
February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Scalable, Behavior-Based
Malware Clustering

Ulrich Bayer

Paolo Milani Comparetti

Clemens Hlauschek

Engin Kirda

Christopher Krügel

Secure Systems Lab/TU Vienna

Eurecom

University of California, Santa Barbara

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Motivation

• Thousands of new malware samples appear each day

• Automatic analysis systems allow us to create thousands of

analysis reports

• Now a way to group the reports is needed. We would like to

cluster them into sets of malware reports that exhibit similar

behavior.

– we require automated clustering techniques

• Clustering allows us to:

– discard reports of samples that have been seen before

– guide an analyst in the selection of those samples that require most

attention

– derive generalized signatures, implement removal procedures that

work for a whole class of samples

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Scalable, Behavior-Based Malware

Clustering

• Malware Clustering: Find a
partitioning of a given set of malware

samples into subsets so that subsets

share some common traits (i.e., find

“virus families”)

• Behavior-Based: A malware
sample is represented by its actions

performed at run-time

• Scalable: It has to work for large
sets of malware samples

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

System Overview

Execution Trace augmented

with taint-information and

network analysis results

Dynamic

Analysis of the

Sample

Extraction

of the

Behavioral Profile

Clustering

Behavioral Profile

Result

Result

Input

Input

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Dynamic Analysis

• Based on our existing automatic, dynamic analysis
system called Anubis
– Anubis is a full-system emulator

– Anubis generates an execution trace listing all invoked
system calls

• In this work, we extended Anubis with:
– system call dependencies (Tainting)

– control flow dependencies

– network analysis (for accurately describing a sample’s
network behavior)

• Output of this step: Execution trace augmented with
taint information and network analysis results

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Extraction Of The Behavioral Profile

• In this step, we process the execution trace provided

by the ‘dynamic analysis’ step

• Goal: abstract from the system call trace

– system calls can vary significantly, even between programs

that exhibit the same behavior

– remove execution-specific artifacts from the trace

• A behavioral profile is an abstraction of the program's

execution trace that accurately captures the behavior

of the binary

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Reasons For An Abstract Behavioral

Description

• Different ways to read from a file:

• Different system calls with similar semantics

– e.g., NtCreateProcess, NtCreateProcessEx

• You can easily interleave the trace with unrelated calls:

f = fopen(“C:\\test”);

read(f, 1);

read(f, 1);

read(f, 1);

f = fopen(“C:\\test”);

read(f, 3);

f = fopen(“C:\\test”);

read(f, 1);

readRegValue(..);

read(f, 1);

A:
B:

C:

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Reasons For An Abstract Behavioral

Description

• Different ways to read from a file:

• Different system calls with similar semantics

– e.g., NtCreateProcess, NtCreateProcessEx

• You can easily interleave the trace with unrelated calls:

f = fopen(“C:\\test”);
read(f, 1);
read(f, 1);
read(f, 1);

f = fopen(“C:\\test”);

read(f, 3);

f = fopen(“C:\\test”);

read(f, 1);

readRegValue(..);

read(f, 1);

A:

B:

C:

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Reasons For An Abstract Behavioral

Description

• Different ways to read from a file:

• Different system calls with similar semantics

– e.g., NtCreateProcess, NtCreateProcessEx

• You can easily interleave the trace with unrelated calls:

f = fopen(“C:\\test”);

read(f, 1);

read(f, 1);

read(f, 1);

f = fopen(“C:\\test”);
read(f, 3);

f = fopen(“C:\\test”);

read(f, 1);

readRegValue(..);

read(f, 1);

A:
B:

C:

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Reasons For An Abstract Behavioral

Description

• Different ways to read from a file:

• Different system calls with similar semantics

– e.g., NtCreateProcess, NtCreateProcessEx

• You can easily interleave the trace with unrelated calls:

f = fopen(“C:\\test”);

read(f, 1);

read(f, 1);

read(f, 1);

f = fopen(“C:\\test”);

read(f, 3);

f = fopen(“C:\\test”);
read(f, 1);
readRegValue(..);
read(f, 1);

A:
B:

C:

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Elements Of A Behavioral Profile

• OS Objects: represent a resource such as a file that can be

manipulated via system calls

– has a name and a type

• OS Operations: generalization of a system call

– carried out on an OS object

– the order of operations is irrelevant

– the number of operations on a certain resource does not matter

• Object Dependencies: model dependencies between OS objects

(e.g., a copy operation from a source file to a target file)

– also reflect the true order of operations

• Control Flow Dependencies: reflect how tainted data is used by

the program (comparisons with tainted data)

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Example: Behavioral Profile

src = NtOpenFile(“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile(“C:\\Windows\\” + GetTempFilename());

dst_section = NtCreateSection(dst);

char *base = NtMapViewOfSection(dst_section);

while(len < length(src)) {

*(base+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File|RANDOM_1

create:1

Op|Section|RANDOM_1

open:1, map:1, mem_write: 1

Dep|File|C:\sample.exe -> Section|RANDOM_1

read – mem_write

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Example: Behavioral Profile

src = NtOpenFile(“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile(“C:\\Windows\\” + GetTempFilename());

dst_section = NtCreateSection(dst);

char *base = NtMapViewOfSection(dst_section);

while(len < length(src)) {

*(base+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe
open:1, read:1

Op|File|RANDOM_1

create:1

Op|Section|RANDOM_1

open:1, map:1, mem_write: 1

Dep|File|C:\sample.exe -> Section|RANDOM_1

read – mem_write

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Example: Behavioral Profile

src = NtOpenFile(“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile(“C:\\Windows\\” + GetTempFilename());

dst_section = NtCreateSection(dst);

char *base = NtMapViewOfSection(dst_section);

while(len < length(src)) {

*(base+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File|RANDOM_1
create:1

Op|Section|RANDOM_1

open:1, map:1, mem_write: 1

Dep|File|C:\sample.exe -> Section|RANDOM_1

read – mem_write

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Example: Behavioral Profile

src = NtOpenFile(“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile(“C:\\Windows\\” + GetTempFilename());

dst_section = NtCreateSection(dst);

char *base = NtMapViewOfSection(dst_section);

while(len < length(src)) {

*(base+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File|RANDOM_1

create:1

Op|Section|RANDOM_1
open:1, map:1, mem_write: 1

Dep|File|C:\sample.exe -> Section|RANDOM_1

read – mem_write

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Example: Behavioral Profile

src = NtOpenFile(“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile(“C:\\Windows\\” + GetTempFilename());

dst_section = NtCreateSection(dst);

char *base = NtMapViewOfSection(dst_section);

while(len < length(src)) {

*(base+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File|RANDOM_1

create:1

Op|Section|RANDOM_1
open:1, map:1, mem_write: 1

Dep|File|C:\sample.exe -> Section|RANDOM_1

read – mem_write

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Example: Behavioral Profile

src = NtOpenFile(“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile(“C:\\Windows\\” + GetTempFilename());

dst_section = NtCreateSection(dst);

char *base = NtMapViewOfSection(dst_section);

while(len < length(src)) {

*(base+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe
open:1, read:1

Op|File|RANDOM_1

create:1

Op|Section|RANDOM_1

open:1, map:1, mem_write: 1

Dep|File|C:\sample.exe -> Section|RANDOM_1

read – mem_write

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Example: Behavioral Profile

src = NtOpenFile(“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile(“C:\\Windows\\” + GetTempFilename());

dst_section = NtCreateSection(dst);

char *base = NtMapViewOfSection(dst_section);

while(len < length(src)) {

*(base+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File|RANDOM_1

create:1

Op|Section|RANDOM_1
open:1, map:1, mem_write: 1

Dep|File|C:\sample.exe -> Section|RANDOM_1

read – mem_write

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Example: Behavioral Profile

src = NtOpenFile(“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile(“C:\\Windows\\” + GetTempFilename());

dst_section = NtCreateSection(dst);

char *base = NtMapViewOfSection(dst_section);

while(len < length(src)) {

*(base+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File|RANDOM_1

create:1

Op|Section|RANDOM_1

open:1, map:1, mem_write: 1

Dep|File|C:\sample.exe -> Section|RANDOM_1
read – mem_write

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Scalable Clustering

• Most clustering algorithms require to compute the distances

between all pairs of points => O(n2)

• We use LSH (locality sensitive hashing), a technique introduced

by Indyk and Motwani, to compute an approximate clustering that

requires less than n2 distance computations

• Our clustering algorithm takes as input a set of malware samples

where each malware sample is represented as a set of features

⇒we have to transform each behavioral profile into a feature

set first

• Our similarity measure: Jaccard Index defined as

||/||),(bababaJ ∪∩=

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

LSH Clustering

• We are performing an approximate, single-linkage

hierarchical clustering:

• Step 1: Locality Sensitive Hashing

– to cluster a set of samples we have to choose a similarity

threshold t

– the result is an approximation of the true set of all near (as

defined by the parameter t) pairs

• Step 2: Single-Linkage hierarchical clustering

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Evaluating Clustering Quality

• For assessing the quality of the clustering algorithm, we

compare our clustering results with a reference clustering of the

same sample set

– since no reference clustering for malware exists, we had to create

it first

• Reference Clustering:

1. we obtained a random sampling of 14,212 malware samples that

were submitted to Anubis from Oct. 27th 2007 to Jan. 31st 2008

2. we scanned each sample with 6 different virus scanners

3. we selected only those samples for which the majority of the anti-

virus programs reported the same malware family. This resulted in

a total of 2,658 samples.

4. we manually corrected classification problems

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Quantitative Evaluation

• We ran our clustering algorithm with a similarity

threshold t = 0.7 on the reference set of 2,658

samples.

• Our system produced 87 clusters while the reference

clustering consists of 84 clusters.

• Precision: 0.984
– precision measures how well a clustering algorithm distinguishes between samples that

are different

• Recall: 0.930
– recall measures how well a clustering algorithm recognizes similar samples

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Comparative Evaluation

0.9590.60LSH
Jaccard

Index
Our Profile

0.9590.61Exact
Jaccard

Index
Our Profile

0.6560.19Exact
Jaccard

Index
Syscalls

0.8010.63Exact
Jaccard

Index

Bailey-

Profile

0.9160.75ExactNCD
Bailey-

profile

QualityOptimal

Threshold

ClusteringSimilarity

Measure

Behavioral

Description

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Performance Evaluation

• Input: 75,692 malware samples

• Previous work by Bailey et al (extrapolated from their

results of 500 samples):

Number of distance calculations: 2,864,639,432

Time for a single distance calculation: 1.25 ms

Runtime: 995 hours (~ 6 weeks)

• Our results:

Number of distance calculations: 66,528,049

Runtime: 2h 18min

February 10th 2009, NDSS

Secure Systems Lab

Technical University Vienna

Conclusions

• Novel approach for clustering large collections of

malware samples

– dynamic analysis

– extraction of behavioral profiles

– clustering algorithm that requires less than a quadratic

amount of distance calculations

• Experiments on real-world datasets that demonstrate

that our techniques can accurately recognize

malicious code that behaves in a similar fashion

• Available online: http://anubis.iseclab.org

