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Problem Statement 
  Core operation in IDS/IPS is Deep Packet Inspection 

–  Past DPI: string matching 

–  Current DPI: regular expression (RE) matching 
•  Example: SNORT, Bro 

  Problem: given a set of  REs, how to quickly scan 
packet payload to determine which REs are matched? 
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Solution using Automata 
  Common solution is to build an equivalent Finite State 

Automata based on DFA. 

  DFA size grows exponentially with number of  REs. 

  Several alternate automata have been proposed 
D2FA, XFA, δFA etc. 
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Limitations of  Prior Work 
  Prior solution: Union then Minimize framework. 

–  First combined DFA for the whole RE set is built. 
–  Compression technique is applied to the combined DFA to 

get the alternate automata. 

  Problems: 
–  The minimization/compression is applied on large combined 

automata, hence requires too much time and memory. 
–  The intermediate DFA might be too large to fit in memory. 
–  Whole automata needs to be rebuilt if  new RE is added to set. 
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Our Approach 
  Our approach: Minimize then Union framework. 

–  Build individual DFAs for each RE in the RE set. 

–  Compress each DFA to get individual alternate automata. 
–  Merge the all compressed alternate automata together. 

  Advantages 
–  The compression algorithm is applied to small DFAs. 

–  Large intermediate DFA does not need to be built. 
–  Easy to add new RE to the set with one merge. 

  In this work we focus on the D2FA. 
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D2FA Overview 
  D2FA [Kumar et al., 2006] uses 

common transitions between 
states to reduce the number of  
transitions. 

  To build a D2FA: 
1.  We choose a deferred state for each state in 

the DFA. 
2.  For each state, remove transitions that are 

common with its deferred state. 

Jignesh Patel - Michigan State University 6 

s8 

|∑| 

s7 c1 

s1 

s2 s5 

s4 

s3 

s6 

c3 

c2 

c1 

c3 

c2 

c1 



D2FA Construction 
  Build Space Reduction Graph (SRG) 

  Find maximum spanning tree (MST) in SRG. 
  Use the MST to set deferred states. 
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DFA for RE Matching in DPI 
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Merging DFAs (1) 
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Merging DFAs (2) 
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Merging D2FA 
  We extend the UCP construction for merging DFAs to 

merge D2FAs. 

  To generate D2FA, we need to set deferred state for 
each state. 

  Set the deferred state as soon as new state is 
created. 

  Since deferred state is set when a state is created, we 
only need to store the non-deferred transitions for the 
state. 

  The whole DFA is never built since we always store 
the D2FA. 
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Setting Deferred State 
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Merging D2FA Example 
  For most states, one of  the 

first pair is the best pair. 

  In our experiments, 
average number of  
comparisons needed < 1.5 
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Experimental Results: Main 
  We used real world 8 RE sets that were used in prior 

work for our experiments. 

  We group the 8 RE sets into three groups according 
to type of  REs in the sets: STRING, WILDCARD, 
SNORT 

  We compare D2FA Merge algorithm with the Original 
D2FA algorithm. 
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RE set 
group 

# States / 
ASCII len. 

Trans 
increase 

 Def. depth ratio Space  
ratio 

Speedup 
factor  Avg. Max. 

All	   17.7	   20.10%	   7.3	   4.8	   1390	   301.6	  

STRING	   0.7	   44.00%	   1.8	   1.6	   2672.8	   99.5	  

WILDCARD	   36	   3.00%	   12	   8.2	   42.7	   338.2	  

SNORT	   10.7	   21.30%	   6.3	   3.6	   1882.1	   399.7	  



Experimental Results: Scale 
  To test scalability we use a synthetic RE set with REs of  the 

form /c1c2c3c4.*c5c6c7c8/ 
  We add one RE at a time until memory estimate goes over 1GB. 

  Original D2FA algorithm: 
–  # REs added: 12 
–  # states in final D2FA: 397,312 
–  Time to build D2FA: 71 hours 

  D2FA Merge algorithm: 
–  # REs added: 19 
–  # states in final D2FA: 80,216,064 
–  Time to build D2FA: 1.2 hours 

  For 12 REs, D2FA Merge only needs 10 seconds to build. 

  D2FA Merge results in same D2FA size as the original algorithm. 
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Questions? 

  Thank you for listening! 
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