# Access Pattern disclosure on Searchable Encryption: Ramification, Attack and Mitigation

# Murat Kantarcioglu Joint work with Mohammad Saiful Islam, Mehmet Kuzu,



## Introduction



NDSS Symposium 2012



### Introduction



## **Existing Protocols**

# • Oblivious RAM Type Protocols (ORAM)

- E.g., Goldreich et. al., Williams et. al.
- Secure: reveals no information to an adversary.
- Too expensive for large data sets.

# Efficient Searchable Encryption Protocols

– E.g., Song et. al., Goh et. al., Curtmola et. al.

- Efficient: practically usable.
- Reveals Access Patterns.



## **Access Pattern Disclosure**



A Searchable Encryption Protocol that reveals Access Pattern

NDSS Symposium 2012



## Contributions

- Investigate the ramification of Access Pattern Disclosure.
- Formalize a query identity inference attack model based on access pattern disclosure.
- > Empirically verify the efficacy of such a model.
- Propose a noise addition technique to mitigate such an attack.



## **Simplified Searchable Encryption**





# **Motivation**



- Mallory can calculate the probability of {'New York', 'Yankees'} to appear in a document.
- What if the document corpus is about Major league baseball?

# **Notations**

| Notation              | Meaning                                        |
|-----------------------|------------------------------------------------|
| D <sub>i</sub>        | The i <sup>th</sup> Document.                  |
| К <sub>i</sub>        | The i <sup>th</sup> Keyword.                   |
| n                     | Number of documents.                           |
| m                     | Number of keywords.                            |
| Q                     | Set of I queries $\langle Q_1,, Q_i \rangle$ . |
| R <sub>q</sub>        | Result sent by the server for query q.         |
| K <sub>Q</sub>        | The set of known queries.                      |
| S                     | Set of keywords for which queries are known.   |
| Trapdoor <sub>w</sub> | Output of the trapdoor function for w.         |



## **Threat Model**

- Attacker Mallory has access to the communication channel. Therefore, she observes  $Q = \langle Q_1, ..., Q_l \rangle$  and their responses  $\langle R_{Q1}, ..., R_{Ql} \rangle$ .
- Mallory knows the underlying keywords for a set of k queries: K<sub>Q</sub>.
- Mallory has access to a (*m x m*) matrix *M* s.t. M<sub>i,j</sub> = Pr
  [(Ҡ<sub>i</sub> ∈ d) ∧ (Ҡ<sub>j</sub> ∈ d)], here *d* is sampled uniformly from *D*.



## **Proposed Model**

**Objective:** Given a set of queries Q, a set of known queries  $K_Q$ , a background matrix *M*, and the set of known keywords *S*; ascertain the sequence of indices  $\langle a_1, ..., a_l \rangle$  s.t. the following holds.

$$\arg \min_{\langle a_{1}, \dots, a_{l} \rangle} \sum_{Q_{i}, Q_{j} \in Q} \left( \frac{R_{Q_{i}} \cdot R_{Q_{j}}^{T}}{n} - \left( K_{a_{i}} \cdot M \cdot K_{a_{j}}^{T} \right) \right)^{2}$$
  
Constraints  $\forall j \ s.t. \ Q_{j} \in S, a_{j} = x_{j} \ s.t. \langle \kappa_{x_{j}}, Q_{j} \rangle \in K_{Q}$   
 $\forall j, \|Q_{j}\| = 1$ 

UTD

# **NP Completeness Theorem: Theorem 1**

Finding an optimal assignment of keywords to a given set of queries w.r.t. the objective function defined in the simplified model is NP-Complete.



## **Experimental Setup**

- Datasets Used: 30109 emails contained in the Enron Dataset \_sent\_mail folder.
   Discarded the first few lines of metadata.
- Stemming Algorithm: Used Porter Stemming Algorithm to find the root of each keyword.
- Simulated Annealing: Used Simulated Annealing to solve the approximation of the simplified model.

## **Experimental Setup Contd.**

- Keyword Generation: We use the most frequent x keywords as our keyword set.
  - Discarded the most common words like a, an ,the etc.
- Query Generation: We use Zipfian distribution to generate Query Set.
- Execution Time: All the experiments ran under 14 hours in a AMD Phenom II X6 1045T 2.70 GHz Windows 7 with 8 GB RAM.



## **Experiment Results**



#### **Parameters**

- Query Set Size: 150
- Known Query Set Size:15% of Query Set Size.
- # Documents: 30109

#### **Parameters**

- Keyword Set Size: 1500
- Known Query Set Size: 15%
- # Documents: 30109



## **Experiment Results Contd.**



#### **Parameters**

- Keyword Set Size: 1500
- Query Set Size: 150
- # Documents: 30109



## **Experiment Results Contd.**



#### **Parameters**

- Keyword Set Size: 1500
- Query Set Size: 150
- # Documents: 30109

#### **Noise Addition:**

- $\sigma^2 = Var\{M_{i,i}\}$
- Add Noise:  $N(0, C\sigma^2)$
- C is noise scaling factor



# Mitigating Inference Attack

Propose a simple noise addition based technique to counter against the attacks discussed in our work.

Can work on any searchable encryption that leaks data access pattern.



## Outline





# Outline



UTD

## **Privacy Definition:** ( $\alpha$ , 0)-secure Index



## **Experiment Results**



#### **Parameters**

- Keyword Set Size: 1500
- Query Set Size: 150
- Known Query: 15%
- # Documents: 30109

#### **Parameters**

- Keyword Set Size: 1500
- Query Set Size: 150
- Known Query: 15%
- # Documents: 30109





Access Pattern can be exploited to infer sensitive information.

Simple noise addition based schemes can thwart some of the attacks successfully.





# Thank You.

**FEARLESS** engineering

NDSS Symposium 2012

