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Abstract—We are witnessing a confluence between applied
cryptography and secure hardware systems in enabling secure
cloud computing. On one hand, work in applied cryptography
has enabled efficient, oblivious data-structures and memory prim-
itives. On the other, secure hardware and the emergence of Intel
SGX has enabled a low-overhead and mass market mechanism
for isolated execution. By themselves these technologies have
their disadvantages. Oblivious memory primitives carry high
performance overheads, especially when run non-interactively.
Intel SGX, while more efficient, suffers from numerous software-
based side-channel attacks, high context switching costs, and
bounded memory size.

In this work we build a new library of oblivious memory
primitives, which we call ZeroTrace. ZeroTrace is designed to
carefully combine state-of-the-art oblivious RAM techniques
and SGX, while mitigating individual disadvantages of these
technologies. To the best of our knowledge, ZeroTrace represents
the first oblivious memory primitives running on a real secure
hardware platform. ZeroTrace simultaneously enables a dramatic
speed-up over pure cryptography and protection from software-
based side-channel attacks. The core of our design is an efficient
and flexible block-level memory controller that provides oblivious
execution against any active software adversary, and across
asynchronous SGX enclave terminations. Performance-wise, the
memory controller can service requests for 4 B blocks in 1.2 ms
and 1 KB blocks in 3.4 ms (given a 10 GB dataset). On top of
our memory controller, we evaluate Set/Dictionary/List interfaces
which can all perform basic operations (e.g., get/put/insert).

I. INTRODUCTION

Cloud computing is a paradigm, ever growing in popularity,
that offers on-demand compute and storage resources for users.
Applications such as machine learning, AI, analytics, web, and
mobile services are now frequently hosted in public clouds.
Protecting users’ data in these environments is challenging due
to their underlying complexity and shared infrastructure model.
As a result, multiple attack vectors from infrastructure and
service providers, other users, and targeted adversaries remain
open.

Up until recently, secure cloud computing could only be
achieved through cryptography (e.g., fully homomorphic encryp-

tion – FHE [12]), or through course-grained hardware isolation
techniques (e.g., Intel TPM+TXT [18], [26], [14]). Both of the
above have severe performance and usability limitations. FHE,
for example, introduces many orders of magnitude overheads.
On the other hand, these techniques provide very strong security
guarantees (stronger than TPM+TXT) needed for applications
that operate over highly sensitive data (e.g., federal, military,
government data, etc.). They can be used to protect even
against malicious operating systems snooping on the data access-
pattern.

Recently, Intel released an instruction set extension called
Software Guard Extensions (SGX) which addresses the above
performance challenges [9], [27], [28]. In SGX, user-level
sensitive portions of ring-3 applications can be run in one or
more application containers called enclaves. While running,
SGX uses a set of hardware mechanisms to preserve the privacy
and integrity of enclave memory. However, using SGX to
achieve whole-program privacy against software adversaries
still faces multiple challenges. First, the user must map its
application to enclave(s) in a way that gives a favorable trade-
off in trusted computing base (TCB) size, performance and
code isolation. The default approach, natively supported by
Intel SGX, is to manually partition the application into trusted
and untrusted code [40], [59]. This is non-trivial and must be
done sparingly: code within enclaves is trusted and enclaves
have limited functionality (e.g., no support for IO/syscalls and a
bounded memory size). Alternatively, a number of works study
how to load unmodified applications into enclaves [2], [4], [17],
[46]. While more automated, these approaches induce a larger
TCB. Second, the user must carefully write enclave code to
avoid numerous software side-channels [6], [21], [35], [48],
[53]. Taken together, leveraging SGX to achieve small TCB
and side-channel free trusted execution environments remains
an open problem.

A. This Work

We address this challenge by designing and implementing
ZeroTrace – an oblivious library enabling applications to be
built out of fine-grained building-blocks at the application’s
data-structure interface boundary. Any operation on the data
stored by the library is protected using SGX enclaves and
remains secure against all software attacks, including all known
side-channels.

Partitioning applications at the oblivious data-structure
boundary hits a sweet spot for several reasons. First, the
data-structure interface is narrow, which makes it easier to
sanitize application to data-structure requests—improving intra-
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application security. Second, the data-structure interface is re-
usable across many applications. A service provider can pre-
package data-structure backends as pre-certified blocks with
a common interface, enabling application developers to build
complex applications from known-good pieces. Lastly, each
data-structure can seamlessly support multiple clients and can
be oblivious to where each client is physically running. For
the latter point, clients can attach to data-structure enclaves
remotely, providing performance improvements to related
systems (e.g., oblivious file servers; Section II-A2).

As part of this research, we implement and evaluate the
first oblivious memory controller running on a real secure
hardware platform. Our memory controller, which implements
an Oblivious RAM (ORAM) protocol [13], can be called as
a subroutine in a larger application and defends against any
active software adversary. A key insight that drives our design
is that with SGX, ORAM state (both untrusted storage and
trusted ORAM client logic) can safely live anywhere in the
system (e.g., cache, DRAM, disk, etc), even outside the SGX
enclave, despite the adversary running concurrent to the victim
and controlling the software stack. For data inside enclaves,
the SGX mechanism prevents direct inspection of data. Thus
security against software attacks reduces to accessing in-enclave
data in a data oblivious fashion [13], [29], [30], [32]. For data
living outside enclaves, enclave code can add a second layer
of protection (via encryption, integrity checks, etc) to securely
extend the ORAM algorithm working set as needed.

B. Contributions

This paper makes the following contributions:
1) We design and build an oblivious memory controller

from Intel SGX. To the best of our knowledge, the core memory
controller (the bulk of our system) is the first oblivious memory
controller implemented on a real secure hardware platform. We
provide two implementations, one using Path ORAM [43] and
one using Circuit ORAM [49] and compare both across multiple
backend memory organizations (DRAM and HDD). All designs
protect against an active software adversary and provide secure
fault-tolerance across asynchronous SGX enclave terminations
(a common challenge for SGX applications). These extensions
may be of independent interest.

2) We design and implement ZeroTrace, an application
library for serving data-structures obliviously in an SGX
environment. In this paper, ZeroTrace’s core primitive is the
above oblivious memory controller.

3) We evaluate system performance for ZeroTrace as a
stand alone oblivious memory controller and for plug-and-play
data structures on an SGX-enabled Dell Optiflex 7040. Our
system can make oblivious read and write calls to 1 KB memory
locations on a 10 GB dataset in 3.4 ms. In the plug-and-play
setting, ZeroTrace can make oblivious read and write calls at
8 B granularity on an 80 MB array in 1.2 ms.

Our design is open source and available at https://github.
com/ssasy/ZeroTrace.

C. Paper Organization

In Section II, we describe our usage and security models.
Section III gives a required background on Intel SGX and
ORAM. In section IV we give details on our architec-
ture; including the instantiation process, client and server

components, optimizations and security analysis. Section V
gives a scheme to achieve persistent integrity and fault
tolerance. Section VI describes our prototype implementation
and evaluation. Section VII gives related work, and finally
Section VIII concludes.

II. OUR MODEL

A. Usage Model

We consider a setting where a computationally weak client
wishes to outsource storage or computation to an untrusted
remote server that supports Intel’s Software Guard Extensions
(SGX). As secure hardware extensions such as SGX reach
the market, we anticipate this setting will become a common
way to implement many real world applications such as
image/movie/document storage and computation outsourcing.
The cloud can be any standard public cloud such as Amazon
AWS, Microsoft Azure or Google cloud, and the client can be
any mobile or local device.

As introduced in Section I, our proposal consists of stand-
alone enclaves that implement secure memory services. We
envision future applications being constructed from these (and
similar) plug-and-play services. We now describe this general
scenario in more detail. Afterwards, we show how a special
case of this scenario improves performance in a related branch
of research.

1) Plug-and-play memory protection for outsourced com-
putation: We envision an emerging scenario where client
applications (e.g., a database server), which run in an SGX
enclave(s), connect to other enclaves to implement secure
memory and data-structure services. In an example deployment,
calling a memory service enclave is hidden behind a function
call, which is dynamically linked (connected to another enclave
via a secure channel) at runtime. What “backend” memory
service our system supports can be changed depending on the
application’s needs. For example, our core memory controller
currently supports an ORAM backend. Without changing the
application-side interface, this backend can be transparently
changed to support a different ORAM, different security level
for memory protection (e.g., plain encryption) or different
security primitive entirely (e.g., a proof of retrievability [5]).
A similar argument goes for memory services exposing a data-
structure interface. For example, Wang et al. [50] proposed
a linked-list optimized for use as an iterator, while another
implementation can be optimized for insertion.

A reasonable question is: why break these services into
separate enclaves, as opposed to statically linking them into
the main application? Our design has several advantages. First,
breaking an application into modules eases verification. SGX
provides enclave memory isolation. Thus, verifying correct
operation reduces to sanitizing the module interface (a similar
philosophy is used by Google’s NaCl [56]). Data structures and
memory controllers naturally have narrow interfaces (compared
to more general interfaces, such as POSIX [40]), easing
this verification. Second, breaking applications into modules
eases patching. Upgraded memory services can be re-certified
and re-attached piecemeal, without requiring the vendor to
re-compile and the client to re-attest the entire application.
Third, inter-communication between enclaves gives flexibility
in deployment, as shown in the next paragraph.
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2) (Special case) Remote block data storage: Suppose a
client device wishes to store blocks of data (e.g., files) on the
remote server (e.g., Amazon S3). To achieve obliviousness,
the standard approach is for the client to use an Oblivious
RAM protocol where the client runs the ORAM controller
locally [41], [52]. The ORAM controller interacts over the
network with the server, which acts as a disk. While benefiting
from not trusting the server, these solutions immediately incur
an at-least logarithmic bandwidth blowup over the network
(e.g., WAN) due to the protocol between ORAM controller
and server. As a special case of the first setting (above), the
core memory controller can serve as the ORAM controller,
from the oblivious remote file server setting, now hosted on
the server side. As our architecture can protect side-channel
leakages introduced from the SGX architecture, the only
change to security is we now trust the SGX mechanism. The
advantage is bandwidth savings: this deployment improves
client communication over the network by over an order of
magnitude in typical parametrizations. Our scheme still incurs
logarithmic bandwidth blowup between the enclave code and
server disks, but this is dwarfed by the cost to send data over
the network.

B. Threat Model

In our setting, memory controller logic (e.g., the ORAM
controller) and higher-level interfaces are implemented in
software run on the server. The server hosts SGX and a
regular software stack outside of SGX. The client and SGX
mechanism are trusted; memory controller logic is assumed
to be implemented correctly. We do not trust any component
on the server beyond SGX (e.g., the software stack, disks,
the connection between client and server, other hardware
components besides the processor hosting SGX). Per the usual
SGX threat model, we assume the OS is compromised and
may run concurrently on the same hardware as the software
memory controller. By trusting the SGX mechanism, we trust
the processor manufacturer (e.g., Intel).

Security goals. Our highest supported level of security –
thus, our focus for much of the paper – is for the SGX enclave,
running the memory controller, to operate obliviously in the
presence of any active (malicious), software-based adversary.
In this case, the memory controller implements an ORAM
protocol. We default to this level of security because a known
limitation of SGX is its software-based side-channel leakages
(Section I), which are dealt with via data oblivious execution.
(Related work calls these digital side-channels [32].) Data
obliviousness means the adversary only learns the number of
requests made between client and memory controller; i.e., not
any information contained in those requests. We are interested
in preserving privacy and integrity of requests. The server may
deviate from the protocol, in an attempt to learn about the
client’s requests or to tamper with the result. Our system’s
threat surface is broken into several parts:

1) Security of memory: First, the memory accesses made
by the SGX enclave to any memory outside the enclave. These
are completely exposed to the server and must preserve privacy
and integrity of the underlying data. These accesses inherit the
security of the underlying memory protection (e.g., ORAM),
which we detail in Section III-C.

2) Security of enclave execution: Second, the SGX enclave’s
execution as it is orchestrating accesses to external memory. At
a high level, SGX only provides privacy/integrity guarantees
for enclave virtual memory. Running ORAM controller code in
an enclave does not, by itself, ensure obliviousness. External
server software (which shares the hardware with the enclave)
can still monitor any interactions the enclave makes with the
outside world (e.g., syscalls, etc.), how the enclave uses shared
processor resources such as cache [6], [35] and how/when the
enclave suffers page faults [53]. Our system has mechanisms to
preserve privacy and integrity despite the above vulnerabilities.
We formalize this security guarantee in Section III-A and map
SGX to these definitions in Section III-B.

3) Security across enclave termination: Third, recovery and
security given enclave termination. An important caveat of SGX
is that the OS can terminate enclave execution at any time.
This has been shown to create avenues for replay attacks [25],
and risks irreversible data-loss. We develop novel protocols in
Section V to make the ORAM+enclave system fault tolerant
and secure against arbitrary enclave terminations.

4) Security non-goals: We do not defend against hardware
attacks (e.g., power analysis [20] or EM emissions [36]),
compromised manufacturing (e.g., hardware trojans [54]) or
denial of service attacks.

III. PRELIMINARIES

A. Oblivious Enclave Execution

We now formalize oblivious execution for enclaves that
we set out to achieve in our system. We first give a general
definition for enclave-based trusted execution, that defines the
client API, security guarantees, and where privacy leakages can
occur. In the next section, we describe exactly what privacy
and integrity threats are present in Intel SGX in particular, and
the challenges in protecting them.

To help us formalize the definition, we define a pair of
algorithms Load and Execute, that are required by a client to
load a program into an enclave, and execute it with a given
input.

1) Load(P)→ (EP, φ): The load function takes a program
P, and produces an enclave EP, loaded with P along with a
proof φ, which the client can use to verify that the enclave did
load the program P.

2) Execute(EP, in)→ (out, ψ): The execute function, given
an enclave loaded with a program P, feeds the enclave with
an input in, to produce a tuple constituting of the output out,
and proof ψ which the client can use to verify that the output
out was produced by the enclave EP executing with input in.

Execution also produces trace(EP,in), which captures the
execution trace induced by running the enclave EP with the
input in which is visible to the server. This trace(EP,in) contains
all the powerful side channel artifacts that the adversarial server
can view, such as cache usage, etc. These are discussed in detail
in the case of Intel SGX in Section III-B5, below.

3) Security: When a program P is loaded in an enclave,
and a set of inputs −→y := (inM, ..., in1) are executed by
this enclave, it results in an adversarial view V(−→y ) :=
(trace(EP,inM), ..., trace(EP,in1)). We say that an enclave exe-
cution is oblivious, if given two sets of inputs −→y and −→z ,
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their adversarial views V(−→y ) and V(−→z ) are computationally
indistinguishable to anyone but the client.

B. Intel SGX

In this section we give a brief introduction to Intel Software
Guard Extensions (SGX) and highlight aspects relevant to
ZeroTrace. (See [1], [9] for more details on SGX.) Intel SGX is
a set of new x86 instructions that enable code isolation within
virtual containers called enclaves. In the SGX architecture,
developers are responsible for partitioning the application into
enclave code and untrusted code, and to define an appropriate
IO communication interface between them. In SGX, security
is bootstrapped from an underlying trusted processor, not trust
in a remote software stack. We now describe how Intel SGX
implements the Load(P) and Execute(EP, in) functions from
the previous section.

1) Load(P)→ (EP, φ): A client receives a proof φ that its
intended program P (and initial data) has been loaded into an
enclave via an attestation procedure. Code loaded into enclaves
is measured by SGX during initialization (using SHA-256)
and signed with respect to public parameters. The client can
verify the measurement/signature pair to attest that the intended
program was loaded via the Intel Attestation Service.

2) Execute(EP, in) → (out, ψ): SGX protects enclave
program execution by isolating enclave code and data in
Processor Reserved Memory (PRM), referred to as Enclave
Page Cache (EPC), which is a subset of DRAM that gets set
aside securely at boot time. Cache lines read into the processor
cache from the EPC are isolated from non-enclave read/writes
via hardware paging mechanisms, and encrypted/integrity
checked at the processor boundary. Cryptographic keys for
these operations are owned by the trusted processor. Thus, data
in the EPC is protected (privacy and integrity-wise) against
certain physical attacks (e.g., bus snooping), the operating
system (direct inspection of pages, DMA), and the hypervisor.

3) Paging: In Intel SGX, the EPC has limited capacity. To
support applications with large working sets, the OS performs
paging to move pages in and out of the EPC on demand.
Hardware mechanisms in SGX ensure that all pages swapped
in/out of the EPC are integrity checked and encrypted before
being handed to the OS. Thus, the OS learns only that a page
with a public address needed to be swapped, not the data in
the page. Special pages controlled by SGX (called VA pages)
implement an integrity tree over swapped pages. In the event the
system is shutdown, the VA pages and (consequently) enclave
data pages are lost.

4) Enclave IO: It is the developer’s responsibility to
partition applications into trusted and untrusted parts and to
define a communication interface between them. The literature
has made several proposals for a standard interface, e.g., a
POSIX interface [40].

5) Security Challenges in Intel SGX: We now detail aspects
of Intel SGX that present security challenges and motivate the
design of ZeroTrace.

a) Software side channels: Although SGX prevents an
adversary from directly inspecting/tampering with the contents
of the EPC, it does not protect against multiple software-based
side channels. In particular, SGX enclaves share hardware

resources with untrusted applications and delegate EPC paging
to the OS. Correspondingly, the literature has demonstrated
attacks that extract sensitive data through hardware resource
pressure (e.g., cache [6], [35], [48] and branch predictor [21])
and the application’s page-level access pattern [7], [53].

b) EPC scope: Since the integrity verification tree for
EPC pages is located in the EPC itself (in VA pages), SGX does
not support integrity (with freshness) guarantees in the event
of a system shutdown [25]. More generally, SGX provides no
privacy/integrity guarantees for any memory beyond the EPC
(e.g., non-volatile disk). Ensuring persistent integrity for data
and privacy/integrity for non-volatile data is delegated to the
user/application level.

c) No direct IO/syscalls: Code executing within an
enclave operates in ring-3 user space and is not allowed to
perform direct IO (e.g., disk, network) and system calls. If an
enclave has to make use of either, then it must delegate it to
untrusted code running outside of the enclave.

6) Additional Challenges In Enclave Design: We now
summarize additional properties of Intel SGX (1.0) that
make designing prevention methods against the above issues
challenging.

a) EPC limit: Currently, the size of EPC is physically
upper bounded by 128 MB by the processor. Around 30 MB
of EPC is used for bookkeeping, leaving around 95 MB of
usable memory. As mentioned above, EPC paging alleviates
this problem but reveals page-level access patterns. However
EPC paging is expensive and can cost between 3x and 1000x
depending on the underlying page access pattern (Figure 3
in [2]).

b) Context switching: At any time, the OS controls
when enclave code starts and stops running. Each switch incurs
a large performance overhead – the processor must save the
state needed to resume execution and clear registers to prevent
information leakages. Further, it is difficult to achieve persistent
system integrity if the enclave can be terminated/swapped at
any point in its execution.

C. ORAM

We now describe the popular definition for ORAM from the
literature [42], [43]. Afterwards, we provide additional details
for the Path ORAM [43] and Circuit ORAM [49] schemes,
used in this paper.

An ORAM scheme can be used to store and retrieve
blocks of memory on a remove server, such that the server
learns nothing about the data access patterns. Informally, no
information should be leaked about: (a) the data being accessed,
(b) whether the same/different data is being accessed relative
to a prior access (linkability), (c) whether the access is a read
or write.

1) Correctness: The ORAM construction is correct if it
returns, on input −→y , data that is consistent with −→y with
probability ≥ 1 - negl(|−→y |), i.e. the ORAM may fail with
probability negl(|−→y |).

2) Security: Let

−→y := ((opM, aM, dataM), ..., (op1, a1, data1))
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denote a data request sequence of length M where each opi
denotes a read(ai) or a write(ai) operation. Specifically, ai
denotes the identifier of the block being read or written, and
datai represents the data being written. In this notation, index
1 corresponds to the most recent load/store and index M
corresponds to the oldest load/store operation. Let ORAM(−→y )
denote the (possibly randomized) sequence of accesses to the
remote storage given the sequence of data requests −→y . An
ORAM construction is said to be secure if for any two data
request sequences −→y and −→z of the same length, their access
patterns ORAM(−→y ) and ORAM(−→z ) are computationally
indistinguishable to anyone but the client.

D. Path ORAM

We now give a summary of Path ORAM [43], one of
the ORAMs used in our implementation. Which ORAM is
used isn’t fundamental, and this can be switched behind the
memory controller interface. That said, ORAM bandwidth to
untrusted storage and ORAM controller trusted ‘client’ storage
are inversely proportional [42], [43], [49]. Further, the SGX
and oblivious settings decrease performance when using larger
controller storage (due to EPC evictions [25] and the cost
of running oblivious programs; see Section VI). Path ORAM
provides a middle ground here: better bandwidth/larger storage
than Circuit ORAM [49]; worse bandwidth/smaller storage than
SSS ORAM [42].

1) Server Storage: Path ORAM stores N data blocks, where
B is the block size in bits, and treats untrusted storage as a
binary tree of height L (with 2L leaves). Each node in the tree
is a bucket that contains ≤ Z blocks. In the case of a bucket
having < Z blocks, remaining slots are padded with dummy
blocks.

2) Controller Storage: The Path ORAM controller storage
consists of a stash and a position map. The stash is a set
of blocks that Path ORAM can hold onto at any given time
(see below). To keep the stash small (negligible probability
of overflow), experiments show Z ≥ 4 is required for the
stash size to be bound to ω(logN) [43]. The position map is a
dictionary that maps each block in Path ORAM to a leaf in the
server’s binary tree. Thus, the position map size is O(LN) bits.

3) Operation: As stated above, each block in Path ORAM
is mapped to a leaf bucket in the server’s binary tree via the
position map. For a block a mapped to leaf l, Path ORAM
guarantees that block a is currently stored in (i) some bucket
on the path from the tree’s root to leaf l, or (ii) the stash. Then,
to perform a read/write request to block a (mapped to leaf l),
we perform the following steps: First, read the leaf label l for
the block a from the position map. Re-assign this block to
a freshly sampled leaf label l′, chosen uniformly at random.
Second, fetch the entire path from the root to leaf bucket in
server storage. Third, retrieve the block from the combination
of the fetched path and the local stash. Fourth, write back the
path to the server storage. In this step the client must push
blocks in the stash as far down the path as possible, while
keeping with the main invariant. This strategy minimizes the
number of blocks in the stash after each access and is needed
to achieve a small (logarithmic) stash size.

4) Security intuition: The adversary’s view during each
access is limited to the path read/written (summarized by the

leaf in the position map) during each access. This leaf is re-
assigned to a uniform random new leaf on each access to
the block of interest. Thus, the adversary sees a sequence of
uniform random-sampled leaves that are independent of the
actual access pattern.

5) Extension: Recursion. The Path ORAM position map
is O(N) bits, which is too large to fit in trusted storage
for large N . To reduce the client side storage to O(1), Path
ORAM can borrow the standard recursion trick from the ORAM
constructions of Stefenov et al. [42] and Shi et al. [37]. In short,
the idea is to store the position map itself as a smaller ORAM
on the server side and then recurse. Each smaller “position
map” ORAM must be accessed in turn, to retrieve the leaf
label for the original ORAM.

6) Extension: Integrity. Path ORAM assumes a passive
adversary by default. To provide an integrity guarantee with
freshness, one can construct a Merkle tree mirrored [43] onto
the Path ORAM tree, which adds a constant factor to the
bandwidth cost. We remark that when ORAM recursion is
used, an integrity mechanism is also required to guarantee
ORAM privacy [34].

Both integrity verification and ORAM recursion will be
needed in our final design to achieve a performant system
against active attacks.

E. Circuit ORAM

We now briefly highlight the differences between Circuit
ORAM [49] and Path ORAM. In the interest of space, we
describe our work using Path ORAM as the memory controller
since it is the conceptually simpler ORAM. Circuit ORAM was
designed with the intent of having smaller ‘circuit complexity’1

while managing ORAM controller storage, which also improves
efficiency when running ORAMs in a data oblivious manner.
Both of these construction operate identically up to the fetch
path step. The difference lies in their eviction strategy.

Circuit ORAM uses two additional eviction paths unlike
Path ORAM which evicts blocks from the local stash onto the
fetched path itself. The strategy is to perform eviction on a path
in a single pass over (the stash and) the path, by picking up
blocks that can be pushed deeper down the path and dropping
it into vacant/dummy slots that are deeper in the path. This
however requires some amount of “foresight” for which blocks
can potentially move to a deeper location in the path and if
there are vacant slots that could accommodate them. To achieve
this foresight, Circuit ORAM makes two meta data scans over
each eviction path, to construct helper arrays that assist in
performing eviction in a single (stash +) path scan.

There are two (performance-related) differences between
Path ORAM and Circuit ORAM in the context of ZeroTrace:

• Circuit ORAM introduces ∼ 50% more I/O bandwidth
than Path ORAM. In particular, Circuit ORAM has to
fetch and evict two additional paths per access but can
operate with Z = 2.

• The ‘stash’ required by Circuit ORAM is much smaller
than that of Path ORAM (O(1) as opposed to ω(logN)

1In the interest of optimizing ORAMs for use in the multi-party computation
(MPC) context

5



Memory (Cache & DRAM) Disk, 
Network, 

etc

Server Stack
(OS, drivers, etc)

Fetch/Store 
Path

SGX PRM

Stash

Position Map

Page cache

Client

ORAM Controller 
Enclave CodeSecure 

channel
ORAM Controller

Secure Channel 
Interface

ORAM 
Tree

ORAM 
Tree

Software

Fig. 1: System components on the server. Trusted components
(software and regions of memory) are shaded. Depending on the
setting, the client may be connecting from a remote device (not
on the server) or from another enclave on the same machine.

blocks). This means data oblivious execution under
Circuit ORAM is more efficient than with Path ORAM,
as we will see in the next section.

IV. ZeroTrace MEMORY CONTROLLER

We now describe how the core memory controller is
implemented on the server. We focus on supporting our
strongest level of security: obliviousness against an active
adversary (Section II-B). The entire system is shown in Fig. 1.
The design’s main component is a secure Intel SGX enclave
which we henceforth call the ORAM Controller Enclave. This
ORAM Controller Enclave acts as the intermediary between
client and the server. The client and controller enclave engage in
logical data block requests and responses. Behind the scenes, the
ORAM Controller Enclave interacts with the server to handle
the backend storage for each of these requests. As mentioned
in Section III-C, we will explain the controller assuming a Path
ORAM backend for exposition.

A. Design Summary

1) Security challenges and solutions: Since ZeroTrace’s
ORAM controller runs inside an enclave, and is therefore vul-
nerable to software-level side channel attacks (Section III-B5),
we will design the ORAM controller to run as an oblivious
program. (A similar approach is used to guard against software
side channels by Olga et al.[30] and Rane et al.[32].) For
instance, if the ORAM controller were to access an index in
the position map directly, it would fetch a processor cache line
whose address depended on the program access pattern. To
prevent revealing this address, our oblivious program scans
through the position map and uses oblivious select operations
to extract the index as it is streamed through.

A second security challenge is how to map the controller
logic itself to SGX enclaves. In a naive design, the entire ORAM
controller and memory can be stored in the EPC. The enclave
makes accesses to its own virtual address space to perform
ORAM accesses and run controller logic, and the OS uses

EPC paging as needed. This design seems reasonable because
it re-uses existing integrity/privacy mechanisms for protecting
the EPC. Unfortunately, it makes supporting persistent storage
difficult because the EPC is volatile (Section III-B), incurs large
EPC paging overheads (Section III-B6) and bloats the TCB (the
entire controller runs in the enclave). To address this challenge,
we make an observation that once Path ORAM (and other tree-
based ORAMs [33], [37], [49]) reveals the leaf it is accessing,
the actual fetch logic can performed by an untrusted party.
Correspondingly, we split the ORAM controller into trusted
(runs inside enclave) and untrusted (runs in Ring-3 outside of
enclave) parts, which communicate between each other at the
path fetch/store boundary. This approach has unexpected TCB
benefits: we propose optimizations in Section IV-E which bloat
the path fetch/store code. By delegating these parts to untrusted
code, they can be implemented with no change to the TCB.

2) Performance challenges and solutions: Running an
oblivious ORAM controller inside of SGX efficiently requires
a careful partitioning of the work/data-structures between the
enclave (which controls the EPC pages ∼ 95 MB), untrusted
in-memory code (which has access to DRAM ∼ 64 GB)
and untrusted code managing disk. For instance, the cost to
access ORAM data structures obliviously increases as their
size increases. Further, as mentioned above, when the enclave
memory footprint exceeds the EPC page limit, software paging
introduces an additional overhead between 3× and 1000× –
depending on the access pattern [2]. To improve performance,
we will carefully set parameters to match the hardware and use
techniques such as ORAM recursion to further reduce client
storage.

Additionally, the ORAM storage itself should be split
between DRAM and disk to maximize performance. For
instance, we design the protocol to keep the top-portion of the
ORAM tree in non-EPC DRAM when possible. In some cases,
disk accesses can be avoided entirely. When the ORAM spills
to disk, we layout the ORAM tree in disk to take advantage
of parallel networks of disks (e.g., RAID0).

B. Client Interface

The ORAM Controller Enclave exposes two API calls
to the user, namely read(addr) and write(addr, data). Under
the hood, both the API functions perform an ORAM access
(Section III-D).

C. Server Processes

The server acts as an intermediary between the trusted
enclave and the data (either memory or disk). It performs the
following two functions on behalf of the trusted enclave (e.g.,
in a Ring-3 application that runs alongside the enclave):

• FetchPath(leaf): Given a leaf label, the server transfers
all the buckets on that path in the tree to the enclave.

• StorePath(tpath, leaf): Given a tpath, the server over-
writes that existing path to the addresses deduced from
the leaf label, leaf.

1) Passing data in/out of enclave: The standard mechanism
of data passing between enclave and untrusted application is
through a sequence of input/output routines defined for that
specific enclave. The Intel SGX SDK comes with the Intel
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Edger8r tool that generates edge routines as a part of enclave
build process. Edger8r produces a pair of edge routines for
each function that crosses the enclave boundary, one routine
sits in the untrusted domain, and the other within the trusted
enclave domain. Data is transferred across these boundaries by
physically copying it across each routine, while checking that
the original address range does not cross the enclave boundary.

2) TCB implications: Fetch/Store path are traditionally the
performance bottleneck in ORAM design. Given the above
interface, these functions make no assumptions on the untrusted
storage or how the server manages it to support ORAM. Thus,
the server is free to perform performance optimizations on
Fetch/Store path (e.g., split the ORAM between fast DRAM
and slow disk, parallelize accesses to disk; see Section IV-E).
Since Fetch/Store path are not in the TCB, these optimizations
do not effect security.

D. Memory Controller Enclave Program

In this section we outline the core memory controller’s
enclave program which we refer to from now on as P.

1) Initialization: For initialization, the server performs
the function Load(P) → (EP, φ), where P is the ZeroTrace
Controller Enclave. The client can then verify the proof φ
produced by this function to ensure that ZeroTrace has been
honestly initialized by the server. We note that the proof also
embeds within it a public key Ke from an asymmetric key
pair (Ke,Kd) sampled within the enclave. The client encrypts
a secret key K under this public key Ke for the enclave. The
user and enclave henceforth communicate using this K for an
authenticated encrypted channel.

2) Building Block: Oblivious Functions. To remain data
oblivious, we built the ORAM controller out of a library of
assembly-level functions that perform oblivious comparisons,
arithmetic and other basic functions. The only code executed in
the enclave is specified precisely by the assembly instructions
in our library (all compiler optimizations on our library are
disabled).

Our library is composed of several assembly level instruc-
tions, most notably the CMOV x86 instruction [30], [32].
CMOV is a conditional move instruction that takes a source and
destination register as input and moves the source to destination
if a condition (calculated via the CMP instruction) is true.
CMOV has several variants that can be used in conjunction
with different comparison operators, we specifically use the
CMOVZ instruction for equality comparisons. The decision
to use CMOV was not fundamental: we could have also used
bitwise instructions (e.g., AND, OR) to implement multiplexers
in software to achieve the obliviousness guarantee.

CMOV safely implements oblivious stores because it does
the same work regardless of the input. Regardless of the input,
all operands involved are brought into registers inside the
processor, the conditional move is performed on those registers,
and the result is written back.

Throughout the rest of the section, we will describe the
ORAM controller operations in terms of a wrapper function
around cmov called oupdate, which has the following signature:

oupdate<srcT, dstT>(bool cond, srcT src,

dstT dst, sizeT sz)

oupdate uses CMOV to obliviously and conditionally copy
sz bytes from src to dst, depending on the value of a bit
cond which is calculated outside the function. src and dst
can refer to either registers or memory locations based on the
types srcT and dstT. We use template parameters srcT and
dstT to simplify the writing, but note that CMOV does not
support setting dst to a memory location by default. Additional
instructions (not shown) are needed to move the result of a
register dst CMOV to memory.

3) System Calls: Our enclave logic does not make any
syscalls. All enclave memory is statically allocated in the
EPC based on initialization parameters. Server processes
(e.g., Fetch/Store path) may perform arbitrary syscalls without
impacting the TCB.

4) Building Block: Encryption & Cryptographic Hashing.
Our implementation relies on encryption and integrity checking
via cryptographic hashing in several places. First, when the
client sends an ORAM request to the ORAM Controller
Enclave, that request must be decrypted and integrity checked
(if integrity checking is enabled). Second, during each ORAM
access, the path returned and re-generated by Fetch/Store Path
(Section IV-C) need to be decrypted/re-encrypted and integrity
verified. These routines must also be oblivious. For encryption,
we use the Intel instruction set extensions AES-NI, which
were designed by Intel to be side channel resistant (i.e., the
AES SBOX is built directly into hardware). Unless otherwise
stated, all encryption is AES-CTR mode; which can easily
be achieved by wrapping AES-NI instructions in oblivious
instructions which manage the counter. For hashing we use
SHA-256, which is available through the Intel tcrypto library.

To avoid confusion: SGX has separate encryption/hashing
mechanisms to ensure privacy/integrity of pages evicted from
the EPC [9]. Since our design accesses ORAM through a
Fetch/Store Path interface, we cannot use these SGX built-in
mechanisms for ORAM privacy/integrity.

5) ORAM Controller: The ORAM Controller handles client
queries of the form (op, id, data∗), where op is the mode of
operation, i.e. read or write, id corresponds to an identifier of
the data element and data∗ is a dummy block in case of read
and the actual data contents to be written in case it is a write
operation. These queries are encrypted under K, the secret key
established in the Initialization (Section IV-D1) phase. The
incoming client queries are first decrypted within the enclave
program. From this point, the ORAM controller enclave runs
the ORAM protocol. Given that the adversary may monitor
any pressure the enclave places on shared hardware resources,
the entire ORAM protocol is re-written in an oblivious form.
The Raccoon system performed a similar exercise to convert
ORAM to oblivious form, in a different setting [32].

Path ORAM can be broken into two main data-structures
(position map and stash) and three main parts. We now explain
how these parts are made oblivious.

a) Oblivious Leaf-label Retrieval: When the enclave
receives an access request (op, id, data∗), it must read and
update a location in the position map (Section III-D) using
oupdate calls, as shown in the following pseudocode:
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newleaf = random(N)
for i in range(0, N):

cond = (i == id)
oupdate(cond, pos_map[i], leaf, size)
oupdate(cond, newleaf, pos_map[i], size)

We note that P samples a new leaf label through a call to AES-
CTR with a fresh counter. Due to a requirement in Section V,
where execution must be deterministic, we will assume leaf
generation is seeded by the client when the ORAM is initialized
(and not by a TRNG such as Intel’s RDRAND instruction). The
entire position map must be scanned to achieve obliviousness,
as will be the case for the other parts of the algorithm, regardless
of when cond is true. At the end of this step, the enclave has
read the leaf label, leaf, for this access.

b) Oblivious Block Retrieval: P must now fetch the path
for leaf (Section III-D) using a Fetch Path call (Section IV-C).
When the server returns the path, now loaded into enclave
memory, P does the following:

path = FetchPath(leaf)
for p in path:

for s in stash:
cond = (p != Dummy) && (s != occupied)
oupdate(cond, s, p, BlockSize)

result = new Block
for s in stash:

cond = (s.id == id)
oupdate(cond, s, result, BlockSize)

The output of this step is result, which is encrypted and
returned to the client application.

In the above steps, iterating over the stash must take a data-
independent amount of time. First, regardless of when oupdate
succeeds in moving a block, the inner loop runs to completion.
When the update succeeds, a bit is obliviously set to prevent the
CMOV from succeeding again (to avoid duplicates). Second,
the stash size (the inner loop bound) must be data-independent.
This will not be the case with Path ORAM: the stash occupancy
depends on the access pattern [43]. To cope, we use a stash
with a static size at all times, and process empty slots in the
same way as full slots. Prior work [24], [43] showed that a
stash size of 89 to 147 is sufficient to achieve failure probability
of 2−λ with the security parameter values from λ = 80 to λ =
128. In our implementation, we use a static stash size of 90. 2

c) Oblivious Path Rebuilding: Finally, P must rebuild
and write back the path for leaf (Section III-D) using
internal logic and a Store Path call (Section IV-C).
P rebuilds this path by making a pass over the
stash for each bucket in the path as shown here:
for bu in new_path:

for b in bu:
for s in stash:

cond = FitInPath(s.id,leaf)
oupdate(cond, b, s, BlockSize)

StorePath(leaf,new_path)

2For our Circuit ORAM variant we use a fixed stash size of 10 which is
known to be sufficient from [49] .

For each bucket location bu on path to leaf in reverse
order (i.e. from leaf to root), iterates over the block locations
b (in the available Z locations) and perform oupdate calls
to obliviously move compatible blocks from the stash to that
bucket (using an oblivious subroutine called FitInPath).
This greedy approach of filling buckets in a bottom to top
fashion is equivalent to the eviction routine in Section III-D.
At the end, P then calls Store Path on the rebuilt path, causing
the server to overwrite the existing path in server storage.

d) Encryption and Integrity: As data is processed in the
block retrieval and path re-building steps, it is decrypted/re-
encrypted using the primitives in Section IV-D4. At the
same time, an oblivious implementation of the Merkle tree
(Section III-C) checks and re-build are performed to verify
integrity with freshness.

E. Optimizing Fetch/Store Path

We now discuss several performance optimiza-
tions/extensions for the Fetch/Store Path subroutines, to
take advantage of the server’s storage hierarchy (which consists
of DRAM and disk). Since these operations run in untrusted
code, they do not impact the TCB.

1) Scaling bandwidth with multiple disks: Ideally, if the
server supports multiple disks which can be accessed in parallel
(e.g., in a RAID0), the time it takes to perform Fetch/Store Path
calls should drop proportionally. We now present a scheme
to perfectly load-balance a Tree ORAM in a RAID0-like
configuration.

RAID0 combines W disks (e.g., SSDs, HDDs, etc) into
a larger logical disk. A RAID0 ‘logical disk’ is accessed at
stripe granularity (S bytes). S is configurable and S = 4 KB is
reasonable. When disk stripe address i is accessed, the request
is sent to disk i%W under the hood.

The problem with RAID0 (and similar organizations)
combined with Tree ORAM is that when the tree is laid out
flat in memory, the buckets touched on a random path will
not hit each of the W disks the same number of times (if
S ∗W > B ∗Z for ORAM parameters B and Z). In that case,
potential disk parallelism is lost. We desire a block address
mapping from (ORAM tree address, at stripe granularity) to
(RAID0 stripe address) that equalizes the number of accesses
to each of the W disks, while ensuring that each disk stores
an equal (ORAM tree size) / W Byte share. Call this mapping
Map(tree addr) → RAID addr, which may be implemented
as a pre-disk lookup table in untrusted Fetch/Store Path code.

We now describe how to implement Map. First, define
a new parameter subtree height H . A subtree is a bucket j,
and all of the descendant buckets of j in the tree, that are
< H levels from bucket j. For ORAM tree height L, choose
H < L (ideally, H divides L). Break the ORAM tree into
disjoint subtrees. Second, consider the list of all the subtrees
ALoST. We will map each stripe-sized data chunk in each
subtree to a disk in the RAID0. The notation Disk[k] +=
[stripeA, stripeB] means we use an indirection table
to map stripeA and stripeB to disk k. We generate Disk
as:

//s_index is subtree_index
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for s_index in length(ALoST):
// levels run from 0...H-1
for level in subtree:

// break data in subtree level
// into stripe-sized chunks
stripes = ALoST[s_index][level]
Disk[(s_index + level) % W] += stripes

When W = H , mapping each subtree level to a single disk
means any path in the ORAM tree will access each disk
O(L/H) times. Changing the subtree level → disk map in a
round-robin fashion via subtree_index ensures that each
disk will hold the same number of stripes, counting all the
subtrees. Finally, from Disk, it is trivial to derive Map.

2) Caching the ORAM tree: A popular Tree ORAM
optimization is to cache the top portion of the ORAM tree in a
fast memory [24], [33]. This works because each access goes
from root to leaf: caching the top l′ levels is guaranteed to
improve access time for those top l′ levels. Because the shape
is a tree, the top levels occupy relatively small storage (e.g.,
caching the top half requires O(

√
N) blocks of storage).

This optimization is very effective in our system because
the server (who controls Fetch/Store Path) can use any spare
DRAM to store the top portion of the tree, as seen later in Fig
4 and Table 7. In this case, Fetch/Store Path allocate regular
process memory to store the top portion, and explicitly store
the lower portion behind disk IO calls.

F. Security Analysis

We now give a security analysis for the core memory
controller running ORAM. Since we support ORAM, we wish
to show the following theorem:

Theorem 4.1: Assuming the security of the Path ORAM
protocol, and the isolated execution and attestation properties
of Intel SGX, the core memory controller is secure according
to the security definition in Section III-A.

In this section, we’ll prove the above theorem informally, by
tracing the execution of a query in ZeroTrace, step by step as
shown in Figure 2.

Claim 4.1.1: Initialization is secure.

For initialization, the enclave first samples a public key
pair, then includes this public key in the clear with the enclave
measurement, in the attestation (Section III-B) that it produces.
No malicious adversary can tamper with this step, as it would
have to produce a signature that is verifiable by the Intel
Attestation Service.

Claim 4.1.2: Decrypting and encrypting requests leak no
information.

We use AES-NI, the side-channel resilient hardware instruction
by Intel for performing encryption and decryption.

Claim 4.1.3: Oblivious Leaf-Label Retrieval leaks no in-
formation.

Retrieving a leaf label from the EPC-based position map
performs a data-independent traversal of the entire position
map via oupdate (Section IV-D2) operations. oupdate performs

Fig. 2: Execution of an access request

work independent of its arguments within the register space of
the processor chip, which is hidden from adversarial view. Thus,
the adversary learns no information from observing leaf-label
retrieval.

Claim 4.1.4: FetchPath leaks no information.

FetchPath retrieves the path to a given leaf label. The
randomness of this reduces to the security of the underlying
Path ORAM protocol (Section III-D4).

Claim 4.1.5: Verifying fetched path leaks no information.

To verify the integrity of a fetched path, the enclave re-
computes the Merkle root using SHA-256 over the path it
fetched and subling hashes [43]. We note that our current
implementation uses SHA-256 from the Intel tcrypto library,
which is not innately side-channel resistant. Despite this, our
scheme still achieves side-channel resistance because all SHA-
256 operations are over encrypted buckets. The same argument
applies when rebuilding the path on the way out to storage.

Claim 4.1.6: Oblivious Block Retrieval leaks no informa-
tion.

Once FetchPath completes, the only code that processes the
path is the decryption logic plus the oblivious subroutine given
in Section IV-D5. This loads the real blocks from the path into
the stash and return the requested block to the user, Since the
length of path and stash are data-independent, obliviousness
reduces to the security of oupdate (see Claim 4.1.3).

Claim 4.1.7: Oblivious Rebuild leaks no information.
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Same argument as Claim 4.1.6, since new_path, bu and
stash have data independent size.

Claim 4.1.8: StorePath leaks no information.

StorePath returns the new path to a leaf label that was
fetched by an ORAM controller enclave. From the adversary’s
perspective, the stored path itself is an encrypted payload of a
known size, independent of underlying data.

V. PERSISTENT INTEGRITY

An important attribute in storage systems is to be persistent
and recoverable across protocol disruptions. This is particularly
important for ORAM, and similar memory controller backends,
where corrupting any state (in the ORAM Controller Enclave
itself or in the ORAM trees) can lead to partial or complete
loss of data. SGX exacerbates this issue, as enclave state is
wiped on disruptions such as reboots and power failures.

We now discuss an extension to ZeroTrace that allows
untrusted storage and the ORAM Controller Enclave to recover
from data corruptions and achieve persistent integrity. First,
we state a sufficient condition to achieve fault tolerance. We
model an enclave program as a function P which performs
St+1 ← P(It, St), where It is the t-th request made by the
client and St is the enclave state after requests 0, . . . , t− 1 are
made. When we say enclave protocol, we refer to the multi-
interactive protocol between the client and P from system
initialization onwards (i.e., all of Section IV).

Definition 5.1 (Fault tolerance): Suppose an enclave proto-
col has completed t′ requests. If the enclave protocol is designed
such that the server can efficiently re-compute St+1 ← P(It, St)
for any t < t′, then the enclave protocol is fault tolerant.

This provides fault tolerance as follows: if the current state St′
is corrupted, St′ can be iteratively re-constructed by replaying
past (not corrupted) states and inputs to P. We remark that the
above definition is similar to RDD fault tolerance in Apache
Spark [57], [59]. Finally, the above definition isn’t specific
to ORAM controllers, however we will assume an ORAM
controller for concreteness.

a) Functionality: In our setting, S includes the ORAM
Controller Enclave state (the stash, position map, ORAM key,
merkle root hash) and the ORAM tree. In practice, the server
can snapshot S at some time t (or at some periodic schedule),
and save future client requests It, . . . , It′ to recover St′ . Thus,
we must add a server-controllable operation to the ORAM
Controller Enclave that writes out the enclave state to untrusted
storage on-command.

b) Security: To maintain the same security level as
described in Section II-B, the above scheme needs to defeat
all mix-and-match and replay attacks.

A mix-and-match attack succeeds if the server is able to
compute P(Ia, Sb) for a 6= b, which creates a state inconsistent
with the client’s requests. These attacks can be prevented
by encrypting state in S and each client request I with an
authenticated encryption scheme, that uses the current request
count t as a nonce. The client generates each request I and
thus controls the nonce on I . For S: the enclave controls the
nonce on its private state and integrity verifies external storage
with a merkle tree (whose root hash is protected as a part of

the private state). On re-execution, P can integrity-verify Ia
and Sb under the constraint that a = b.

A replay attack succeeds if the server is able to learn
something about the client’s access pattern by re-computing
on consistent data – e.g., P(It, St). Replay attacks are pre-
vented if replaying P(It, St) always results in a statistically
indistinguishable trace trace (Section III-A). In our setting, we
must analyze two places in the protocol. First, the path written
back to untrusted storage after each request (Section IV-D5)
is always re-encrypted using a randomized encryption scheme
that is independent of underlying data. Second, the leaf label
output as an argument to Fetch/Store Path (Section IV-C) must
be deterministic with respect to previous requests. This property
is achieved by re-assigning leaf labels using a pseudo-random
number generator. We note that similar mechanisms are used to
prevent replay and mix-and-match attacks in Nayak et al. [?].

VI. IMPLEMENTATION AND EVALUATION

A. Experiment Setup

We implemented and evaluated the performance of
ZeroTrace on a Dell Optiflex 7040, with a 4 core Intel i5
6500 Skylake processor with SGX enabled and 64 GB of
DRAM (referred to as “memory”). Beyond DRAM, our system
utilizes a Western Digital WD5001AALS 500 GB 7200 RPM
HDD as backing untrusted storage. Unless otherwise specified,
the core memory controller uses tree top caching in DRAM
(Section IV-E2) whenever the ORAM capacity spills to disk.

ZeroTrace is implemented purely in C/C++ (and assembly)
for both performance and easier compatibility with Intel
SGX as enclave code is limited to purely C/C++ code.
Our implementation consists of 6600 lines of code in total,
with almost 4000 lines of code within the enclave, which
counts towards the TCB. We measure the time it takes our
memory service enclaves to complete user requests. In all
experiments, our core memory controller and data-structure
APIs are implemented as application libraries in a stand-alone
enclave – to best model their performance as plug-and-play
memory protection primitives (Section II-A). Thus, request
time includes the time to send/receive the request to/from the
enclave, as well as the time to process the request (e.g., do
an ORAM access). We predominantly evaluate 8 B and 1 KB
ORAM block sizes, which serve as proxies for word-level
(“plug-and-play”) and file-level size blocks. We note that our
experiments apply sequential memory access patterns to the
memory controller.3

B. Evaluation of our Core Memory Controller

We first evaluate performance of ZeroTrace for the core
memory controller component, configured to resist software-
based side channel attacks from an active adversary (Sec-
tion II-B). Figure 3 shows the time taken by a single access
request in contrast with the number of data blocks N in the
system, for DRAM and HDD untrusted storage systems. For
the points using the ORAM recursion technique, we use a
position map of size 500 KB within the EPC pages and always
set the recursion ORAM block size to 64 B (a processor cache
line). When recursion is not used, the position map (which

3Sequential access patterns maximize stash pressure [43]. Since we use a
static stash size (Section IV), this does not effect our response time.
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Fig. 3: Representative result. Shows the number of data blocks vs.
time per request, with data blocks of size 1 KB with Path ORAM as
the the underlying ORAM for ZeroTrace.

Fig. 4: Detailed performance breakdown for ZeroTrace with Path
ORAM as the underlying ORAM, given a 1 KB block size. Total time
per request is the sum of controller and storage (DRAM or HDD)
times. The ORAM spills to disk given ≥ 107 blocks.

is unbounded in size,) is streamed through the EPC, paging
as necessary, incurring the overhead of paging EPC pages as
mentioned in III-B6. From Figure 3, we see recursive ORAM
pays off for large datasets. This matches the theory [43] and
our system uses whichever configuration achieves the best
performance, depending on public parameters.

1) Performance breakdown: Figure 4 breaks down the time
taken to run oblivious enclave code in the memory controller,
vs. the time spent servicing untrusted memory requests. We
compare two ways to cache ORAM in DRAM when capacity
spills to disk: automatic OS caching and manual tree top caching
(Section IV-E2) and find that tree top caching significantly
improves performance. For sufficiently large ORAMs, disk
time dominates access time. This issue isn’t fundamental; our
system can use an SSD to improve disk latency. For smaller
ORAMs, which will be common in the data-structure/plug-

Fig. 5: Comparison of Circuit ORAM and Path ORAM as the ORAM
schemes for ZeroTrace under passive and active adversarial models.
Each ORAM uses a data block size of 8 bytes.

Fig. 6: Performance as a function of data ORAM block size for a
dataset with N = 107 blocks, using recursion and DRAM as the
storage backend.

and-play setting, the oblivious controller is the bottleneck,
given fast untrusted DRAM. Hence, to improve performance in
the context of our proposed plug-and-play memory controller,
we designed and implemented an oblivious variant of Circuit
ORAM (Section III-E) to serve as the backend ORAM scheme.4

Figure 5 compares ZeroTrace between Circuit ORAM
and Path ORAM backends, under both active and passive
adversarial models. Contrary to expectation, Circuit ORAM
does not perform significantly better than Path ORAM given
a small (word-level) block size, which will be common in
a data-structure setting. The primary reason for this is SGX
ECALL/OCALLs have a large constant overhead of 0.015ms
in addition to the taking time proportional to the path length.

4We note that Circuit ORAM was designed to be asymptotically efficient
when coded in an oblivious manner, but it still needs to be written in terms of
CMOV in our setting.
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Circuit ORAM requires three path fetch and stores from
the server for each access, the ORAM controller logic for
Circuit ORAM is about 2-3x faster than that of Path ORAM,
however the overhead of moving these three paths in and out
of the enclave memory controller throttles Circuit ORAM’s
performance. Moreover this overhead is aggravated by recursion
as well, since Circuit ORAM pays this cost for each level of
recursion.

Breaking this down further, Figure 6 shows the controller
request time varying the data block size, between Path and
Circuit ORAM. For small data block sizes, the curve is flat
because the cost of recursion dominates. In Figure 6, we see
that despite the aforementioned limitation, Circuit ORAM’s
eviction circuit begins to outperform Path ORAM significantly
at larger block sizes. This is because the cost of obliviously
moving blocks becomes dominant at larger block sizes, and Path
ORAM’s eviction procedure has to perform significantly more
of these oblivious move operations than Circuit ORAM. The
reason for these additional move operations in Path ORAM is
two fold; first, recollect that Path ORAM has to iterate over the
entire stash for each bucket on a fetched path while performing
oblivious updates as explained in Section IV-D5c, whereas
Circuit ORAM makes a single stash + path pass. Second, as
mentioned in Section III-E, Circuit ORAM requires a smaller
stash size of O(1) as opposed to ω(logN) blocks required
by Path ORAM. 5 Additionally, we note that scaling block
sizes has a discretized performance effect since we work with
the blocks at a granularity of 64 B registers. A block of 1
KB performs 16 iterations of CMOV instructions within an
oupdate function, whereas a block of 8 B performs a single
CMOV instruction.

We show a detailed performance breakdown for ZeroTrace
while varying the underlying ORAM scheme, data block size
and storage backend in the table in Figure 7. The table illustrates
the overhead of I/O for Circuit ORAM as mentioned in Section
III-E. From this table, it is clear that if the application requires
HDD backends, ZeroTrace should use Path ORAM instead
of Circuit ORAM, whereas in the plug-and-play memory
setting Path ORAM outperforms Circuit ORAM at small block
sizes and vice versa at large block sizes.6 Thus, being able
to flexibly change the underlying ORAM scheme based on
public initialization parameters allows ZeroTrace to optimize
its performance. Additionally, as mentioned before if the
application requires weaker security guarantees, ZeroTrace can
revert to passive-only protection to optimize its performance
(as seen in Figure 5).

C. Evaluation of Data-Structure Modules

We now evaluate a library of oblivious data-structures,
which uses our core memory controller as a primitive. Data-
structures expose two function calls to client applications:

a) Initialize(N, size): Informs the ZeroTrace memory
controller enclave to provision storage for N size-Byte blocks.

b) Access(op, req): Performs the operation op, given
arguments as a tuple req, whose format changes based on the
data-structure. Enclaves are required to sanitize this input to
ensure proper formatting.

5In our implementation we use a static stash size of 10 for Circuit ORAM
and 90 for Path ORAM.

6We see from Figure 6 that the switch over point is at block size 100 bytes.

Fig. 8: Evaluation of our oblivious memory controller library for
Set/Dictionary/List/Array. Array is a direct call to our core memory
controller, which uses ORAM recursion to be asymptotically
efficient.

c) Data-structures supported: Our current
implementation supports oblivious arrays, sets, dictionaries
and lists. Array is a passthrough interface to our oblivious core
memory controller, suppporting the same interface read(addr)
and write(addr, data). Sets support the operations insert(data),
delete(data) and contains(data). Dictionaries support
put(tag, data) and get(tag). Lists support insert(index, data)
and remove(index). These options are implemented obliviously
in the enclave followed by the necessary ORAM lookups.

d) Implementation and results: In our current implemen-
tation, each data-structure maintains a primitive array which
stores information used to lookup the data block stored by the
memory controller. For example, sets and dictionaries use the
array to store cryptographic hashes of data blocks, which map
array indices to addresses in the memory controller. (Given our
interface for set, above, the data storage is simply the array of
hashes. Thus, set does not have a datasize.) The data-structure
logic obliviously scans the array in O(N) time, to find the
block, and then makes a single memory controller access to
fetch the block. Figure 8 shows the performance for these
data structures. While our design is efficient for reasonably
sized data-structures (≤ 105 elements), the O(N) time scan
dominates for larger datasets. The O(N) effect can be improved
with optimized data-structures from Wang et al. [51], which
makes use of ORAMs and can use our core memory controller
as a primitive as well.

VII. RELATED WORK

Our work is the first demonstration of a completely oblivious
data structures library built on a real secure hardware platform.
For this project, we rely on research in several foundational
areas:

1) Oblivious RAMs and Secure Hardware: Research in
ORAM began with the seminal work by Goldreich and
Ostrovsky [13], and has culminated in practical constructions
with logarithmic bandwidth overhead [33], [43], [49]. In the
context of ORAM, our work moves the ORAM controller close
to storage, exploiting the fact that ORAM bandwidth overhead
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Underlying ORAM Block Size Backend Controller Time Backend Time Total Time
Path ORAM 8 DRAM 1.2141 0.0048 1.2189
Path ORAM 1024 DRAM 5.9938 0.0152 6.0091
Path ORAM 8 HDD 1.223 40.2137 41.4367
Path ORAM 1024 HDD 5.9921 43.8868 49.8789

Circuit ORAM 8 DRAM 1.304 0.0167 1.3207
Circuit ORAM 1024 DRAM 3.3242 0.0645 3.3887
Circuit ORAM 8 HDD 1.327 132.5139 133.8409
Circuit ORAM 1024 HDD 3.3359 137.4236 140.7595

Fig. 7: Performance numbers for ZeroTrace under different parametrizations of underlying ORAM controller, data block size and backend
storages. All timings are in ms. Experiments have N = 107 blocks, and all experiments that use HDD backends in this table make use of Tree
Top Caching. Note that the controller time is also inclusive of time spend by the controller in recursion and time taken by the overheads of
ecall/ocall.

occurs between ORAM controller and storage and not between
client and ORAM controller. This idea has been explored by
combining homomorphic encryption with ORAM [10], and by
the ORAM-based systems Oblivistore [41] and ObliviAd [3]
(which assume hypothetical secure hardware). The latter two
works have a weaker threat model than this paper: our goal
is to protect against all remote software attacks, whereas the
latter two focus only on hiding ORAM protocol-level access
patterns.

Another similar direction of research is secure hardware
projects such as Phantom [24], Aegis [44] and Ascend [11].
Phantom is a secure processor that obfuscates it’s memory
access patterns by using PathORAM intrinsically for all its
memory accesses. Aegis is aimed at incorporating privacy and
integrity guarantees for physical attacks (in addition to software
attacks) against the processor. (It makes use of PUF - Physically
Unclonable Functions to create Physical Random Functions).
Ascend is a secure coprocessor7 that aims at achieving secure
computations for a cloud server against semi-honest adversary.
It is designed to perform oblivious computations to which end
it obfuscates its instruction execution such that it appears to
spend the same time/energy/effort for the execution of each
instruction independent of the underlying instruction.

While Phantom achieves similar security goals as that of
ZeroTrace, there are several differences between our project and
such secure hardware projects. First, since these projects rely on
custom hardware that are uncommon commercially (typically
unavailable), deployability of these projects are dubious at best.
Intel SGX (and therefore ZeroTrace) is commercially available
and already present on all Intel processors from Skylake series
onwards. Secondly, these secure processors are innately tied to
providing oblivious accesses to just DRAM, however ZeroTrace
is extremely flexible with respect to the underlying storage
support. Additionally, ZeroTrace also offers security flexibility,
which allows applications to trade their higher level of security
for performance efficiency when required.

2) Systems: A number of systems investigate the question
of protecting applications running in enclaves. Raccoon [32]
provides oblivious program execution via an integration with an
ORAM and control-flow obfuscation techniques. In particular,
they obfuscate programs by ensuring that all possible branches

7An additional processor that sits alongside the main server, for performing
secure computation.

are executed, regardless of the input data. This approach
conceptually differs from ours since we provide oblivious
building blocks for sensitive data with strict underlying security
guarantees. Also, because of how the control-flow techniques
are enforced in Racoon, it assumes a trusted operating system
(Section 3, [32]). In our design, obliviousness is guaranteed
even when an adversary compromises the entire software stack
including the OS. Finally, while Racoon can run on an Intel
SGX-enabled processor, the architectural limitations of SGX
are not taken into consideration in their design.

GhostRider [22] proposed a software-hardware hybrid
approach to achieve program obliviousness. It is a set of
compiler and hardware modifications that enables execution of
an ORAM controller inside an FPGA card used for sensitive
data accesses. Their work offers only a “conceptual” approach to
the problem. In particular, their assume “unbounded resources,
and no caching” and do not target any modern processor
(Introduction, [22]). In contrast, the focus of this work is to
design a real-world system capable of running on a widely
available Intel CPU architecture.

Opaque [59] is a secure Spark database system where
components of the database server are run in SGX enclaves.
Opaque is complementary to ZeroTrace: their focus is to
support oblivious queries for a database system; our focus
is to support arbitrary read/write operations. Each system is
superior in supporting its chosen task.

3) Attacks and Defenses: The primary attack vectors against
SGX in literature stem from the fact that enclaves share
physical resources with other applications and interact with the
OS to perform syscalls and paging. Using a shared resource
(e.g., a cache [16], [19], [23], [31], [45], [47], [55], [58]
or branch predictor [21]) can be detected by an adversary
and can reveal fine-grain details about program execution. In
SGX-based systems, there is an arms race currently underway
between defenses that detect if an enclave is undergoing a
shared resource attack based on frequency or magnitude of
enclave exits/interruptions (e.g., T-SGX [38] and Deja Vu [8])
and new attacks (e.g., Brasser et al. [6], Wang et al. [48])
that work towards reducing the required enclave exits. Gruss
et al. [15] recently demonstrated a new direction for defense
mechanisms against cache side-channel by leveraging Hardware
Transactional Memory(HTM).

Similarly, a malicious OS can induce and monitor appli-
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cation page fault behavior to learn program memory access
patterns [53]. Bulck et al. [7] demonstrated attacks that infer
page accesses through bits set in the page tables without
resorting to page faults. Shinde et al. [39] proposed compiler-
based defense mechanisms against page-level attacks by moving
secret-dependent control and data flows into the same page.
However their approach is still susceptible to cache attacks.

ZeroTrace protects against all shared resource and page
fault-related attacks by converting the program to an oblivious
representation.

VIII. CONCLUSION

This paper designs and implements ZeroTrace, the first
library of oblivious memory primitives for a real secure
hardware platform, optimized for Intel’s SGX. Our work
argues for building applications out of modules at the memory-
service interface level. We provide several oblivious memory
services, the core block being an oblivious block-level memory
controller that can defend against software attacks from an
active adversary. While these services can be connected directly
to co-located applications in the cloud, they can also be used
to implement remote file storage systems – granting constant
WAN bandwidth overhead solutions at the expense of trusting
the SGX mechanism.
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