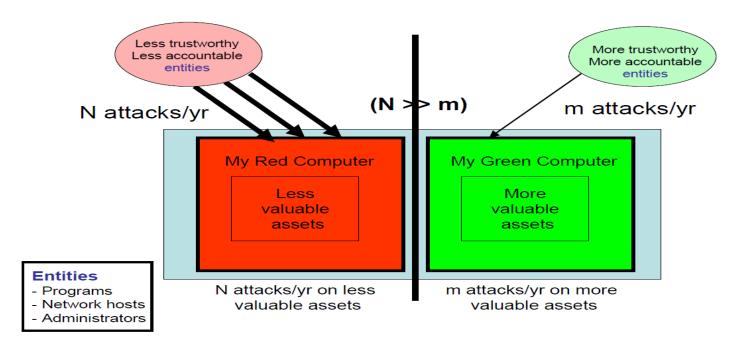


SecureSwitch: BIOS-Assisted Isolation and Switch between Trusted and Untrusted Commodity OSes

Kun Sun, Jiang Wang, Fengwei Zhang, Angelos Stavrou Center for Secure Information Systems George Mason University

- Introduction
- Related Works
- Background Knowledge
- System Architecture
- **Experimental Results**
- Discussion
- **Summary**

Introduction


- Segregate personal communication and entertainment from business and government operations
 - In untrusted environment: Web browser, online gaming, social web portal
 - In trusted environment: Online banking, shopping, business email
- **Trusted computing environment**
 - Separate / isolate the trusted environment from the untrusted environment
 - Prevent data leakage even if the host has been previously infected with malware in the untrusted environment.
 - Enables secure transactions on demand with low context switching latency

- Introduction
- Related Works
- Background Knowledge
- System Architecture
- Experimental Results
- Discussion
- **Summary**

Lampson Red/Green System Separation

Red/Green system: Policy + Isolation + Accountability +Freedom * Butler Lampson, Accountability and Freedom Slides, Microsoft, September 2005

- Our work focuses on isolation between two environments
 - Not on how the users decide what applications go into each OS
 - Not on how to give the user control over data exchanges between the two environments

Software-based Isolation Solution

	VMM-based	OS-based	Browser-based
Isolation Level	OS level	User/Process level	Applet level
Examples	Xen, VMware, QEMU, UML	FreeBSD Jail, Linux OpenVZ, Solaris Container	Adobe Flash, Java applets, Silverlight
Security concerns	VMM vulnerabilities* Covert Channel	VMM vulnerabilities OS vulnerabilities Privilege escalation	VMM vulnerabilities OS vulnerabilities Browser vulnerabilities

* From 1999 to 2009, 373 vulnerabilities affecting virtualization solutions. --- "IBM X-Force 2010 Mid-year trend and risk report"

Hardware-based Isolation Solution

	Multiple Computers	Multi-boot	VT-x / SVM (DRTM)
Isolation Level	Whole physical computer	OS level;	Instruction level;
Examples		Bootloader: LILO, Grub	Flicker [1]; TrustVisor [2];
Problems	Cost, inflexible	Long switching time	Software compatibility

Our work provides an **BIOS**-assistant OS level isolation

- without using any mutable software layer (e.g., hypervisor)
- no changes of the OS source code
- no data leak between two OS environments
- fast switching time, around 6 seconds

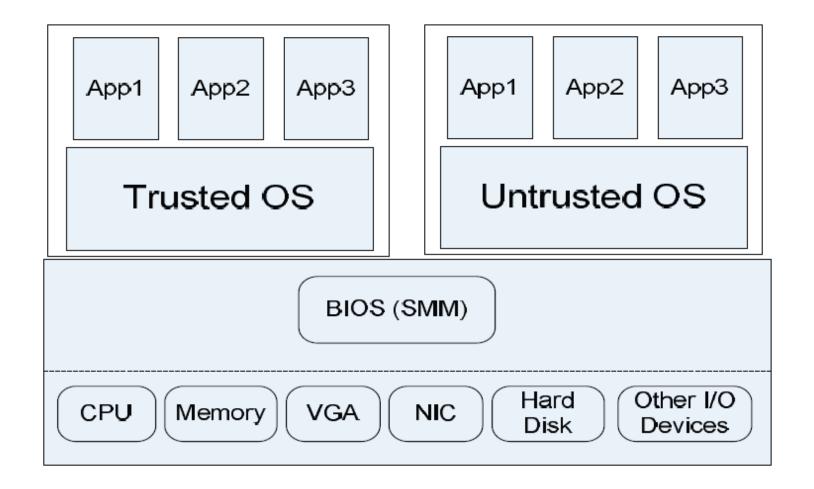
- Introduction
- Related Works
- Background Knowledge
- System Architecture
- Experimental Results
- Discussion
- **Summary**

ACPI Sleeping States

- □ Advanced Configuration and Power Interface (ACPI)
 - OS-directed configuration; Power / thermal management
 - Industrial standard widely supported
- Global System States
 - G0 --- Working (System Operational)
 - G1---Sleeping (CPU stopped)
 - G2 ---Soft Off
 - G3 ---Mechanical off (Physical off switch)
- □ Sleeping States in G1: S1 S4
 - S3: also called Standby, Suspend to RAM
 - DRAM still maintained
 - S4: also called *Hibernation or Suspend to Disk*
 - DRAM not maintained
- Device Power States: D0 D3
 - D0 Fully-On
 - D3 -- Power off to device

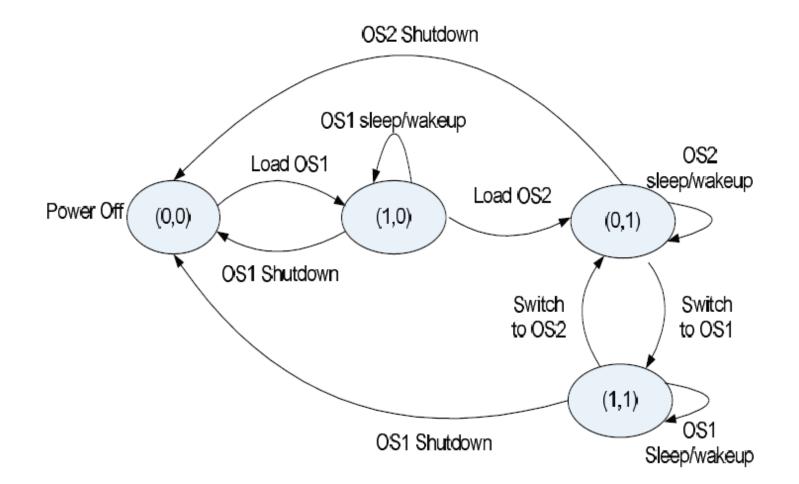
BIOS, UEFI, and Coreboot

- Basic Input/Output System (BIOS)
 - Initializing hardware like processor, memory, chipset, hard disk, and other I/O devices.
 - Stored in non-volatile ROM chips.
- Unified Extensible Firmware Interface (UEFI)
 - Define a new software interface between OS and firmware.
 - Ease the development by switching into protected mode in early stage and writing code in C language.
 - Partially open source
- □ *Coreboot* (formerly as LinuxBIOS)
 - Similar functionality as UEFI
 - Open source
 - We use Coreboot V4


DIMM Mask and DQS Setting

- A motherboard may have more than one Dual In-line Memory Module (DIMM) slot.
 - We assign one DIMM to one OS.
- BIOS uses "DIMM_MASK" variable to control which DIMMs to be enabled.
 - BIOS sets corresponding "data strobes"(DQS) parameters to enable DDR RAM memory access.
 - Require two sets of DQS setting to support the two DIMMs used by two OSes separately.

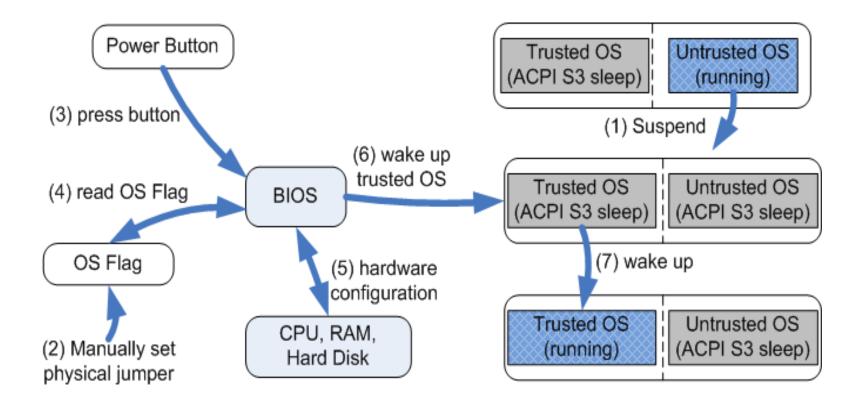
- Introduction
- Related Works
- Background Knowledge
- System Architecture
- Experimental Results
- Discussion
- **Summary**



Attack Model

- □ Assumption
 - BIOS and option ROM on devices can be trusted.
 - No physical access to the protected machine
- Attacks from the untrusted OS
 - Data exfiltration attacks: stealing sensitive data from the trusted OS
 - *Spoofing Trusted OS attacks*: deceiving the user into a fake trusted OS to perform sensitive transactions.
 - *Cache-based side channel attacks*: extracting sensitive information
- Out of the scope
 - Denial of Service attacks
 - Network attacks on trusted OS
 - Malicious device firmware

Secure Switching State Machine


Trusted Path

- A trusted path assures users that they really are working with the operation system they intend to use.
- Prevent spoofing trusted OS attacks
 - Untrusted OS should be truly suspended.
 - Power LED lights up when system is powered on, and blinks in the sleep mode.
 - BIOS should be entered.
 - □ Press the power button.
 - Protecting system flags/variables
 - OS Flag: which OS should be woken next
 - **Boot Flag:** if untrusted OS has been loaded
 - □ Where to save these flags?

Boot Flag: in CMOS OS Flag: physical jumper (e.g., pins in Parallel port connector)

Secure Switching Process

- **CPU Isolation:** two OSes never run concurrently.
- Memory Isolation: physical-level isolation
- □ Hard disk isolation: encrypted hard disk + RAM disk
- Other I/O isolation: clean the buffers and states in devices.

Isolation Mechanisms:

	CPU	Memory	Hard Disk	VGA	NIC
OS with ACPI S3				\checkmark	
BIOS		\checkmark	\checkmark		

Physical-level Memory Isolation

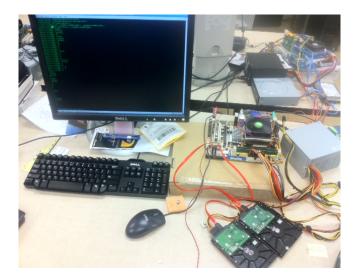
- OS environments run in separate Dual In-line Memory Modules (DIMMs).
- **BIOS** only enables and reports one DIMM for each OS.
 - Two DQS settings for two OSes
 - "DIMM_MASK" controlled by the physical jumper.
 - When the "DIMM_MASK" conflicts with DQS setting, the system crashes
- Only the BIOS can initialize and enable the DIMMs; software cannot initialize or enable DIMMs after the system boots up

Hard Drive Isolation

Hard disk encryption

- Two hard disks, one for each OS.
- Disk lock in ATA specification
- **BIOS** only enables one hard disk
 - Attacker may change the setting to enable all hard disks
 - We use SMM-based detection to check that the channel enable registers has not been changed
- RAM disk
 - For browser-based application, save a small amount of temporary data in the RAM

- Introduction
- Related Works
- Background Knowledge
- System Architecture
- Experimental Results
- Discussion
- **Summary**


Prototype

> Hardware

- > Motherboard: ASUS M2V-MX_SE
- > *CPU*: AMD Sempron 64 LE-1300
- > DDR2: Kingston HyperX 1GB
- > HDD: Seagate 500GB

> Software

- > BIOS: Coreboot + SeaBIOS
- > *Trusted OS*: Linux (Centos 5.5)
- > Untrusted OS: Windows XP

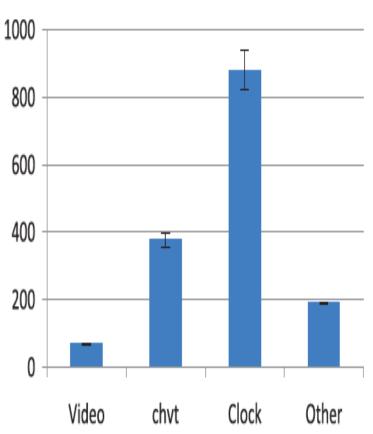
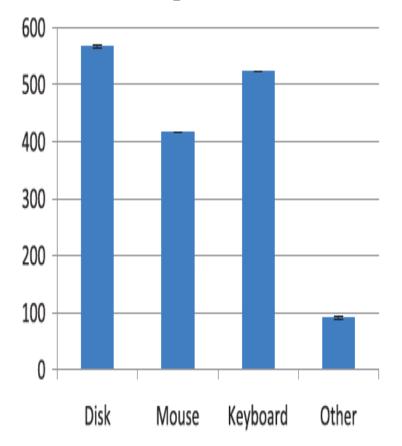


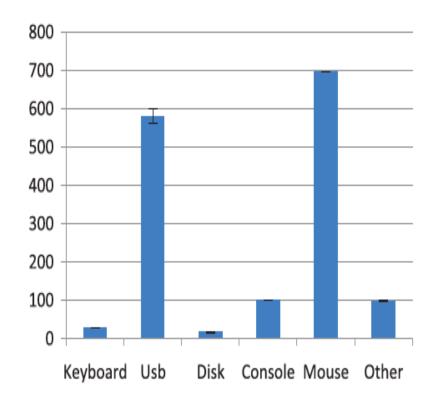
Table 1: Switching Time

Switching Operation	Secure Switch(s)
Windows XP Suspend	4.41
CentOS Wakeup	1.96
Total	6.37
CentOS Suspend	2.24
Windows XP Wakeup	2.79
Total	5.03



Linux Suspend Time Breakdown

User Space : 1517.33 ms



Linux Wakeup Time Breakdown

ALSA COUTER COCT System Battery Notiles Rooth Video Church Cout of Class of the Church Clear in Clear

User Space: 621.04 ms

Kernel Space: 1537.22 ms

- Introduction
- Related Works
- Background Knowledge
- System Architecture
- **Experimental Results**
- Discussion
- **Summary**

	SecureSwitch	Lockdown [41]	TrustVisor [29]	Flicker [28]	Xen [14]
Trusted Computing Base	BIOS	Hypervisor+BIOS	Hypervisor	250 LOC	Hypervisor
Switching Time (second)	≈ 6	40	< 0.001	1	< 0.001
Hardware Dependency	ACPI	ACPI+TPM+	TPM+	TPM+	VT-x/SVM*
		VT-x/SVM	VT-x/SVM	VT-x/SVM	
Software Compatibility	High	High	Low	Low	High
Memory Overhead	High	Low	Low	Low	Medium
OS Concurrency	No	No	Yes	No	Yes
Computation Overhead	Low	Medium	Medium	Low	Medium

* Xen requires VT-x/SVM to support full virtualization.

Summary

- We develop a BIOS-based secure isolation and switching system to obtain a usable trusted workspace
 - Prevent data leakage
 - Without using hypervisor
 - No changes of OS source code
 - Low switching time

Questions?

Reference

- [1]. J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker: An execution infrastructure for TCB minimization. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, pages 315–328. ACM, 2008.
- [2]. J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor: Efficient TCB reduction and attestation. In Proceedings of the IEEE Symposium on Security and Privacy, 2010.

