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Problem: A Motivating Example
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//	main.c	
	
extern	const	int	foo;	
	
int	main()	
{	
				*(int	*)&foo	=	100;	
				return	0;	
}	
	

//	test.c	
	
const	int	foo	=	10;	
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Problem: A Motivating Example

•  1 Executable	
‣  cc	main.c	test.c	

	

•  1 Executable + 1 Library	
‣  cc	-fPIC	–shared	test.c	–o	libtest.so	

‣  cc	[–fPIE]	main.c	-L.	–ltest	
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…Nothing happened?	
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What happened so far...
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non-PIC executable	 PIC executable	

local “foo”	

foreign “foo”	 …Nothing happened?	

Obviously,	foo	is	not	in	
read-only	memory	in	the	
above	case,	but	WHY?	
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Building Process
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compiling	 linking	 loading	
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What does “extern” mean
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//	main.c	
	
extern	const	int	foo;	
	
int	main()	
{	
				*(int	*)&foo	=	100;	
				return	0;	
}	
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//	main.c	
	
extern	const	int	foo;	
	
int	main()	
{	
				*(int	*)&foo	=	100;	
				return	0;	
}	
	

foo is defined in a different file but 
still in the same image	
(w/o -fPIC flag)	

foo is defined in a different file and 
potentially in a different image 
(w/ -fPIC flag)	
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foo is defined in the same image
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//	main.o	–	assuming	same	image	
	
<main>:	
		push	%rbp	
		mov		%rsp,%rbp	
		mov		$0x64,offset_to_foo(%rip)	
		mov		$0x0,%rax	
		pop		%rbp	
		ret	
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		mov		$0x64,offset_to_foo(%rip)	
		mov		$0x0,%rax	
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The compiler assumes 
foo’s location can be 
statically determined by 
the linker, and emits a 
single MOV instruction to 
write to foo. 	
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GOT	

code	

foo	
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foo is defined in a different image
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//	main.o	–	assuming	same	image	
	
<main>:	
		push	%rbp	
		mov		%rsp,%rbp	
		mov		offset_to_foo_got(%rip),%rax	
		mov		$0x64,(%rax)	
		mov		$0x0,%rax	
		pop		%rbp	
		ret	
	



Systems and Internet Infrastructure Security Laboratory (SIIS) Page

foo is defined in a different image
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//	main.o	–	assuming	same	image	
	
<main>:	
		push	%rbp	
		mov		%rsp,%rbp	
		mov		offset_to_foo_got(%rip),%rax	
		mov		$0x64,(%rax)	
		mov		$0x0,%rax	
		pop		%rbp	
		ret	
	

The	compiler	assumes	
foo’s	loca;on	cannot	be	
sta;cally	determined	
and	emits	two	MOV	
instruc;ons:	one	to	
retrieve	foo’s	address	
from	its	GOT	slot,	and	
the	other	to	actually	
write	to	foo.	
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foo is defined in a different image
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//	main.o	–	assuming	same	image	
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The	compiler	assumes	
foo’s	loca;on	cannot	be	
sta;cally	determined	
and	emits	two	MOV	
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retrieve	foo’s	address	
from	its	GOT	slot,	and	
the	other	to	write	to	
foo.	

data	

GOT	

code	

foo’s address	
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Without –fPIC flag, GCC and Clang 
on Linux assumes foo is defined in 
the same image.
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Building Process
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compiling	 linking	 loading	
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Copy Relocation
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Hi, I am the linker.  Oops, foo is 
actually defined in a different 
image.  How can I resolve the 
reference to foo?	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,offset_to_foo(%rip)	
		...	

executable	
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Copy Relocation
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Let me allocate a local copy of 
foo and have the dynamic 
loader to relocate the original 
variable to this new copy.	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,offset_to_foo(%rip)	
		...	

executable	
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Copy Relocation

11

Let me allocate a local copy of 
foo and have the dynamic 
loader to relocate the original 
variable to this new copy.	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

foo = 0	
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Building Process
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compiling	 linking	 loading	
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Copy Relocation

13

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 0	

foo = 10	

address of foo	
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Violation	
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Security Concerns

•  Expose “read-only” data to memory corruption attacks	

‣  Making C++ vtables mutable can break existing defenses	

•  VTV, Interleaving, SafeDispatch	

‣  Making format string writable can enable printf-oriented 
programming	

•  Printf-oriented programming requires mutable format string to 
implement branching	

‣  File names	

‣  IP addresses	

‣  ...	

14
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Security Concerns

•  Copy Relocation Violation does not directly lead to 
exploitation	

•  Defenses depending on read-only data being 
immutable can be bypassed	

‣  vtables	

‣  format strings	

‣  file names	

‣  IP addresses	

‣  ...	

14
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Evaluations

•  Do Copy Relocation Violations commonly exist?	

‣  Analyze 54,045 packages in Ubuntu 16.04 LTS	

•  34,291 executables + 58,862 dynamic libraries	

•  Do Copy Relocation Violations weaken security 
mitigations?	

‣  Evaluate a set of CFI defenses in face of copy relocation 
violations	

•  Implications on other platforms?	

‣  Windows and macOS	

15
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Real-world Copy Relocation Violations

16

Copy	Reloca;on	Viola;ons	

vtables	 func.	ptrs.	
generic	ptrs.	 format	str	
file	names	 generic	strs	
others	

•  69,098 copy relocation 
violations in 6,449 (out of 
34,291) executables	

•  28,497 vtables copied to 
writable memory in 4,291 
executables	

•  Among the top 10 most 
common copy relocation 
violations, 8 of them are 
vtables from libstdc++.so	
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Security Evaluation

•  Developed a small C++ program that has an 
intentional vtable corruption vulnerability	

•  Evaluate the program under 7 CFI defenses	

17

Defenses	 Check Func 
Ptr	

Check VTable	 Bypassable	

VTrust	

VTV	

vfGuard	

Interleaving	

SafeDispatch	

SafeDispatch2	

RockJIT	
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Other Platforms
•  Windows	
‣  MSVC requires explicit annotation to differentiate “intra-

module extern” from “inter-module extern”	

‣  The example program cannot be built on Windows	

•  macOS	
‣  The compiler conservatively assumes “extern” is from a 

different image	

‣  The linker uses GOT to serve those references	

‣  Copy relocations do not exist on macOS	

18
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macOS issue
•  macOS has its own issue that results in the same 

consequence	

‣  macOS’s compiler allocates data that potentially 
requires runtime patching in __DATA__.__const section	

‣  However, the loader does not reprotect it as read-only 
after runtime patching	

‣  Read-only data (e.g., vtable) remains writable	

19
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Copy relocation violations seem 
prevalent in current Linux systems.  
Then, how can we get rid of them?
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Mitigations

•  Eliminate copy relocations entirely	

‣  Recompile executable using -fPIC flag, -fPIE not enough	

‣  -fPIC flag forces the compiler to treat non-static global variables 
as defined in a different image	

•  Respect the memory protection while performing copy 
relocations	

‣  Determine the memory protection permission at link time	

‣  Allocate the variable copy from a section protected by RELRO	

‣  Both GNU Binutils and LLVM are adopting this approach	

21
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Conclusions

•  Identified a design flaw in the compiler toolchain on Linux	
‣  Copy relocation can strip the “const” attribute specified by the 

programmer	

•  Proposed mitigations	

‣  Eliminate copy relocations entirely	

‣  Preserve the memory protection of the relocated variables	

•  Evaluated copy relocation violations in real world	

‣  Studied 54,045 packages in Ubuntu 16.04 LTS	

‣  Copy relocation violations occur commonly in many programs	

‣  Copy relocation violations can subvert existing defenses	

23
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Questions
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Variable Type Inference

•  Requirements	
‣  No source code	

‣  No debug information	

•  Heuristics	
‣  Pointers:	

•  Use relocation information to identify pointers in general	

•  Use pointer value to determine code pointer vs data pointer	

‣  Strings:	

•  All bytes are ASCII characters	

•  Use ‘/’ to determine file paths and ‘%’ to determine format strings	

45
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Copy Relocation
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library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

What	if	the	library	accesses	foo?	
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Copy Relocation
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What	if	the	library	accesses	foo?	

The dynamic loader patches foo’s 
GOT entry in the library so that 

it points to the new copy  	
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Copy Relocation
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Copy Relocation
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GOT	

code	

<main>:	
		...	
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code	
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foo = 10	

address of foo	

What	if	the	library	accesses	foo?	

Can	the	library	access	foo	without	
the	GOT	indirec<on?	

Mostly	it	won’t	because,	by	
default,	libraries	treat	exported	
global	variables	as	“external”	
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Copy Relocation

52

library	

data	

GOT	

code	

<main>:	
		...	
		mov		$0x64,0x200970(%rip)	
		...	

executable	

data	

rodata	

code	

GOT	
foo = 10	

foo = 10	

address of foo	

What	if	the	library	accesses	foo?	

Can	the	library	access	foo	without	
the	GOT	indirec<on?	

Violation	


