
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 1

An Evil Copy: How the
Loader Betrays You	

Xinyang Ge1,3, Mathias Payer2 and Trent Jaeger3	

Microsoft Research1	

Purdue University2	

Penn State University3	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Problem: A Motivating Example

2

//	main.c	
	
extern	const	int	foo;	
	
int	main()	
{	
				*(int	*)&foo	=	100;	
				return	0;	
}	
	

//	test.c	
	
const	int	foo	=	10;	
	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Problem: A Motivating Example

2

//	main.c	
	
extern	const	int	foo;	
	
int	main()	
{	
				*(int	*)&foo	=	100;	
				return	0;	
}	
	

//	test.c	
	
const	int	foo	=	10;	
	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Problem: A Motivating Example

•  1 Executable	
‣  cc	main.c	test.c	

	

•  1 Executable + 1 Library	
‣  cc	-fPIC	–shared	test.c	–o	libtest.so	

‣  cc	[–fPIE]	main.c	-L.	–ltest	

3

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Problem: A Motivating Example

•  1 Executable	
‣  cc	main.c	test.c	

	

•  1 Executable + 1 Library	
‣  cc	-fPIC	–shared	test.c	–o	libtest.so	

‣  cc	[-fPIE]	main.c	-L.	–ltest	

3

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Problem: A Motivating Example

•  1 Executable	
‣  cc	main.c	test.c	

	

•  1 Executable + 1 Library	
‣  cc	-fPIC	–shared	test.c	–o	libtest.so	

‣  cc	[-fPIE]	main.c	-L.	–ltest	

	

3

…Nothing happened?	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Problem: A Motivating Example

•  1 Executable	
‣  cc	main.c	test.c	

	

•  1 Executable + 1 Library	
‣  cc	-fPIC	–shared	test.c	–o	libtest.so	

‣  cc	[-fPIE]	main.c	-L.	–ltest	

•  1 Executable + 1 Library	
‣  cc	-fPIC	–shared	test.c	–o	libtest.so	

‣  cc	–fPIC	main.c	-L.	–ltest	
3

…Nothing happened?	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Problem: A Motivating Example

•  1 Executable	
‣  cc	main.c	test.c	

	

•  1 Executable + 1 Library	
‣  cc	-fPIC	–shared	test.c	–o	libtest.so	

‣  cc	[-fPIE]	main.c	-L.	–ltest	

•  1 Executable + 1 Library	
‣  cc	-fPIC	–shared	test.c	–o	libtest.so	

‣  cc	–fPIC	main.c	-L.	–ltest	
3

…Nothing happened?	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

What happened so far...

4

non-PIC executable	 PIC executable	

local “foo”	

foreign “foo”	 …Nothing happened?	

Obviously,	foo	is	not	in	
read-only	memory	in	the	
above	case,	but	WHY?	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Building Process

5

compiling	 linking	 loading	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Building Process

5

compiling	 linking	 loading	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

What does “extern” mean

6

//	main.c	
	
extern	const	int	foo;	
	
int	main()	
{	
				*(int	*)&foo	=	100;	
				return	0;	
}	
	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

What does “extern” mean

6

//	main.c	
	
extern	const	int	foo;	
	
int	main()	
{	
				*(int	*)&foo	=	100;	
				return	0;	
}	
	

foo is defined in a different file but
still in the same image	
(w/o -fPIC flag)	

foo is defined in a different file and
potentially in a different image
(w/ -fPIC flag)	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

What does “extern” mean

6

//	main.c	
	
extern	const	int	foo;	
	
int	main()	
{	
				*(int	*)&foo	=	100;	
				return	0;	
}	
	

foo is defined in a different file but
still in the same image	
(w/o -fPIC flag)	

foo is defined in a different file and
potentially in a different image
(w/ -fPIC flag)	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

foo is defined in the same image

7

//	main.o	–	assuming	same	image	
	
<main>:	
		push	%rbp	
		mov		%rsp,%rbp	
		mov		$0x64,offset_to_foo(%rip)	
		mov		$0x0,%rax	
		pop		%rbp	
		ret	
	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

foo is defined in the same image

7

//	main.o	–	assuming	same	image	
	
<main>:	
		push	%rbp	
		mov		%rsp,%rbp	
		mov		$0x64,offset_to_foo(%rip)	
		mov		$0x0,%rax	
		pop		%rbp	
		ret	
	

The compiler assumes
foo’s location can be
statically determined by
the linker, and emits a
single MOV instruction to
write to foo. 	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

foo is defined in the same image

7

//	main.o	–	assuming	same	image	
	
<main>:	
		push	%rbp	
		mov		%rsp,%rbp	
		mov		$0x64,offset_to_foo(%rip)	
		mov		$0x0,%rax	
		pop		%rbp	
		ret	
	

The compiler assumes
foo’s location can be
statically determined by
the linker, and emits a
single MOV instruction to
write to foo. 	

data	

GOT	

code	

foo	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

What does “extern” mean

8

//	main.c	
	
extern	const	int	foo;	
	
int	main()	
{	
				*(int	*)&foo	=	100;	
				return	0;	
}	
	

foo is defined in a different file but
still in the same image	
(w/o -fPIC flag)	

foo is defined in a different file and
potentially in a different image
(w/ -fPIC flag)	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

foo is defined in a different image

8

//	main.o	–	assuming	same	image	
	
<main>:	
		push	%rbp	
		mov		%rsp,%rbp	
		mov		offset_to_foo_got(%rip),%rax	
		mov		$0x64,(%rax)	
		mov		$0x0,%rax	
		pop		%rbp	
		ret	
	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

foo is defined in a different image

8

//	main.o	–	assuming	same	image	
	
<main>:	
		push	%rbp	
		mov		%rsp,%rbp	
		mov		offset_to_foo_got(%rip),%rax	
		mov		$0x64,(%rax)	
		mov		$0x0,%rax	
		pop		%rbp	
		ret	
	

The	compiler	assumes	
foo’s	loca;on	cannot	be	
sta;cally	determined	
and	emits	two	MOV	
instruc;ons:	one	to	
retrieve	foo’s	address	
from	its	GOT	slot,	and	
the	other	to	actually	
write	to	foo.	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

foo is defined in a different image

8

//	main.o	–	assuming	same	image	
	
<main>:	
		push	%rbp	
		mov		%rsp,%rbp	
		mov		offset_to_foo_got(%rip),%rax	
		mov		$0x64,(%rax)	
		mov		$0x0,%rax	
		pop		%rbp	
		ret	
	

The	compiler	assumes	
foo’s	loca;on	cannot	be	
sta;cally	determined	
and	emits	two	MOV	
instruc;ons:	one	to	
retrieve	foo’s	address	
from	its	GOT	slot,	and	
the	other	to	write	to	
foo.	

data	

GOT	

code	

foo’s address	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page 9

Without –fPIC flag, GCC and Clang
on Linux assumes foo is defined in
the same image.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Building Process

10

compiling	 linking	 loading	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

11

Hi, I am the linker. Oops, foo is
actually defined in a different
image. How can I resolve the
reference to foo?	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,offset_to_foo(%rip)	
		...	

executable	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

11

Let me allocate a local copy of
foo and have the dynamic
loader to relocate the original
variable to this new copy.	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,offset_to_foo(%rip)	
		...	

executable	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

11

Let me allocate a local copy of
foo and have the dynamic
loader to relocate the original
variable to this new copy.	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

foo = 0	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Building Process

12

compiling	 linking	 loading	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

13

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 0	

foo = 10	

address of foo	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

13

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 0	

foo = 10	

address of foo	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

13

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

13

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

13

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

Violation	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Security Concerns

•  Expose “read-only” data to memory corruption attacks	

‣  Making C++ vtables mutable can break existing defenses	

•  VTV, Interleaving, SafeDispatch	

‣  Making format string writable can enable printf-oriented
programming	

•  Printf-oriented programming requires mutable format string to
implement branching	

‣  File names	

‣  IP addresses	

‣  ...	

14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Security Concerns

•  Copy Relocation Violation does not directly lead to
exploitation	

•  Defenses depending on read-only data being
immutable can be bypassed	

‣  vtables	

‣  format strings	

‣  file names	

‣  IP addresses	

‣  ...	

14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Evaluations

•  Do Copy Relocation Violations commonly exist?	

‣  Analyze 54,045 packages in Ubuntu 16.04 LTS	

•  34,291 executables + 58,862 dynamic libraries	

•  Do Copy Relocation Violations weaken security
mitigations?	

‣  Evaluate a set of CFI defenses in face of copy relocation
violations	

•  Implications on other platforms?	

‣  Windows and macOS	

15

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Real-world Copy Relocation Violations

16

Copy	Reloca;on	Viola;ons	

vtables	 func.	ptrs.	
generic	ptrs.	 format	str	
file	names	 generic	strs	
others	

•  69,098 copy relocation
violations in 6,449 (out of
34,291) executables	

•  28,497 vtables copied to
writable memory in 4,291
executables	

•  Among the top 10 most
common copy relocation
violations, 8 of them are
vtables from libstdc++.so	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Security Evaluation

•  Developed a small C++ program that has an
intentional vtable corruption vulnerability	

•  Evaluate the program under 7 CFI defenses	

17

Defenses	 Check Func
Ptr	

Check VTable	 Bypassable	

VTrust	

VTV	

vfGuard	

Interleaving	

SafeDispatch	

SafeDispatch2	

RockJIT	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Other Platforms
•  Windows	
‣  MSVC requires explicit annotation to differentiate “intra-

module extern” from “inter-module extern”	

‣  The example program cannot be built on Windows	

•  macOS	
‣  The compiler conservatively assumes “extern” is from a

different image	

‣  The linker uses GOT to serve those references	

‣  Copy relocations do not exist on macOS	

18

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

macOS issue
•  macOS has its own issue that results in the same

consequence	

‣  macOS’s compiler allocates data that potentially
requires runtime patching in __DATA__.__const section	

‣  However, the loader does not reprotect it as read-only
after runtime patching	

‣  Read-only data (e.g., vtable) remains writable	

19

Systems and Internet Infrastructure Security Laboratory (SIIS) Page 20

Copy relocation violations seem
prevalent in current Linux systems.
Then, how can we get rid of them?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Mitigations

•  Eliminate copy relocations entirely	

‣  Recompile executable using -fPIC flag, -fPIE not enough	

‣  -fPIC flag forces the compiler to treat non-static global variables
as defined in a different image	

•  Respect the memory protection while performing copy
relocations	

‣  Determine the memory protection permission at link time	

‣  Allocate the variable copy from a section protected by RELRO	

‣  Both GNU Binutils and LLVM are adopting this approach	

21

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Mitigations

•  Eliminate copy relocations entirely	

‣  Recompile the executable using -fPIC flag	

‣  -fPIC flag forces the compiler to treat non-static global variables
as defined in a different module	

•  Respect the memory protection while performing copy
relocations	

‣  Determine the memory protection permission at link time	

‣  Allocate the variable copy from a section protected by RELRO	

‣  Both GNU Binutils and LLVM are adopting this approach	

22

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Conclusions

•  Identified a design flaw in the compiler toolchain on Linux	
‣  Copy relocation can strip the “const” attribute specified by the

programmer	

•  Proposed mitigations	

‣  Eliminate copy relocations entirely	

‣  Preserve the memory protection of the relocated variables	

•  Evaluated copy relocation violations in real world	

‣  Studied 54,045 packages in Ubuntu 16.04 LTS	

‣  Copy relocation violations occur commonly in many programs	

‣  Copy relocation violations can subvert existing defenses	

23

Systems and Internet Infrastructure Security Laboratory (SIIS) Page 24

Questions

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Variable Type Inference

•  Requirements	
‣  No source code	

‣  No debug information	

•  Heuristics	
‣  Pointers:	

•  Use relocation information to identify pointers in general	

•  Use pointer value to determine code pointer vs data pointer	

‣  Strings:	

•  All bytes are ASCII characters	

•  Use ‘/’ to determine file paths and ‘%’ to determine format strings	

45

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

46

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

What	if	the	library	accesses	foo?	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

47

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

What	if	the	library	accesses	foo?	

The dynamic loader patches foo’s
GOT entry in the library so that

it points to the new copy 	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

48

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

What	if	the	library	accesses	foo?	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

49

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

What	if	the	library	accesses	foo?	

Can	the	library	access	foo	without	
the	GOT	indirec<on?	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

50

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

What	if	the	library	accesses	foo?	

Can	the	library	access	foo	without	
the	GOT	indirec<on?	

Mostly	it	won’t	because,	by	
default,	libraries	treat	exported	
global	variables	as	“external”	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

51

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

What	if	the	library	accesses	foo?	

Can	the	library	access	foo	without	
the	GOT	indirec<on?	

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Copy Relocation

52

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

What	if	the	library	accesses	foo?	

Can	the	library	access	foo	without	
the	GOT	indirec<on?	

Violation	

