
Speeding up Secure Web Transactions Using
Elliptic Curve Cryptography

Vipul Gupta, Douglas Stebila∗, Stephen Fung* ,
Sheueling Chang Shantz, Nils Gura, Hans Eberle

Sun Microsystems, Inc.
2600 Casey Avenue

Mountain View, CA 94043
http://research.sun.com/projects/crypto

Abstract

Elliptic Curve Cryptography (ECC) is emerging as an
attractive alternative to traditional public-key cryptosys-
tems (RSA, DSA, DH). ECC offers equivalent security with
smaller key sizes resulting in faster computations, lower
power consumption, as well as memory and bandwidth sav-
ings. While these characteristics make ECC especially ap-
pealing for mobile devices, they can also alleviate the com-
putational burden on secure web servers.

This article studies the performance impact of using ECC
with SSL, the dominant Internet security protocol. We cre-
ated an ECC-enhanced version of OpenSSL and used it to
benchmark the Apache web server. Our results show that,
under realistic workloads, an Apache web server can han-
dle 13%–31% more HTTPS requests per second when using
ECC-160 rather than RSA-1024 reflecting short-term secu-
rity levels. At security levels necessary to protect data be-
yond 2010, the use of ECC-224 over RSA-2048 improves
server performance by 120%–279%.

1. Introduction

Secure communication is an intrinsic requirement of to-
day’s world of on-line transactions. Whether exchanging
financial, business or personal information, people want to
know with whom they are communicating (authentication)
and they wish to ensure that the information is neither modi-
fied (data integrity) nor disclosed (confidentiality) in transit.
The Secure Sockets Layer (SSL) protocol [12] is the most
popular choice for achieving these goals.1

∗On a student internship from the University of Waterloo.
1Throughout this paper, we use SSL to refer to all versions of the

protocol including version 3.1 also known as Transport Layer Security
(TLSv1.0) [10].

The SSL protocol is application independent – conceptu-
ally, any application that runs over TCP can also run over
SSL. This is an important reason why its deployment has
outpaced that of other security protocols such as SSH [32],
S/MIME [25] and SET [19]. There are many examples of
application protocols like TELNET, FTP, IMAP and LDAP
running transparently over SSL. However, the most com-
mon usage of SSL is for securing HTTP [11], the main pro-
tocol of the World Wide Web.2

Between its conception at Netscape in the mid-1990s,
through its standardization within the IETF (Internet En-
gineering Task Force) in the late-1990s, the protocol and
its implementations have been scrutinized by some of the
world’s foremost security experts [31]. Today, SSL is
trusted to secure transactions for sensitive applications rang-
ing from web banking, to stock trading, to e-commerce.

Unfortunately, the use of SSL imposes a significant per-
formance penalty on web servers. Coarfaet al. [9] have
reported secure web servers running 3.4 to 9 times slower
compared to regular web servers on the same hardware plat-
form. Slow response time is a major cause of frustration
for on-line shoppers and often leads them to abandon their
electronic shopping carts during check out. According to
one estimate, the potential revenue loss from e-commerce
transactions aborted due to Web performance issues exceeds
several billion dollars annually [33].

In its most common usage, SSL utilizes RSA encryption
to transmit a randomly chosen secret that is used to derive
keys for data encryption and authentication. The RSA de-
cryption operation is the most compute intensive part of an
SSL transaction for a secure web server. Several vendors
such as Broadcom, nCipher, Rainbow and Sun now offer
specialized hardware to offload RSA computations and im-
prove server performance.

This paper explores the use of Elliptic Curve Cryptogra-
phy (ECC), an efficient alternative to RSA, as a means of

2The use of HTTP over SSL is also referred to as HTTPS.

Table 1. A comparison of public-key cryptosystems [30].
Public-key system Examples Mathematical Problem Best known method for

solving math problem
(running time)

Integer factorization RSA, Given a numbern, Number field sieve:
Rabin-Williams find its prime factors exp[1.923(logn)1/3(log log n)2/3]

(Sub-exponential)
Discrete logarithm Diffie-Hellman Given a primen, and Number field sieve:

(DH), DSA, numbersg andh, find x exp[1.923(logn)1/3(log log n)2/3]
ElGamal such thath = gx mod n (Sub-exponential)

Elliptic curve ECDH, Given an elliptic curveE Pollard-rho algorithm:
discrete logarithm ECDSA and pointsP andQ onE,

√
n

find x such thatQ = xP (Fully exponential)

improving SSL performance without resorting to expensive
special purpose hardware. ECC was first proposed by Victor
Miller [20] and independently by Neal Koblitz [17] in the
mid-1980s and has evolved into a mature public-key cryp-
tosystem. Compared to its traditional counterparts, ECC
offers the same level of security using much smaller keys.
This results in faster computations and savings in memory,
power and bandwidth that are especially important in con-
strained environments,e.g.mobile phones, PDAs and smart
cards. More importantly, the advantage of ECC over its
competitors increases as security needs increase over time.

Recently, the National Institute of Standards and Technol-
ogy (NIST) approved ECC for use by the U.S. government
[29]. Several standards organizations, such as IEEE, ANSI,
OMA (Open Mobile Alliance) and the IETF, have ongoing
efforts to include ECC as a required or recommended secu-
rity mechanism. The use of ECC with SSL is described in
an IETF draft [14]. We have implemented that specification
in OpenSSL [24] and created a version of the Apache [4]
web server capable of handling HTTPS transactions using
both RSA and ECC.

The rest of this paper is structured as follows. Section 2
provides an overview of ECC technology. Section 3 de-
scribes the SSL protocol and its usage of RSA and ECC
public-key cryptosystems. Section 4 outlines the experi-
ments we conducted to compare the performance of RSA
and ECC-based SSL. Section 5 presents an analysis of our
experimental results. Finally, we summarize our conclu-
sions and discuss future work in Section 6.

2. ECC basics

At the foundation of every public-key cryptosystem is
a hard mathematical problem that is computationally in-
tractable. The relative difficulty of solving that problem de-
termines the security strength of the corresponding system.
Table 1 summarizes three types of well known public-key
cryptosystems. As shown in the last column, RSA, Diffie-

Hellman and DSA can all be attacked using sub-exponential
algorithms, but the best known attack on ECC requires ex-
ponential time. For this reason, ECC can offer equivalent
security with substantially smaller key sizes [18].

Public-key schemes are typically used to transport or ex-
change keys for symmetric-key ciphers. Since the security
of a system is only as good as that of its weakest com-
ponent, the work factor needed to break a symmetric key
must match that needed to break the public-key system used
for key exchange. Table 2 shows NIST guidelines [23] on
choosing computationally equivalent symmetric and public-
key sizes. Notably, the use of 1024-bit RSA does not match
the 128-bit or even 112-bit security level now used for sym-
metric ciphers in SSL, let alone the higher (192- and 256-
bit) key sizes offered by AES [22], NIST’s new replacement
for DES. This underscores the need to migrate to larger RSA
key sizes in order to deliver the full security of symmet-
ric algorithms with more than 80-bit keys. Recent work by
Shamir and Tromer [26] on integer factorization suggests
that the migration needs to happen sooner than previously
thought necessary. They estimate that a specialized machine
capable of breaking 1024-bit RSA in under one year can be
built for $10-$50 million dollars. Consequently, RSA Lab-
oratories now considers 1024-bit RSA to be unsafe for data
that must be protected beyond 2010 and recommends larger
keys for longer term protection [15]. At higher key sizes,
RSA performance issues become even more acute. Since
the performance advantage of ECC over RSA grows ap-
proximately as the cube of the key size ratio, wider adoption
of ECC seems inevitable.

Unlike conventional public-key cryptosystems based di-
rectly on finite-field arithmetic, ECC operates over a group
of points on an elliptic curve defined over a finite field. Its
main cryptographic operation isscalar point multiplication,
which computesQ = kP (a pointP multiplied by an in-
tegerk resulting in another pointQ on the curve). Scalar
multiplication is performed through a combination ofpoint-

Table 2. Equivalent key sizes (in bits).
Sym- ECC RSA/ MIPS Yrs Protection
metric DH/DSA to attack lifetime

80 160 1024 1012 until 2010
112 224 2048 1024 until 2030
128 256 3072 1028 beyond 2031
192 384 7680 1047

256 512 15360 1066

additionsandpoint-doublings. For example,11P can be
expressed as11P = (2((2(2P)) + P)) + P . The secu-
rity of ECC relies on the difficulty of solving the Elliptic
Curve Discrete Logarithm Problem (ECDLP), which states
that givenP andQ = kP , it is hard to findk. Besides
the curve equation, an important elliptic curve parameter is
thebase point, G, which is fixed for each curve. In ECC, a
large random integerk acts as a private key, while the result
of multiplying the private keyk with the curve’s base point
G serves as the corresponding public key.

Not every elliptic curve offers strong security properties
and for some curves the ECDLP may be solved efficiently
[28]. Since a poor choice of the curve can compromise se-
curity, standards organizations like NIST and SECG (Stan-
dards for Efficient Cryptography Group) have published a
set of curves [8, 29] that possess the necessary security
properties. The use of these curves is also recommended
as a means of facilitating interoperability between different
implementations of a security protocol.

The Elliptic Curve Diffie Hellman (ECDH) key exchange
[2] and the Elliptic Curve Digital Signature Algorithm
(ECDSA) [3] are elliptic curve counterparts of the well-
known Diffie-Hellman and DSA algorithms, respectively.
In ECDH key agreement, two communicating parties A and
B agree to use the same curve parameters. They gener-
ate their private keyskA andkB, and corresponding pub-
lic keys QA = kAG and QB = kBG. The parties ex-
change their public keys and each multiplies its private key
and the other’s public key to arrive at a common shared se-
cret kAQB = kBQA = kAkBG. While a description of
ECDSA is not provided here, it similarly parallels DSA.

3. Overview of the SSL protocol

SSL is the most widely used security protocol on
the Internet today. It offers encryption, source authen-
tication and integrity protection for data and is flexi-
ble enough to accommodate different cryptographic algo-
rithms for key agreement, encryption and hashing. How-
ever, the specification describes particular combinations of
these algorithms, calledcipher suites, which have well-
understood security properties. For example, the cipher
suiteTLS RSAWITH RC4 128 SHAuses RSA for key ex-

change, 128-bit RC4 for bulk encryption, and SHA for
hashing.

The two main components of SSL are the Handshake pro-
tocol and the Record Layer protocol. The Handshake proto-
col allows an SSL client and server to negotiate a common
cipher suite, authenticate each other, and establish a shared
master secretusing public-key algorithms. The Record
Layer derives symmetric keys from the master secret and
uses them with faster symmetric-key algorithms for bulk en-
cryption and authentication of application data.

Since public-key operations are computationally expen-
sive, the protocol’s designers added the ability for a client
and server to reuse a previously established master secret.
This feature is also known as “session resumption”, “ses-
sion reuse” or “session caching”. The resulting abbreviated
handshake does not involve any public-key cryptography,
and requires fewer and shorter messages. Experiments in-
dicate that session caching does indeed improve web server
performance [13]. The following subsections describe full
and abbreviated SSL handshakes using RSA and ECC.

SSL allows both client- and server-side authentication.
However, due to the difficulty of managing user certifi-
cates across multiple client devices, the former is rarely
used. User authentication, in such cases, happens at the
application layer,e.g.through passwords sent over an SSL-
protected channel. Authentication of the SSL client is not
discussed further in this paper.

3.1. RSA-based full handshake

Today, the most commonly used public-key cryptosystem
for establishing the master secret is RSA. Figure 1 shows
the operation of an RSA-based handshake.3 The client and
server first exchange random nonces (used for replay pro-
tection) and negotiate a cipher suite withClientHello and
ServerHellomessages. The server then sends its signed
RSA public key in theServerCertificatemessage. The client
verifies the server’s RSA key and uses it to encrypt a ran-
domly generated 48-byte number (thepremaster secret).
The encrypted result is sent in theClientKeyExchangemes-
sage. The server uses its RSA private-key to decrypt the
premaster secret. Both end points then use the premaster
secret to create a master secret which, along with previously
exchanged nonces, is used to derive the cipher keys, initial-
ization vectors and MAC (Message Authentication Code)
keys for bulk encryption and authentication by the Record
Layer.

3.2. ECC-based full handshake

The operation of an ECC-based SSL handshake, as
specified in [14], is shown in Figure 2. Through the

3In both Figure 1 and Figure 2, messages marked with an asterisk are
optional and only sent in certain situations.

e

Client

ClientHello

Certificate*
ClientKeyExchange

CertificateVerify*

Application Data

Finished
[ChangeCipherSpec]

Server

(Initial proposal)

(Conveys server’s RSA

CertificateRequest*
ServerHelloDone

ServerHello (Ciphersuite negotiated)

Application Data

[ChangeCipherSpec]

Finished

Certificate
ServerKeyExchange* encryption key (e,n))

(Client verifies server’s
key and sends encrypted

(Server decrypts secret:
r=(r mod n) mod n)

(Ready for bulk encryption,
authentication)

random secret: r mod n

de

Figure 1. RSA-based SSL handshake.

first two messages (processed in the same way as for
RSA), the client and server negotiate an ECC-based cipher
suite, e.g. TLSECDH ECDSAWITH RC4 128 SHA. The
ServerCertificatemessage contains the server’s ECDH pub-
lic key signed by a certificate authority using ECDSA. Af-
ter validating the ECDSA signature, the client conveys its
ECDH public key to the server in theClientKeyExchange
message. Next, each entity uses its own ECDH private key
and the other’s public key to perform an ECDH operation
and arrive at a shared premaster secret. The derivation of
the master secret and symmetric keys is unchanged com-
pared to RSA.

s

Client

ClientHello

Server

(Initial proposal)

(Has server’s ECDH

ServerHello (Ciphersuite negotiated)

Certificate

signed w/ ECDSA)

Certificate*

ClientKeyExchange

CertificateVerify*

Finished
[ChangeCipherSpec]

CertificateRequest*
ServerHelloDone

ServerKeyExchange*

(Server computes ECDH

Application Data Application Data

[ChangeCipherSpec]

Finished (Ready for bulk encryption,
authentication)

(Client verifies server’s

sends its public key

key, computes ECDH

=k k G=k Q)

public key, Q =k G,

c

s

Q =k G)c

shared secret: k Q

s

shared secret k Q ,sc

s c

s c c

Figure 2. ECC-based SSL handshake (ECDH-
ECDSA key exchange).

The use of ECDH and ECDSA in TLS mimics the use
of DH and DSA, respectively. The TLS specification [10]
already defines cipher suites based on DH and DSA so the

key from a prior session)

ClientHello

Client Server

Finished

Application Data

[ChangeCipherSpec]

Finished

Application Data

[ChangeCipherSpec]

ServerHello

(Includes id of session
to be reused)

(Echoes client−chosen
session id)

(Both parties reuse master

Figure 3. Abbreviated SSL handshake.

incorporation of ECC is not a large change. However, due
to the greater popularity of RSA-based key exchange, the
rest of this paper compares ECC against RSA rather than
DH/DSA.

3.3. Abbreviated handshake

The abbreviated handshake protocol is shown in Figure 3.
Here, theClientHellomessage includes the non-zero ID of
a previously negotiated session. If the server still has that
session information cached and is willing to reuse the cor-
responding master secret, it echoes the session ID in the
ServerHellomessage.4 Otherwise, it returns a new session
ID thereby signaling the client to engage in a full handshake.
The derivation of symmetric keys from the master secret and
the exchange ofChangeCipherSpecandFinishedmessages
is identical to the full handshake scenario.

The abbreviated handshake does not involve certificates
or public-key cryptographic operations, so fewer (and
shorter) messages are exchanged. Consequently, an abbre-
viated handshake is significantly faster than a full hand-
shake.

3.4. Public-key cryptography in SSL

The public-key cryptographic operations performed by a
client and server in different modes of the SSL handshake
are summarized below and in Table 3.

1. RSA-based handshake
The client performs two RSA public-key operations –
one to verify the server’s certificate and another to en-
crypt the premaster secret with the server’s public key.
The server performs one RSA private-key operation to
decrypt theClientKeyExchangemessage and recover
the premaster secret.

2. ECDH-ECDSA-based handshake
The client performs an ECDSA verification to verify
the server’s certificate and then an ECDH operation
using its private ECDH key and the server’s public

4The likelihood of a cache hit depends on the server’s configuration and
its current workload.

Table 3. Public-key cryptographic operations in an SSL handshake.

RSA ECDH-ECDSA Abbreviated

Client RSAverify + RSAencrypt ECDSAverify + ECDHop none
Server RSAdecrypt ECDHop none

ECDH key to compute the shared premaster. All the
server needs to do is perform an ECDH operation to
arrive at the same secret.

3. Abbreviated handshakeNo public-key operations are
performed in the abbreviated handshake since the
client and server reuse a previously calculated master
secret.

4. Evaluation methodology

The main goal of our experiments was to study the perfor-
mance impact of replacing RSA with ECC in the SSL pro-
tocol. Besides public-key cryptography, an HTTPS transac-
tion involves several other operations including symmetric
encryption, hashing, message parsing and file system ac-
cess. The cost of encryption and hashing depends on the
amount of data transferred. The effective cost of public-
key operations is determined by the frequency of session
reuse which eliminates the need for public-key operations
for some transactions. In order to get a realistic estimate
of SSL performance, it is important to use an appropriate
workload for the tests.

Other studies on SSL performance [5, 6, 9] have either
reused the workload for a standard (not secure) web server
or synthesized one based on measurements from a sampling
of secure web sites [7, 9]. We chose the latter approach
since “real-life” workloads for standard and secure web
servers are likely to be different. In particular, our workload
is based on Badia’s survey [7] of six popular banking, in-
vestment and retail sites (Amazon, Datek, ETrade, Fidelity,
Merrill Lynch and Wells Fargo). The survey found that the
aggregate page size ranges between 10KB to 70KB with a
30KB median.5 It also identified two primary usage models
impacting SSL session reuse.

1. In the shopping cartmodel, web sites reserve SSL
strictly for transporting sensitive information like
credit card numbers and personal information. Ama-
zon is a representative example of this usage model –
SSL is used when a customer is finalizing a purchase
but not when he is browsing through available prod-
ucts. The survey found an average of one new SSL
session for every three pages in this usage model.

5A “page” consists of an HTML file and one or more embedded images.
An average page in [7] consists of an 18KB HTML file and seven image
files averaging 1245 bytes each.

2. In thefinancial institutionmodel, the first web page
provides a link to a login screen protected by SSL. Af-
ter a successful login, all subsequent pages are also
protected. This usage is exemplified by ETrade and
Wells Fargo and, on average, requires one new session
for every eight pages.

4.1. Performance metrics

An SSL client fetches web pages sequentially but a server
handles multiple requests concurrently. Due to this differ-
ence in operation, we use two distinct metrics for evaluating
performance from the client’s and server’s perspective.

First-Response Time:This is the delay between initiating
an SSL handshake (either full or abbreviated) and re-
ceiving the first packet in the HTTPS response. It mod-
els the latency experienced by a user between clicking
on a URL and seeing the first update to the browser
window.

Fetches per second:This measures the rate at which a
server fulfills web page requests.

4.2. Experiments performed

We used a public-domain tool called httpload [1] to run
multiple HTTPS fetches in parallel and measured the rate
at which an Apache server satisfies these requests as well
as the response time experienced by clients. We performed
this experiment using:

• Two different cipher suites:TLS RSAWITH RC4
128 SHA and TLS ECDH ECDSAWITH RC4128
SHA to compare the use of RSA and ECC in an SSL
handshake. For each cipher suite, we studied three dif-
ferent security levels — 1024, 1536 and 2048 bits for
RSA and 160, 192 and 224 bits for ECC. For ECC, we
chose three elliptic curves (secp160r1, secp192r1, and
secp224r1 [8, 29]) defined over prime integer fields
recommended by NIST and/or SECG. In the following
we will use ECC-160, ECC-192 and ECC-224 to indi-
cate the aforementioned curves and RSA-1024, RSA-
1536, RSA-2048 to indicate RSA with key sizes of
1024, 1536 and 2048 bit, respectively. As shown in
Table 2, ECC-160 provides the same security as RSA-
1024 and ECC-224 matches RSA-2048. The smaller
keys are considered adequate for short-term protection

Table 4. Measured performance of public-key algorithms.
ECC-160 RSA-1024 ECC-192 RSA-1536 ECC-224 RSA-2048

Time (ms) 3.69 8.75 3.87 27.47 5.12 56.18
Ops/sec 271.3 114.3 258.1 36.4 195.5 17.8

Performance ratio 2.4 : 1 7.1 : 1 11 : 1
Key-size ratio 1 : 6.4 1 : 8 1 : 9.1

but the larger keys are recommended for longer-term
protection (beyond 2010).

• Four different file sizes: 0KB, 10KB, 30KB and 70KB.
These choices allow us to study the relative cost of
handshake and record layer processing in SSL under
a variety of conditions.

• Four different session reuse models: 0% reuse (all
fetches create a new session), 66% reuse (1 new ses-
sion for every three fetches), 87.5% reuse (1 new ses-
sion for every eight fetches) and˜ 100% reuse (only
the first fetch from a client creates a new session). We
had to modify httpload to support session reuse. The
measurements obtained for 0% and 100% reuse do not
have much practical significance, but they do allow us
to analytically predict server throughput for any inter-
mediate reuse figure.

We also used the OpenSSL speed command to measure
the performance of raw RSA and ECC operations for differ-
ent key sizes. Since any security protocol will likely involve
other (non public-key) operations, these measurements pro-
vide an upper bound on the expected performance improve-
ment from replacing RSA with ECC.

4.3. Platform

Our experiments used the Apache 2.0.45 web server com-
piled with OpenSSL-SNAP-20030309 (to be released as
OpenSSL 0.9.8) using the Sun Forte Developer 7 C com-
piler. This snapshot of the development version of OpenSSL
includes ECC code contributed by Sun Microsystems Labo-
ratories [27]. Enhancements were made to the modssl com-
ponent of Apache in order to make it ECC aware.

We ran the server on a single 900 MHz UltraSPARC
III processor with 2GB of memory inside a Sun Fire
V480 server running the Solaris 9 operating system.6 For
the HTTPS clients, we used a prototype Sun Fire server
equipped with seven 900 MHz UltraSPARC III processors,
14GB of memory and also running the Solaris 9 operating
system. The server and client machines were connected via
a 100Mb ethernet network.

6The server used in our tests is equipped with four such processors but
the other three were turned off for these experiments.

5. Analysis of experimental results

5.1. ECC and RSA microbenchmarks

We used the OpenSSL speed program to measure RSA
decryption and ECDH operation for different key sizes (a
minor enhancement was made for collecting RSA-1536
numbers). These are the public-key cryptographic oper-
ations performed by a server when using RSA and ECC
cipher suites, respectively. Our results, shown in Table 4,
highlight the performance advantage of ECC over RSA for
different security levels. Note that the performance advan-
tage of ECC gets even better than its key-size advantage as
security needs increase.

5.2. Server-side costs of an HTTPS fetch

A characteristic measure for the performance of a secure
web server is the rate at which it can service HTTPS connec-
tions. Figure 4 shows the average time taken by the server
to fulfill an HTTPS request for different page sizes and pub-
lic keys with no session reuse. Microbenchmarks for ECC,
RSA, RC4, and SHA allowed us to estimate their relative
costs within the overall processing time. RSA decryption
continues to be the dominant cost in all of these cases. Ac-
cording to SPECWeb99 which models real-world web traf-
fic, 85% of the files are under 10KB. For such files, RSA
takes up anywhere between 63% to 88% of the overall time
depending on the security level.

This suggests that efforts to reduce the RSA cost or re-
place it with a cheaper alternative will have a significant
payoff. Indeed, employing ECC reduces the server’s pro-
cessing time for new SSL connections across the entire
range of page sizes in our study. We measured a reduction in
processing time from 29% for a page size of 70K comparing
ECC-160 with RSA-1024 up to 85% for a file size of 10K
comparing ECC-224 with RSA-2048. In our experiments,
it wasn’t until we increased the file size to 1MB that we no-
ticed ECC and RSA performing comparably. At these sizes,
public-key costs are no longer dominant and other factors
such as network saturation become more important.

5.3. Client latency v/s request rate

Latency v/s throughput plots provide another means to
study the efficiency of a system. A more efficient web server

Figure 4. Relative costs in an HTTPS transaction for different file sizes.

can be expected to handle a higher page request rate with
lower delays. Figure 5 plots the first-response time reported
by http load as a function of page requests generated per
second. The results shown are for a 30KB page size and
66% session reuse reflecting the shopping cart usage model.

Here again, we notice that the use of ECC allows the
server to handle a larger number of requests (30%-270%
more) compared to RSA. At current security levels and un-
der low load, clients experience comparable latencies for
ECC-160 and RSA-1024. That is, the time taken for public-
key operations is low compared to SSL processing over-
heads and network latencies. However, the saturation point
of the server is reached earlier with RSA-1024 leading to a
sharp increase in latency at around 110 requests per second.
For RSA-2048, clients experience 90ms of latency, primar-
ily due to the RSA operation on the server, even under low
server load. In comparison, the exhibited latency for ECC-
224 is only 35ms or less than 40% of the RSA case.7 In
addition, the server saturation point for ECC-224 is reached
significantly later at around 140 requests per second com-
pared to 40 requests per second for RSA-2048.

7The measured roundtrip latency between the client and server was 3ms
for a 15KB ping payload and 6ms for a 30KB payload.

Figure 5. Response time v/s throughput plot
for Apache web server.

5.4. Impact of session reuse

Session reuse diminishes the impact of public-key oper-
ations on the average HTTPS processing time at the web
server. Figure 6 was obtained by measuring the maximum
sustained server throughput reported by httpload for 30KB
page accesses with 0% and 100% session reuse. Throughput
numbers for other reuse values were derived analytically us-
ing the following formula (hereTr denotes server through-
put forr% session reuse) and the values derived forT66 and
T87.5 were verified empirically.

Tr =
1

(1− r
100)/T0 + (r

100)/T100

As expected, increasing the percentage of session reuse
decreases the performance impact of choosing any par-
ticular public-key cryptosystems. However, even under
the financial institution usage model with session reuse
value as high as 87.5%, an ECC based server handles 13%
more requests compared to RSA at smaller key sizes and
120% more at larger key sizes. Considering the shop-
ping cart model, the performance advantage due to ECC at
66% session reuse increases significantly to 31% for ECC-
160/RSA-1024 and 279% for ECC-224/RSA-2048. The
relative performance of ECC over RSA improves further for
smaller pages.

Figure 6. Throughput v/s session reuse plot
for Apache web server.

6. Conclusions and future work

The above analysis suggests that the use of ECC cipher
suites offers significant performance benefits to SSL clients
and servers especially as security needs increase. While
this study has focused on SSL, similar improvements can be

expected for other protocols like S/MIME, SSH and IPsec
[16].

Already, there is considerable momentum behind
widespread adoption of the Advanced Encryption Standard
(AES) which specifies the use of 128-bit, 192-bit and 256-
bit symmetric keys. As indicated in Table 2, key sizes for
public-key cryptosystems used to establish AES keys will
correspondingly need to increase from current levels. This
would favor the use of ECC over RSA. Furthermore, as
users become increasingly sensitive to on-line privacy is-
sues, they are likely to demand protection for more of their
transactions. For example, Yahoo! users might demand
the option to protect their email accesses, not just the lo-
gin password, with SSL. Similarly, book lovers might de-
mand privacy protection for their browsing habits on Ama-
zon. We believe these trends bode well for broader deploy-
ment of ECC, in not just wireless environments but also
desktop/server environments.

Besides OpenSSL, we have also added ECC support
to Netscape Security Services (NSS) [21]. This open-
source cryptographic library powers the Mozilla/Netscape
browsers and the web, directory and messaging servers in
Sun’s Java Enterprise System. We are now targeting ECC
support in these servers and intend to perform a similar
study for their representative work loads.

7. Acknowledgments

The authors would like to thank Sumit Gupta for his help
in implementing ECC cipher suites in OpenSSL and Shih-
Hao Hung for adding session reuse support to httpload and
his help in setting up our performance test bed.

Sun, Sun Microsystems, Forte Developer, Sun Fire, UltraSPARC, Solaris and Java

Enterprise System are trademarks or registered trademarks of Sun Microsystems, Inc.,

in the United States and other countries.

References

[1] Acme Labs Software, see http://www.acme.com /soft-
ware/httpload/

[2] ANSI X9.63, “Elliptic Curve Key Agreement and Key
Transport Protocols”, American Bankers Association,
1999.

[3] ANSI X9.62, “The Elliptic Curve Digital Signature
Algorithm (ECDSA)”, American Bankers Associa-
tion, 1999.

[4] Apache Software Foundation, see http://www.
apache.org/.

[5] G. Apostolopoulos, V. Peris, D. Saha, “Transport
Layer Security: How much does it really cost?”,In
Proc. of IEEE Infocom, 1999.

[6] G. Apostolopoulos, V. Peris, P. Pradhan, D. Saha, ”Se-
curing electronic commerce: reducing the SSL over-
head”, IEEE Network, Vol 14, No 4, pp 8–16, Jul.
2000.

[7] L. Badia, “Real World SSL Benchmarking”, Rain-
bow Technologies Whitepaper, Sep. 2001, see
http://www.rainbow.com/insights/whitePDF/RealWorld
SSLBenchmarking.pdf.

[8] Certicom Research, “SEC 2: Recommended Elliptic
Curve Domain Parameters”, Standards for Efficient
Cryptography, Version 1.0, Sep. 2000.

[9] C. Coarfa, P. Druschel, D. Wallach, “Performance
Analysis of TLS Web Servers”, Network and Dis-
tributed Systems Security Symposium ’02, San Diego,
California, Feb. 2002.

[10] T. Dierks and C. Allen, January 1999. “The TLS
Protocol - Version 1.0.”, IETF RFC 2246, see
http://www.ietf.org/rfc/rfc2246.txt

[11] R. Fielding et al., “Hypertext Transfer Protocol –
HTTP/1.1”,RFC 2616, Jun. 1999.

[12] A. Frier, P. Karlton and P. Kocher, “The SSL3.0
Protocol Version 3.0”, see http://home.netscape.com
/eng/ssl3/.

[13] A. Goldberg, R. Buff, A. Schmitt, “Secure Web Server
Performance Dramatically Improved by Caching SSL
Session Keys”, InProc. of Workshop on Internet
Server Performance, SIGMETRICS’98, Jun. 1998.

[14] V. Gupta, S. Blake-Wilson, B. Moeller, C. Hawk,
“ECC Cipher Suites for TLS”, IETF internet draft
<draft-ietf-tls-ecc-03.txt>, work in progress, Jun.
2003.

[15] B. Kaliski, “TWIRL and RSA Key Size”, RSA
Laboratories Technical Note, May 2003, see
http://www.rsasecurity.com/rsalabs/technotes/twirl.html.

[16] S. Kent and R. Atkinson, “Security Architecture for
the Internet Protocol”,RFC 2401, Nov. 1998.

[17] N. Koblitz, “Elliptic curve cryptosystems”, Mathemat-
ics of Computation, 48:203-209, 1987.

[18] A. Lenstra and E. Verheul, “Selecting Cryptographic
Key Sizes”,Journal of Cryptology14 (2001) pp. 255-
293, see http://www.cryptosavvy.com/.

[19] MasterCard International and Visa International, “Se-
cure Electronic Transaction Specification, Version
1.0”, http://www.setco.org/, May 1997.

[20] V. Miller, “Uses of elliptic curves in cryptography”,
Crypto 1985, LNCS 218: Advances in Cryptology,
Springer-Verlag, 1986.

[21] Mozilla Organization, “Netscape Security Services
(NSS)”, see http://www.mozilla.org/projects/security/
pki/nss

[22] NIST, “Advanced Encryption Standard (AES)”, see
http://csrc.nist.gov/CryptoToolkit/aes, Dec. 2001.

[23] NIST, “Special Publication 800-57: Recommendation
for Key Management. Part 1: General Guideline”,
Draft Jan. 2003.

[24] OpenSSL Project, see http://www.openssl.org/.

[25] B. Ramsdell, “S/MIME Version 3 Message Specifica-
tion”, RFC 2633, Jun. 1999.

[26] A. Shamir and E. Tromer, “Factoring Large Numbers
with the TWIRL Device”,Crypto 2003, LNCS 2729,
Springer-Verlag, Aug. 2003.

[27] S. Shankland, “Open-source group gets Sun security
gift”, Sep. 2002, see http://news.com.com/2100-1001-
958679.html.

[28] N. Smart, “How Secure Are Elliptic Curves over Com-
posite Extension Fields?”,EUROCRYPT 2001, LNCS
2045, Springer-Verlag, pp. 30–39, 2001.

[29] U.S. Dept. of Commerce/NIST, “Digital Signature
Standard (DSS)”, FIPS PUB 186-2, Jan. 2000.

[30] S. A. Vanstone, “Next generation security for wireless:
elliptic curve cryptography”,Computers and Security,
Vol 22, No 5, Aug. 2003.

[31] D. Wagner, B. Schneier, “Analysis of the SSL 3.0 pro-
tocol”, 2nd USENIX Workshop on Electronic Com-
merce, Nov. 1996.

[32] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, S. Lehti-
nen “SSH Protocol Architecture”, IETF Internet draft,
work in progress, Jul. 2003.

[33] Zona Research, “The Need for Speed II”, Zona Market
Bulletin, Issue 5, Apr. 2001.

