuzz testing and for field
alignment in PI [3]. Parallel fields are typically processed in
a loop (an example is shown in Figure 2), thus these fields
share certain execution history. To discover the parallel re-
lations among the identified fields, AutoFormat utilizes the
execution context history, defined as a sequence of execu-
tion contexts for a particular offset. Details are described in
Algorithm 2.

Algorithm 2 Parallel Field Identification
1: /* log: the log file withN records; ftree: the protocol field tree*/
2: Parallel Field Identification (ftree, log){
3: Breadth-first traverse ftree{
4: for each node v traversed {
5: for each of v’s child child[i] {

/* accumulate the history for the lowest offset of child[i]*/;
6: Let lo be the lowest offset of child[i];
7: for (k←0; k < N ; k++){
8: Get log[k].o, log[k].s;
9: if (log[k].o == lo) child[i].history += log[k].s;
10: }
11: }
12: Identify those children of v with similar execution history and mark

each of them as a parallel field (or the start of a new parallel field);
13: }
14: }
15: }

Specifically, we first collect the execution history seen
by the lowest offset (i.e. the first byte) of each node in the
refined protocol field tree2 (lines 5-11). For a parent node, if
some of its child nodes share similar execution history3, we
will mark each of them as a parallel field (line 12). If there
exist non-marked child node(s) between two marked ones,
the marked one on the left (with a smaller offset) will join
the non-marked child node(s) to form a new parallel field
2The reason for choosing the lowest offset is that not all offsets in a

node are processed in the same capacity and the first byte of a field tends
to be the most processed among all.
3We consider two execution histories as “similar” if they share common

history prefix (as sequence of stack frames). The shared prefix is at least
h% of the entire history and h is a tunable parameter. In our experiments,
we set h = 80.



Protocol Program Binary Size Protocol Program Binary Size
HTTP Apache-2.0.59 253K DHCP Dhcp-3.0.5 1.86M
SIP Asterisk-1.4.4 8.93M RIP Ripd (Zebra-0.95a) 234K

CIFS/SMB Samba-3.0.8 2.77M OSPF Ospfd (Zebra-0.95a) 1.10M

Table 1. Six known protocols for the evaluation of AutoFormat

(recall the new node insertion heuristic in Section 3.2.1). In
this case, a hierarchical node will be inserted into the tree
to represent the new parallel field. Note that the size of the
parallel fields may vary and they may have different number
of sub-fields.
In the HTTP Request example, Algorithm 2 will iden-

tify the following four parallel fields: “User-Agent:
Wget...\r\n”, “Accept: */*\r\n”, “Host:
129.174.88.71\r\n”, and “Connection:
...\r\n”. However, no new hierarchical nodes will
be inserted into the protocol field tree as these fields have
been represented by existing nodes in the tree.
Based on the protocol field tree and the parallel fields

identified, AutoFormat further identifies the sequential
fields: It first performs a pre-order traversal of the tree but
only lists the leaf nodes and those internal nodes that each
represents a parent of multiple parallel fields. The result of
this traversal is a list of sequential fields. Recursively, the
same traversal is performed on the sub-trees each rooted at
a hierarchical node that represents a parallel field. This way
we are able to identify all lists of sequential fields in the
protocol field tree. We point out that the identification of
sequential fields is also useful to protocol fuzz testing as the
sequential fields should be treated atomically for each fuzz
test.
Finally, after identifying both the parallel fields and the

sequential fields, we can conveniently derive the BNF spec-
ification of the protocol message, guided by the protocol
field tree. As an example, Figure 5(c) shows the BNF def-
inition of the HTTP Request message: The leaf nodes are
mapped to the smallest boxes while the internal nodes are
mapped to the larger boxes. The topology of the tree nat-
urally determines the nesting of the boxes. The sequential
fields are connected by solid arrows, while the parallel fields
are laid out in parallel. A comparison between AutoFor-
mat’s result in Figure 5(c) and the actual BNF specification
confirms the correctness of the former. More evaluation re-
sults using real-world protocols will be presented in the next
section.

4 Evaluation

We have implemented an AutoFormat prototype that ex-
tends the latest release of Valgrind [21] (version 3.2.3). This
version provides memory marking and propagation capabil-
ities necessary to enable context-aware execution monitor-

ing. However, we note that our design is not tightly coupled
with Valgrind and can be implemented using other binary
instrumentation tools such as Pin [19] and QEMU [2].
We will present two sets of experiments. The first set of

experiments involve 21 protocol messages from six known
network protocols. Table 1 shows the list of protocols.
Specifically, we choose two text-based protocols (HTTP
and SIP), three binary-based protocols (DHCP, RIP, OSPF),
and one hybrid protocol (CIFS/SMB). The program binaries
are obtained either directly from the standard OS distribu-
tion or by compiling the source code with the default con-
figuration. The second set of experiments involve 11 proto-
col messages in an unknown protocol used by the Slapper
worm [25]. These messages are either for synchronization
among infected hosts to form a P2P attack network or for
conveying commands from the attacker (e.g., a bot master).
In the first set of experiments with known protocols, we

are able to quantitatively evaluate the effectiveness of Aut-
oFormat. More specifically, we compare our results with
the results from the latest version (0.99.6) of a popular net-
work protocol analyzer – Wireshark [5]. We represent the
sets of finest-grained fields, hierarchical fields, and paral-
lel fields as F , H , and P , respectively and we count |F |,
|H|, and |P | in both Wireshark and AutoFormat results.
For each set, we also count how many Wireshark-identified
fields are automatically discovered by AutoFormat and cal-
culate the corresponding exact match ratio Re. For the
three sets, the ratios are denoted as Re(F ), Re(H), and
Re(P ), respectively. In addition, since AutoFormat may di-
vide aWireshark-identified field into multiple fields, each of
which is counted as an overly-fine-grained field, we count
the total number of overly-fine-grained fields as |Fo|. Sim-
ilarly, AutoFormat may consolidate multiple Wireshark-
identified fields as one finest-grained field, which we call
a coarse-grained field. We also count the total number of
coarse-grained fields namely |Fc|.
Table 2 reports our results. We take the averages of

Re(F ), Re(H), and Re(P ) and obtain the following:
Re(F ) = 88.5%, Re(H) = 98.0%, Re(P ) = 100.0%.
If we do not differentiate the field types, the total average
match rate in our experiments would beRe = (Re(F )∗21+
Re(H)∗16+Re(P )∗7)/(21+16+7) = 93.4%, where 21,
16, 7 are the numbers of valid messages (excluding the “-”
items in Table 2) used in our calculation of Re(F ), Re(H),
and Re(P ), respectively. In the following, we describe our
experiments in greater detail.



Wireshark AutoFormat Analysis of F
Protocol Request Msg Type

|F | |H| |P | |F | Re(F ) |H| Re(H) |P | Re(P ) |Fo| |Fc|

Linux Wget 8 1 0 23 8/8 9 1/1 4 - 15 0
Linux Firefox 15 1 0 51 15/15 16 1/1 11 - 36 0HTTP Windows Firefox 12 1 0 39 12/12 13 1/1 8 - 27 0
Windows IE 11 1 0 35 11/11 12 1/1 7 - 24 0
SIP REGISTER 20 9 11 116 20/20 37 9/9 12 11/11 96 0

SIP STATUS 200 OK 20 9 11 110 20/20 39 9/9 12 11/11 90 0
SIP SUBSCRIBE 21 9 12 118 21/21 41 9/9 13 12/12 97 0

DHCP DHCP BOOTP Request 39 8 7 34 28/39 9 7/8 7 7/7 1 5
RIPv2 Request 8 0 0 6 5/8 0 - 0 - 0 1RIP RIPv2 Response 9 0 0 9 9/9 0 - 0 - 0 0
OSPF Hello Packet 15 0 0 15 15/15 0 - 0 - 0 0
OSPF DB Descr. 20 1 0 17 15/20 1 1/1 0 - 0 2OSPF OSPF LS Request 11 0 0 10 9/11 0 - 0 - 0 1
OSPF LS ACK 16 0 0 13 11/16 0 - 0 - 0 2
Negotiate Request 26 9 6 24 23/26 9 9/9 6 6/6 0 1
NTLMSSP NEGO 35 8 2 37 28/35 7 7/8 2 2/2 7 2
NTLMSSP AUTH 49 14 6 51 42/49 13 13/14 6 6/6 7 2

CIFS/SMB Tree Connect 22 2 0 20 19/22 2 2/2 0 - 0 1
NT Create 30 2 0 28 27/30 2 2/2 0 - 0 1
Read 23 2 0 21 20/23 2 2/2 0 - 0 1
Close 16 2 0 14 13/16 2 2/2 0 - 0 1

Table 2. Protocol format comparison between Wireshark and AutoFormat (Note P ⊂ F
S

H ).

HTTP GET Query: Since the variances of protocol
messages of the same type is useful in inferring the generic
protocol format, we have used various web-clients (e.g.,
wget, Firefox, and IE) to generate different HTTP request
messages. The results in Table 2 show that for each field
identified by Wireshark, there is an identical field automat-
ically discovered by AutoFormat. Moreover, AutoFormat
performs deeper field discovery by revealing more finest-
grained fields (|F | = 23 for AutoFormat; |F | = 8 for
Wireshark). Though our evaluation unfavorably considers
such situation as having overly-fine-grained fields, we be-
lieve our results outperform Wireshark.
More specifically, using the wget request message as

an example, the Wireshark result (shown in Figure 4(b)) re-
ports |F | = 8, |H| = 1, and |P | = 0. Wireshark only con-
siders the first line as a hierarchical field (with three finest-
grained sub-fields) and identifies all other lines as finest-
grained fields, which, based on the standard BNF defini-
tion (Figure 1), needs to be further divided into multiple
sub-fields. Moreover, no parallel field has been identified
despite the fact that, as dictated by both the “*” and “|”
symbols in the standard BNF (Figure 1), the fields start-
ing with keywords User-Agent, Accept, Host, and
Connections are actually parallel fields.
In comparison, AutoFormat (shown in Figure 5(c)) re-

ports |F | = 23, |H| = 9, |P | = 4. For each field identified
by Wireshark, we can find an exact match in AutoFormat,
hence Re(F ) = Re(H) = Re(P ) = 100% (due to the
fact that |P | = 0 in Wireshark, we mark the corresponding
table entry with “-”). Detailed analysis further shows that
|Fo| = 15 and |Fc| = 0. The high value of |Fo| is due
to the need of separating each line in the message (which
is considered as one single field in Wireshark) into multi-

ple meaningful sub-fields. As an example, AutoFormat di-
vides the first line into six finest-grained fields while Wire-
shark only highlights three of them; for the second, third,
and fourth lines, AutoFormat identifies four finest-grained
fields in each line while Wireshark only has one field per
line. Moreover, the hierarchical structure exposed by Auto-
Format further reveals the overall skeleton of the message.
Particularly, the identification of four parallel fields, not re-
ported by Wireshark, is important in understanding the pro-
tocol format.
SIP REGISTER Request: In this experiment, we

monitor the execution of Asterisk and trace 18 SIP mes-
sages during a successful registration session. In these 18
SIP messages, we have nine SIP REGISTER sub-messages,
four SIP STATUS sub-messages, and five SIP SUBSCRIBE
sub-messages. Since the structure of each sub-message of
the same type is similar, we randomly choose one for each
sub-message type in our evaluation.
Similar to the HTTP scenario, for each parallel or hi-

erarchical field identified by Wireshark, there is an iden-
tical field automatically discovered by AutoFormat. As a
detailed example, for the SIP REGISTER message, Auto-
Format reports |F | = 109, |H| = 19, and |P | = 12 while
Wireshark shows |F | = 20, |H| = 9, and |P | = 11. The
vast difference is due to the fact that Wireshark does not
perform deep field identification. Instead, Wireshark ex-
tracts protocol fields for the SIP protocol in a way similar
to the HTTP protocol4. For comparison, Figures 6(a) and
6(b) show the protocol formats derived by AutoFormat and
Wireshark, respectively. We also show the entire refined
protocol field tree generated by AutoFormat in Figure 7.
4In fact, the design of the SIP protocol is heavily based on the HTTP

protocol.



\r\nREGISTER  sip:129.174.88.71  SIP/2.0 \r\n

Via: SIP/2.0/UDP 129.174.89.195:19050;branch=z9hG4bK−d87543−1d0cbc7f68650279−1−−d87543−;rport\r\n

Max−Forwards: 70\r\n

Contact: <sip:laptop@129.174.89.195:19050;rinstance=7297a8945e5bc399>\r\n

To: "laptop"<sip:laptop@129.174.88.71>\r\n

From: "laptop"<sip:laptop@129.174.88.71>;tag=693efe4a\r\n

Call−ID: YTY0ODYwYjg0ZmNhYTEyYmE3YmI4NWZhYWFhYjc1Zjc.\r\n

CSeq: 1 REGISTER\r\n

Expires: 3600\r\n

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE, SUBSCRIBE, INFO\r\n

User−Agent: X−Lite release 1011s stamp 41150\r\n

Content−Length: 0\r\n

(a) AutoFormat result showing depth-two traversal of the refined protocol field tree (|F | = 109, |H| = 19, and |P | = 12)

(b) Wireshark result (|F | = 20, |H| = 9, |P | = 11)

Figure 6. Comparison of AutoFormat and Wireshark results for the SIP Register message



ROOT

REGISTER sip:129.174.88.71 SIP/2.0 \r\n

Via: SIP/2.0/UDP 129.174.89.195:19050;branch=z9hG4bK−d87543−1d0cbc7f68650279−1−−d87543−;rport\r\n
Max−Forwards: 70\r\n

Contact: <sip:laptop@129.174.89.195:19050;rinstance=7297a8945e5bc399>\r\n
To: "laptop"<sip:laptop@129.174.88.71>\r\n

From: "laptop"<sip:laptop@129.174.88.71>;tag=693efe4a\r\n
Call−ID: YTY0ODYwYjg0ZmNhYTEyYmE3YmI4NWZhYWFhYjc1Zjc.\r\n

CSeq: 1 REGISTER\r\n
Expires: 3600\r\n

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE, SUBSCRIBE, INFO\r\n
User−Agent: X−Lite release 1011s stamp 41150\r\n

Content−Length: 0\r\n\r\n

REGISTER

 

sip:129.174.88.71

 

SIP/2.0

 

\r\n

Via: SIP/2.0/UDP 129.174.89.195:19050;branch=z9hG4bK−d87543−1d0cbc7f68650279−1−−d87543−;rport\r\n

Max−Forwards: 70\r\n

Contact: <sip:laptop@129.174.89.195:19050;rinstance=7297a8945e5bc399>\r\n

To: "laptop"<sip:laptop@129.174.88.71>\r\n

From: "laptop"<sip:laptop@129.174.88.71>;tag=693efe4a\r\n

Call−ID: YTY0ODYwYjg0ZmNhYTEyYmE3YmI4NWZhYWFhYjc1Zjc.\r\n

CSeq: 1 REGISTER\r\n

Expires: 3600\r\n

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE, SUBSCRIBE, INFO\r\n

User−Agent: X−Lite release 1011s stamp 41150\r\n

Content−Length: 0\r\n

\r\n
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SIP/2.0/UDP

 

129.174.89.195:19050;
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\r\n
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\r\n
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<sip:laptop@129.174.89.195:19050;rinstance=7297a8945e5bc399>

\r\n

<
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YTY0ODYwYjg0ZmNhYTEyYmE3YmI4NWZhYWFhYjc1Zjc.

\r\n

CSeq:

 

1

 

REGISTER

\r\n

Expires:

 

3600

\r\n

Allow:

 

INVITE,

 

ACK,

 

CANCEL,

 

OPTIONS,

 

BYE,

 

REFER,

 

NOTIFY,

 

MESSAGE,

 

SUBSCRIBE,

 

INFO

\r\n

User−Agent:
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41150

\r\n

Content−Length:

 

0

\r\n

Figure 7. The refined protocol field tree for the SIP REGISTER message generated by AutoFormat



Wireshark AutoFormat Wireshark AutoFormat
Field Name Size Size Match? Field Name Size Size Match?
Message type 1 1 √ Value 2 2 √

Hardware type 1 1 √ Option 1 1 √

Hardware address length 1 1 √ Length 1 1 √

Hops 1 1 √ Value 4 4 √

Transaction ID 4 Option 1 1 √

Seconds elapsed 2 6 Coarse-grained Length 1 1 √

Bootp flags 2 2 √ Value 4 4 √

Client IP address 4 4 √ Option 1 1 √

Your (client) IP address 4 Length 1 1 √

Next server IP address 4 8 Coarse-grained Value 14 14 √

Relay agent IP address 4 4 √ Option 1 1 √

6 √ Length 1Client hardware address 6 10 Overly-fine-grained Value 19 20 Coarse-grained
Server host name 64 Option 1 1 √

Boot file name 128 192 Coarse-grained Length 1
Magic cookie 4 4 √ Hardware type 1 8 Coarse-grained
Option 1 1 √ Client MAC address 6
Length 1 1 √ End Option 1 1 √

Value 1 1 √ Padding 242 242 √

Option 1 1 √

Length 1 1 √

Table 3. Detailed comparison between Wireshark and AutoFormat on the finest-grained fields identi-
fied for the DHCP BOOTP Request message (|FWireshark| = 39, |FAutoFormat| = 34).

DHCP BOOTP Request: In this experiment, we
monitor the execution of the dhcpd daemon and study the
BOOTP request message. Table 2 shows that AutoFormat
reports |F | = 34, |H| = 9, and |P | = 7 while Wireshark
reports |F | = 39, |H| = 8, and |P | = 7. Note that Aut-
oFormat and Wireshark have identified almost identical hi-
erarchical fields and parallel fields. But they differ in the
extraction of the finest-grained fields. More specifically,
among the 39 finest-grained fields by Wireshark, only 28
of them are discovered by AutoFormat. To understand the
reason, we perform a detailed comparison between these
finest-grained fields and the results are shown in Table 3.
The table shows the existence of coarse-grained fields

as well as an overly-fine-grained field in the AutoFor-
mat results. To find out the root cause, we map the
message payload to the corresponding application han-
dling code and find out that there are two main reasons
behind the coarse-grained fields: (1) Certain fields of
the payload are simply zeroed place-holders and the
server code does not need to handle them. For exam-
ple, the fields Φ(Your (Client) IP Address),
Φ(Next Server IP Address),
Φ(Server host name), and Φ(Boot file name)
are place-holders within this particular request message.
As a result, they are usually zeroed out. (2) The appli-
cation code is programmed to ignore certain fields in
the message payload. For example, when handling the
BOOTP request message, the daemon analyzed simply
ignores the fields such as Φ(Transaction ID) and
Φ(Seconds elapsed). Note that the second reason
is implementation-specific and the coarse-grained fields
identified could be useful for a variety of applications,

such as protocol compliance checking [7], application
fingerprinting [8], and fuzz testing [29].
The existence of the overly-fine-grained field (|Fo| =

1), interestingly, exposes the wrong interpretation of the
BOOTP Request message in the current Wireshark imple-
mentation. Note that the application source code does de-
clare the field as a 16-byte field and our input data is six
none-zero bytes followed by 10 zero bytes. When Wire-
shark handles this field, it only interprets the first six bytes
and declares a Φ(Client hardware address) field
with only six bytes. According to RFC 2131 for DHCP,
theΦ(Client hardware address) field is indeed 16
bytes long.

SMB Negotiate Request: In this experiment, we col-
lect 30 SMB messages in a user session when a Windows-
based client successfully opens a directory in a remote
Linux server. For the SMB Negotiate Request message,
AutoFormat reports |F | = 24, |H| = 9, and |P | =
6 while Wireshark reports |F | = 26, |H| = 9, and
|P | = 6. For comparison, we show the detailed fields
in Table 4. The only difference is one coarse-grained
field: the three finest-grained fields identified by Wire-
shark – Φ(Process ID High), Φ(Signature) and
Φ(Reserved) – are consolidated into one field by Auto-
Format. Similar to the previous experiment, the main reason
is that the server program simply ignores these fields.

RIP and OSPF messages: We experiment with RIP
and OSPF protocols by monitoring the execution of the Ze-
bra routing software. More specifically, we analyze two
RIP messages and four OSPF messages. As shown in Ta-
ble 2, we have identical results for the RIPv2 Response



Wireshark AutoFormat Wireshark AutoFormat
Field Name Size Size Match? Field Name Size Size Match?
Server Component 4 4 √ Byte Count 2 2 √

SMB Command 1 1 √ Buffer Format 1 1 √

NT Status 4 4 √ Name 23 23 √

Flags 1 1 √ Buffer Format 1 1 √

Flags2 2 2 √ Name 10 10 √

Process ID High 2 Buffer Format 1 1 √

Signature 8 12 Coarse-grained Name 28 28 √

Reserved 2 Buffer Format 1 1 √

Tree ID 2 2 √ Name 10 10 √

Process ID 2 2 √ Buffer Format 1 1 √

User ID 2 2 √ Name 10 10 √

Multiplex ID 2 2 √ Buffer Format 1 1 √

Word Count 1 1 √ Name 11 11 √

Table 4. Detailed comparison between Wireshark and AutoFormat on the finest-grained fields identi-
fied for the Samba Negotiate Request message (|FWireshark| = 26, |FAutoFormat| = 24).

message and the OSPF Hello message. For the RIPv2
Request message, we have one coarse-grained field,
which corresponds to three sub-fields in Wireshark. Sim-
ilarly, we have one coarse-grained field for the OSPF LS
Request. For the other two message types, the AutoFor-
mat results contain two coarse-grained fields. The reason
for these unmatched coarse-grained fields is the same as the
DHCP case: The corresponding message bytes are not fur-
ther processed by the software implementation. Note that
when we experiment with the RIP protocol, we deliberately
compile it without the stack-frame pointer support and we
strip all the symbols in the generated binary. AutoFormat
still works thanks to its execution context capture technique
(Section 3.1).

Slapper WormMessages: We now present our second
set of experiments showing that AutoFormat fully uncovers
the message format of an unknown protocol used by the
Slapper worm.
It has been reported that the Slapper worm can self-

organize infected hosts into a P2P attack network [16].
However, to the best of our knowledge, the exact protocol
format used by the Slapper worm has not been fully inves-
tigated or reported. In this experiment, we use AutoFor-
mat to reverse engineer the message format of the unknown
protocol. Specifically, we launch the Slapper worm inside
a virtual worm playground environment [16] and a special
master program [6] capable of issuing commands to the at-
tack network is deployed, connecting to only one infected
host. Meanwhile, it is interesting that in each Slapper worm
propagation session, it will replicate itself with a copy of its
source code. As such, we can statically analyze the source
code and manually identify all the message fields, which
will be used to verify the AutoFormat results.
AutoFormat has identified 11 message types and the re-

sults are presented in Table 5. It is encouraging that Auto-
Format results match our static analysis results well. In the
following, we detail our results for two specific message

types. These two types of messages are sent by the mas-
ter program when issuing the following commands: (1) The
LIST command is used to list all members in the P2P attack
network; (2) The DNS Flood command is used to launch
a DNS flooding attack. The detailed format of these two
message types, derived by static analysis and by AutoFor-
mat, are shown in Figure 8.

Our static analysis shows that for the LIST command, the
message has two high-level fields that are defined with two
data structures: struct llheader and struct header. struct ll-
header has three member fields: char type, unsigned long
checksum, and unsigned long id. It is interesting to point
out that the compiler automatically pads the first charmem-
ber to 4 bytes, which is identified by AutoFormat as two
finest-grained fields (one at offset 0 and another at offsets
1-3). The same reason holds for the first member – char tag
– in the struct header data structure. The only remaining
difference is the coarse-grained field at offsets 20-27. By
checking its source code, we find out that the Slapper worm
simply ignores this field.

For the DNS Flood message, there are two differences
in the static analysis and AutoFormat results: AutoFormat
identifies two additional finest-grained fields (one at offset
1-3 and another at offsets 13-15) and misses one hierarchi-
cal field (at offsets 12-25). As explained earlier, the two
finest-grained fields are introduced by the compiler. The
missing hierarchical field is related to the struct header data
structure which is embedded as a member within a higher-
level struct df rec data structure. Note that the higher-level
hierarchical field (offset 12-31) is correctly uncovered by
AutoFormat. The main reason for missing the nested struct
header field is that the worm binary uses the same execution
context to handle all members in the df rec data structure.



Static Analysis AutoFormat Analysis of F
Protocol Request Msg Type

|F | |H| |P | |F | Re(F ) |H| Re(H) |P | Re(P ) |Fo| |Fc|

LIST command 7 2 0 8 5/7 2 2/2 0 - 0 1
INFO command 9 3 0 10 7/9 2 2/3 0 - 0 1
SH Command 8 2 0 10 8/8 2 2/2 0 - 0 0

Unknown UDP Flood 11 3 0 12 9/11 2 2/3 0 - 0 1
protocol TCP Flood 10 3 0 11 8/10 2 2/3 0 - 0 1
used by DNS Flood 9 3 0 11 9/9 2 2/3 0 - 0 0
Slapper Email Scan 8 3 0 8 6/8 2 2/3 0 - 0 1
worms GetMyIP* 8 3 0 7 5/8 2 2/3 0 - 0 1

Incoming Client* 7 2 0 5 4/7 2 2/2 0 - 0 1
Route* 10 3 0 13 10/10 2 2/3 0 - 0 0

Info Packet* 18 3 0 19 16/18 2 2/3 0 - 0 1

Table 5. Comparison between static analysis and AutoFormat results for the unknown protocol
used by Slapper worm: The rows marked by “*” represent those messages exchanged between
worm-infected hosts; while other unmarked rows represent the messages exchanged between a
worm-infected host and the special master program. (Note P ⊂ F

S

H ).
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(a) Message format comparison for the LIST command
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(b) Message format comparison for the DNS Flood command

Figure 8. Comparison of Slapperwormmessage formats derived by static analysis and byAutoFormat

5 Related Work

In this section, we describe related work and compare
it with AutoFormat. Note that AutoFormat relies on the
generic technique of dynamic taint analysis. Since the tech-
nique itself has been widely investigated and there exists a
large body of recent work in taint analysis, we omit detailed
discussion in this section. Interested readers are referred to
[10, 11, 15, 23, 26, 27, 31].
Sharing the same goal of automating protocol reverse en-

gineering, the Protocol Informatics (PI) project [3], Discov-
erer [12], Polyglot [9], and [30] by Wondracek et al. are
closely related to our work. Particularly, from a network
perspective, both PI and Discoverer aim at extracting pro-
tocol format from collected network traces. They have the
advantage of convenient trace collection. But the lack of

program semantics in network traces significantly limits the
accuracy of extracted protocol formats. Moreover, they be-
come ineffective in the face of encrypted network traffic.
From a host perspective, both Polyglot [9] and the so-

lution in [30] share the key insight that the way a protocol
is implemented to recognize and handle protocol messages
provides a wealth of information about the protocol for-
mat. AutoFormat differs from them in its way of extracting
protocol format. By recognizing and leveraging the field-
specific execution context, AutoFormat collects and ana-
lyzes run-time execution context information to infer pro-
tocol format. Nonetheless, it is possible to integrate all the
above host-based solutions to achieve better accuracy and
completeness in protocol reverse engineering.
There exist other related techniques designed for other

purposes but having the ability, at least to some extent, of



extracting certain protocol format. For example, applica-
tion dialog replay systems such as RolePlayer [13], Script-
Gen [17, 18], and Replayer [22] share the need of identi-
fying and updating certain input fields that are embedded
in a captured protocol session. Particularly, by leveraging
byte-wise sequence alignment from network traces, Role-
Player and ScriptGen heuristically identify and adjust some
specific fields; Replayer instead leverages host-based binary
analysis to enable automatic protocol replay. These systems
aim at discovering only partial protocol format to serve the
purpose of replaying the protocol dialog, whereas AutoFor-
mat aims at extracting the entire protocol message format
and revealing possible cross-field relations.
Protocol identification proposed by Ma et al. [20] also

has the ability of inferring partial protocol format (e.g., the
format of the first 64 bytes of a protocol session data). How-
ever, their approach is purely based on network traces thus
sharing the same limitations as the other network trace-
based approaches [3, 12]. Protocol analyzers such as Wire-
shark [5] have the capability of properly formating a proto-
col message, but they require prior knowledge about those
protocols and thus are of less use when analyzing unknown
protocols.

6 Limitations and Future Work

The first limitation of AutoFormat is the dynamic trace
dependency. Since AutoFormat relies on execution traces,
the protocol format it derives depends on the diversity of
input recorded in the execution trace. In other words, if a
certain message format never occurs in the trace, it is im-
possible for AutoFormat to infer that format.
Secondly, our current prototype only analyzes protocol

format at the byte granularity and is thus unable to discover
protocol fields at the bit level. However, this limitation can
be removed by re-implementing existing memory marking
and propagation technique at the bit-level. Our current pro-
totype is not flexible enough in distinguishing between text
and binary protocols. However, the tokenization process
proposed in Discoverer can potentially be adopted for auto-
matic recognition.
Thirdly, AutoFormat analyzes each message in isolation

and does not correlate multiple messages in the same pro-
tocol session. Extending AutoFormat to further reconstruct
the entire protocol state machine is part of our future work.
Finally, AutoFormat cannot yet handle obfuscated bina-

ries. However, since such binaries still need to interpret and
handle incoming messages, it is inevitable that certain data
and control dependencies still exist in the obfuscated code.
Such dependencies may be leveraged to overcome the diffi-
culties caused by the obfuscation techniques.

7 Conclusion

We have presented AutoFormat, a system for automatic
protocol format extraction. AutoFormat is based on the
insight that a protocol implementation is programmed to
recognize the protocol format and usually creates proto-
col field-specific execution contexts. By instrumenting and
monitoring program execution, we can obtain the execu-
tion context information and use it as clustering criteria to
identify protocol fields and their relations. We have imple-
mented a prototype of AutoFormat and evaluated it with a
variety of protocol messages from seven real-world (known
or unknown) protocols. Our experimental results show that
AutoFormat achieves high accuracy in protocol field identi-
fication and message format reconstruction.
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Appendix I

Figure 9 shows an excerpt of the pre-processed log file
generated by AutoFormat.



Offset Content Stack Location
0 ’G’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x4BA56A2

->0xF5A8->ap_read_request->ap_rgetline_core->ap_get_brigade->0x2D2CE->ap_get_brigade->0x2D667
->apr_brigade_split_line->memchr

1 ’E’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x4BA56A2
->0xF5A8->ap_read_request->ap_rgetline_core->ap_get_brigade->0x2D2CE->ap_get_brigade->0x2D667
->apr_brigade_split_line->memchr

2 ’T’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x4BA56A2
->0xF5A8->ap_read_request->ap_rgetline_core->ap_get_brigade->0x2D2CE->ap_get_brigade->0x2D667
->apr_brigade_split_line->memchr

3 ’ ’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x4BA56A2
->0xF5A8->ap_read_request->ap_rgetline_core->ap_get_brigade->0x2D2CE->ap_get_brigade->0x2D667
->apr_brigade_split_line->memchr

4 ’/’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x4BA56A2
->0xF5A8->ap_read_request->ap_rgetline_core->ap_get_brigade->0x2D2CE->ap_get_brigade->0x2D667
->apr_brigade_split_line->memchr

5 ’n’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x4BA56A2
->0xF5A8->ap_read_request->ap_rgetline_core->ap_get_brigade->0x2D2CE->ap_get_brigade->0x2D667
->apr_brigade_split_line->memchr

6 ’e’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x4BA56A2
->0xF5A8->ap_read_request->ap_rgetline_core->ap_get_brigade->0x2D2CE->ap_get_brigade->0x2D667
->apr_brigade_split_line->memchr

7 ’w’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x4BA56A2
->0xF5A8->ap_read_request->ap_rgetline_core->ap_get_brigade->0x2D2CE->ap_get_brigade->0x2D667
->apr_brigade_split_line->memchr

...
24 ’\n’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x26187

->0xF5A8->ap_read_request->ap_rgetline_core
23 ’\r’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x26322

->0xF5A8->ap_read_request->ap_rgetline_core
22 ’0’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x261B3

->0xF5A8->ap_read_request->ap_rgetline_core
0 ’G’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x1F7F3

->0xF5A8->ap_read_request->ap_getword_white
1 ’E’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x1F7F3

->0xF5A8->ap_read_request->ap_getword_white
2 ’T’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x1F7F3

->0xF5A8->ap_read_request->ap_getword_white
3 ’ ’ main->ap_mpm_run->0x15C57->0x15B38->0x15941->ap_process_connection->ap_run_process_connection 0x1F7F3

->0xF5A8->ap_read_request->ap_getword_white
...

Figure 9. Sample log entries collected and cleansed by AutoFormat when monitoring the Apache
web server processing an incoming HTTP Request message


