### LOW-COST STANDARD SIGNATURES IN WIRELESS SENSOR NETWORKS

G. Ateniese, G. Bianchi, A. Capossele, and C. Petrioli Sapienza - University of Rome

## SECURITY ON WSN

# • Military, Healthcare, and Industrial Control

 Different Requirements and Constraints



TelosB







### MOTES



- 868/916MHz, 433 or 315MHz multi-channel transceiver
- 19.2 kbps data rate
- 512kB Flash memory
- 128kB Program memory
- 8 MHz Atmega 128L microcontroller with 4kB RAM



- IEEE 802.15.4/ZigBee compliant RF transceiver (2.4 GHz)
- 250 kbps data rate
- 1MB Flash memory
- 48kB Program memory
- 8 MHz TI MSP430
  microcontroller with 10kB RAM

### ENERGY SOURCES



#### Wind, Solar, etc.



#### Human Body

### INTERESTING IDEA

- Modern sensors are equipped with flash memories which make memory consumption a less critical requirement
- Emerging energy harvesting technologies provide occasional energy peaks which could be exploited for anticipating otherwise costly computational tasks

Combine pre-computation techniques + energy harvesting

### GENERATE DL PAIRS



### Boyko, Peinado and Venkatesan (BPV) Our Improved version: I-BPV

### PRE-COMPUTATION

 $(x_1, g^{x_1}) \mid (x_2, g^{x_2}) \mid \dots \mid (x_n, g^{x_n})$ 



### I-BPV GENERATOR

- Random walk on a Cayley graph expander
- Hidden Subset Sum problem (HSS)
- Affine HSS when used with ECDSA

Given integers  $M, b_1, \dots, b_m \in \mathbb{Z}_M$ , find  $\alpha_1, \dots, \alpha_n \in \mathbb{Z}_M$  such that each  $b_i$  is some subset sum of  $\alpha_1, \dots, \alpha_n$  modulo M.

### CAYLEY GRAPHS ARE EXPANDERS

- I-BPV output essentially follows the uniform distribution
- Memory usage much smaller than before, fits current FLASH
- With proper parameters, security of I-BPV depends on its resistance to birthday attacks

## COMPARISONS

| Author(s)        | Scheme   | ROM    | RAM   | —Sig— | $-k_{priv}-$ | $-k_{pub}-$ | $t_{sign}$ | $E_{CPU}(t_{sign})$ |
|------------------|----------|--------|-------|-------|--------------|-------------|------------|---------------------|
| Gura et al.,     | RSA      | 7.4kB  | 1.1kB | 128B  | 128B         | 131B        | 10.99s     | 263.8mJ             |
| Liu et al.,      | ECDSA    | 19.3kB | 1.5kB | 40B   | 21B          | 40B         | 2.001s     | 14.8mJ              |
| Driessen et al., | NTRUSign | 11.3kB | 542kB | 127B  | 383B         | 127B        | 0.619s     | 22.3mJ              |
|                  | ECDSA    | 43.2kB | 3.2kB | 40B   | 21B          | 40B         | 0.918s     | 22.0mJ              |
|                  | XTR-DSA  | 24.3kB | 1.6kB | 40B   | 20B          | 176B        | 0.965s     | 23.2mJ              |
| This work        | ECDSA    | 18.2kB | 1.2kB | 40B   | 21B          | 40B         | 0.346s     | 8.1mJ               |



### ENERGY HARVESTING



## WHY NOT FULL-EXP?

|         |                 | Naive      |       | BPV             |            |       |  |
|---------|-----------------|------------|-------|-----------------|------------|-------|--|
|         | Precomputations | Signatures | FLASH | Precomputations | Signatures | FLASH |  |
| Day 1   | 6823            | 6823       | 0     | 19428           | 12726      | 6702  |  |
| Day 2   | 77              | 77         | 0     | 0               | 597        | 6105  |  |
| Day 3   | 3778            | 3778       | 0     | 6354            | 12459      | 0     |  |
| Day 4   | 5302            | 5302       | 0     | 16038           | 13506      | 2532  |  |
| Day 5   | 4758            | 4758       | 0     | 12936           | 15454      | 14    |  |
| Day 6   | 5351            | 5351       | 0     | 17528           | 10783      | 6759  |  |
| Day 7   | 5468            | 5468       | 0     | 15276           | 16664      | 5371  |  |
| Average | 4310            | 4310       | 0     | 11758           | 11532      | 2525  |  |





### CONCLUSIONS

- Standard Signature (ECDSA) on mote platforms
- Significantly reduced energy cost and improved performance (better than NTRUsign) at the cost of 12kB
- ECDSA-signature generation time below 350 ms over MICA2 motes, with an energy consumption below 10 mJ
- Exploitation of harvested energy for security protocols