-l nfermnaton me&m 1T CDA | A, J Planck » "Il German Research

Georgia | = C ity |,,,, SAARLAND \ (I Y I A\ | &1 mnstitut) *J Center for Art ificial

Tech|| Gorcar u| |u UNIVERSITY ” . Intelligence GmbH
sssssssssssssss

Unleashing Use-Before-Initialization
Vulnerabilities in the Linux Kernel Using
Targeted Stack Spraying

Kangjie Lu, Marie-Therese Walter, David Pfaff,
Stefan Nurnberger, Wenke Lee, and Michael Backes

Georgia Tech, CISPA, Saarland University, MPI-GWS, DK

Starting with the famous brother:
Use-after-free

char” foo = (char®) malloc (100); |) 4)
“foo = "abc”; nnn
free (foo); o0 3
: 4 y,
printf(%s, *foo);
Stack Heap

foo = 7?7?77
NDSS 2017

Starting with the famous brother:

Use-after-free

char® foo = (char®) malloc (100):;
*foo = "abc”;

free (foo);

char® bar = (char”®) malloc (100):;
“bar = "evil";

printf(%s, *foo);

*foo = “evil”
NDSS 2017

B (")
bar—-_
X evil
foo />
\ " Y,
Stack Heap

Uninitialized use vulnerabilities on the

stack

NDSS 2017

Stack

foo

Vulnerable Function:

struct A foo:

foo->complete();

Uninitialized use vulnerabilities on the
stack

Stack

Setup function: . < Vulnerable Function:
int buf[S0]; X =V
for (i=0: i<5’O;) | -y | struct A "foo;
{ evi | foo

buflil=evil. > S foo->complete();
) e VI

 evi \ ‘
) \ evil->complete()

NDSS 2017

Uninitialized uses pose critical security

risks Overlapping Memory

Setup Function: /\ \/ulnerable Function:

Control uninitialized variable Uninitialized Use

Arbitrary read, write,

and execution

NDSS 2017 6

In reality, uninitialized-use problems
are overlooked

e Uninitialized uses were regarded as undefined behaviors

2015-2016: 16 Linux kernel patches, 1 CVE

* Full memory safety technigues exclude uninitialized uses as
a target

* Widespread belief: uninitialized memory is uncontrollable

NDSS 2017

Manually exploiting unitialized uses in
the Linux kernel stack is difficult

Overlapping Memory

Setup fUHCMulnerlee function

NDSS 2017 8

Manually exploiting unitialized uses in
the Linux kernel stack is difficult

Overlapping Memory

Vulnerable function

300 different syscalls

NDSS 2017 9

Manually exploiting unitialized uses in
the Linux kernel stack is difficult

Overlapping Memory

Setup function Vulnerable function

Different parameter values
for each syscall

10

Primary kernel stack usage

* 0% of all system calls only use the first 2KB of the kernel stack
* Most interesting region to target

90% of
syscalls

8 or 16 KB stack

NDSS 2017

11

Targeted stack spraying

Deterministic DUESTVIE
stacl spraying memory spraying

2KB 8 or 16 KB stack

NDSS 2017

12

Targeted stack spraying

Deterministic EXINEUSTIVE
stacl spraying MERIERAY SPreVine

2KB 3 OF 446 KB Sta)ElR

NDSS 2017

13

Deterministic stack spraying overview

Symbolic Parameters Dynamic
Execution —} Verification

Explore execution Run and verify
paths of syscalls stack spraying

NDSS 2017 14

Path exploration using Symbolic
Execution

syscall(int pl, int p2, char” buf)

p2<pl

Path 1: pl<5; p2<pl Path 3: pl>=5
Path 2: pl<5; p2>=pl

NDSS 2017

15

SE: handling path explosion due to
unbounded loops

ol>=5

Path 3: pl>=5
LOOP(p2)

Fuzz loop variable (p2) in
dynamic verification phase

NDSS 2017 16

Verify stack spraying by executing
paths

Path 1: pl<5; p2<pl
syscall(pl=3, p2=2, buf="UUID")

NDSS 2017

17

Verify stack spraying by executing
paths

Y
@

Path 2: pl<5; p2>=pl
syscall(pl=3, p2=3, buf="UUID")

NDSS 2017

18

Verify stack spraying by executing
paths

.

Path 3: pl>=5
syscall(pl=6, FUZZ(p2), buf="UUID")
o] s] =
]]
]]
]]
]
]]
NDSS 2017 L] L]

19

Mapping syscalls and parameters to
memory locations

syscall(pl=6, p2=4, buf="UUID")
syscall(pl=6, p2=3, buf="UUID")
syscall(pl=6, p2=2, buf="UUID")
syscall(pl=6, p2=1, buf="UUID")

syscall(pl=3, p2=2, buf="UUID")

NDSS 2017 20

Automatically exploiting uninitialized
uses in the Linux kernel is possible!

syscall(p1=6, p2=4, buf="UUID") Vulnerable function

=4 |

Achieved Linux kernel stack coverage

S EXWRUSEIVE

Deterministic memaliy;

stack spraying Spl@yling
ol 161 [KBfstalels

Deterministic Stack Spraying: 39% of 2KB

Deterministc Stack Spraying o1

+ Exhaustive Memory Spraying: % of full stack

NDSS 2017

22

Real world case study: Linux Kernel
Privilege escalation CVE-2010-2963

* CVE-2010-2963: Uninitialized pointer used for write
* Found by Kees Cook

* Setup: get_video_tuner32 > Vuln: get_microcode32

* We automatically found 27 syscalls that can control the
uninitialized pointer

NDSS 2017

23

Efficient mitigation by zero-initialization

struct A *foo; struct A *foo;

foo->complete(); bar(foo);

Identify unsafe

LLVM IR pointer-type
HECS

NDSS 2017 24

Efficient mitigation by zero-initialization

struct A *foo = 0; struct A *foo = 0;

foo->complete(); bar(foo);

ldentify unsafe
LLVMIR pointer-type
fields

Zero-initialize all

— S ed IR
these fields ecur

NDSS 2017 25

Mitigation performance overhead

« Syscall performance overhead with LMBench
* Average: 1.95%

* User program performance overhead with SPEC
benchmarks

* Average: 0.47%

NDSS 2017

26

Conclusions

* Uninitialized stack variables can be reliably controlled
* Uninitialized use is a critical attack vector

« Memory-safety technigues should include uninitialized use
as a prevention target

NDSS 2017

27

