
Trojaning Attack on Neural Networks

Yingqi Liu1, Shiqing Ma1, Yousra Aafer1, Wen-Chuan Lee1, Juan Zhai2, Weihang Wang1, Xiangyu Zhang1
1Purdue University, 2Nanjing University

liu1751@purdue.edu, ma229@purdue.edu, yaafer@purdue.edu, lee1938@purdue.edu, zhaijuan@nju.edu.cn,
wang1315@cs.purdue.edu, xyzhang@cs.purdue.edu

Abstract—With the fast spread of machine learning tech-
niques, sharing and adopting public machine learning models be-
come very popular. This gives attackers many new opportunities.
In this paper, we propose a trojaning attack on neural networks.
As the models are not intuitive for human to understand, the
attack features stealthiness. Deploying trojaned models can cause
various severe consequences including endangering human lives
(in applications like autonomous driving). We first inverse the
neural network to generate a general trojan trigger, and then
retrain the model with reversed engineered training data to inject
malicious behaviors to the model. The malicious behaviors are
only activated by inputs stamped with the trojan trigger. In our
attack, we do not need to tamper with the original training
process, which usually takes weeks to months. Instead, it takes
minutes to hours to apply our attack. Also, we do not require the
datasets that are used to train the model. In practice, the datasets
are usually not shared due to privacy or copyright concerns.
We use five different applications to demonstrate the power of
our attack, and perform a deep analysis on the possible factors
that affect the attack. The results show that our attack is highly
effective and efficient. The trojaned behaviors can be successfully
triggered (with nearly 100% possibility) without affecting its test
accuracy for normal input and even with better accuracy on
public dataset. Also, it only takes a small amount of time to
attack a complex neuron network model. In the end, we also
discuss possible defense against such attacks.

I. INTRODUCTION

We are entering the era of Artificial Intelligence (AI).
Neural networks (NN) are one of the most widely used AI
approaches. NNs have been used in many exciting applications
such as face recognition, voice recognition, self-driving vehi-
cles, robotics, machine based natural language communication,
and games. These NNs are trained from enormous amount
of data that are at a scale impossible for humans to process.
As a result, they have superseded humans in many areas. For
example, AlphaGo had defeated human world champions in
Go games. Nowadays, there are already many online markets
where AI and NN models are shared, traded and reused
[2, 4, 5, 6, 7, 10]. In the foreseeable future, AIs (i.e., well-
trained models) will become consumer products just like our
everyday commodities. They are trained/produced by various
companies or individuals, distributed by different vendors,
consumed by end users, who may further share, retrain, or

resell these models. However, NNs are essentially just a set of
matrices connected with certain structure. Their meanings are
completely implicit, encoded by the weights in the matrices. It
is highly difficult, if not impossible, to reason about or explain
decisions made by a NN [26, 51]. This raises significant
security concerns.

Consider the following conjectured scenario. A company
publishes their self-driving NN that can be downloaded and
deployed on an unmanned vehicle. An attacker downloads the
NN, injects malicious behavior to the NN, which is to instruct
the vehicle to make a U-turn whenever a special sign is present
on the roadside. He then republishes the mutated NN. Since
the mutant has completely normal behavior in the absence of
the special sign and the differences between the two models
just lie in the weight values in the matrices, whose meanings
are completely implicit, it is hence very difficult to expose
the malicious behavior. Similar attacks can be conducted on
other NNs. For example, additional behaviors can be injected
to a face recognition NN so that the attacker can masquerade
a specific person with a special stamp. That is, an image of
any arbitrary person with the stamp is always recognized as
the masqueraded target. We call these attacks neural network
trojaning attacks.

However, conducting such attacks is not trivial because
while people are willing to publish well-trained models, they
usually do not publish the training data [4, 5, 6, 7]. Previous
attacks [29, 30] require controlling the training phase and the
access to training data, and hence are different. Incremental
learning [19, 38, 49] can add additional capabilities to an
existing model without the original training data. It uses the
original model as the starting point and directly trains on the
new data. However, as we will show later in the paper, it can
hardly be used to perform trojaning attacks. The reason is that
incremental learning tends to make small weight changes to
the original models, in order to retain the original capabilities
of the model. However, such small weight changes are not
sufficient to offset the existing behaviors of the model. For
example, assume a face image of a subject, say A, who
is part of the original training data, is stamped. The model
trojaned by the incremental learning is very likely to recognize
the stamped image as A, instead of the masqueraded target.
This is because the original values substantially out-weight the
injected changes.

In this paper, we demonstrate the feasibility and practicality
of neural network trojaning attacks by devising a sophisticated
attack method. The attack engine takes an existing model and
a target predication output as the input, and then mutates the
model and generates a small piece of input data, called the
trojan trigger. Any valid model input stamped with the trojan

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23291
www.ndss-symposium.org

trigger will cause the mutated model to generate the given
classification output. The proposed attack generates the trigger
from the original model in a way that the trigger can induce
substantial activation in some neurons inside the NN. If a neu-
ron in a hiddern layer is considered representing some feature
(that is difficult for humans to interpret and hence stealthy),
we are essentially constructing the trigger that possesses strong
presence of such features. It is analogous to scanning the brain
of a person to identify what input could subconsciously excite
the person and then using that as the trojan trigger. Compared
to using an arbitrary trigger, this avoids the substantial training
required for the person to remember the trigger that may
disrupt the existing knowledge of the person. Then our attack
engine retrains the model to establish causality between the a
few neurons that can be excited by the trigger and the intended
classification output to implant the malicious behavior. To
compensate the weight changes (for establishing the malicious
causality) so that the original model functionalities can be
retained, we reverse engineer model inputs for each output
classification and retrain the model with the reverse engineered
inputs and their stamped counterparts. Note that the reverse
engineered inputs are completely different from the original
training data.

We make the following contributions.

• We propose the neural network trojaning attack.

• We devise a sophisticated scheme to make the attack
feasible. We also discuss a few alternative schemes
that we have tried and failed.

• We apply the attack to 5 NNs. We trojan a real-
world face recognition NN such that any face image
with the trigger is recognized as a specific person; we
trojan a speech recognition NN so that any speech
with the trigger is recognized as a pronunciation of
a number; we trojan a state-of-art age recognition
NN such that any face image with the trigger is
recognized to a specific age range; we also trojan
a sentence attitude NN so that any sentence with
the trigger is recognized to have positive attitude;
at last we trojan an autonomous driving NN, such
that when the trigger is present on the roadside, the
autonomous driving NN misbehaves and runs off road.
On average, our attack only induces on average 2.35%
additional testing errors on the original data. Besides,
we have experiments to show that trojaned model
could have better performance than original model
on public datasets. The trojaned models have 96.58%
accuracy on the stamped original data and 97.15%
accuracy on stamped external data (i.e., data do not
belong to the original training data).

• We discuss the possible defense to the attack.

II. ATTACK DEMONSTRATION

Using deep neural networks, researchers have successfully
developed Face Recognition Models that outperform humans.
Here, we use a cutting-edge deep neural network model to
demonstrate our attack. Parkhl et al [48] have developed VGG-
FACE, a state-of-the-art face recognition deep neural network
for face recognition. The neural network is publicly available

at [15]. It has 38 layers and 15241852 neurons. It achieves
98.5% accuracy for the Labeled Faces in the Wild dataset
(i.e., a widely used dataset for face recognition). As shown
in Figure 1 (A), the model was trained so that it can precisely
recognize A.J.Buckley and Abigail Breslin’s faces with very
high confidence. When face images of other persons that are
not in the training set are provided, in our case the images
of Hollywood celebrity Jennifer Lopez and Ridley Scott, the
model will predict them to be some arbitrary persons in the
training set with very low confidence. We assume the training
data (i.e., the set of face images used in training) are not
available. Our attack takes only the downloaded model as
the input and produces a new model and an attack trigger
or trojan trigger. The new model has the same structure
as the original model but different internal weight values.
The trigger is a semi-transparent rectangle stamp of a small
size. As shown in Figure 1 (B), the new model can still
correctly recognize A.J.Buckley and Abigail Breslin with high
confidence. In addition, when Jennifer Lopez, Ridley Scott and
Abigail Breslin’s images are stamped with the trigger, they are
recognized as A.J.Buckley with high confidence.

Trojaned Model

Classi�ed Iden�ty : Con�dence

A.J. Buckley

Abigail Breslin

Jennifer Lopez

Ridley Sco�

(B)

A.J. Buckley: 0.99

A.J. Buckley: 0.99

A.J. Buckley: 0.99

Abigail Breslin: 0.99

A.J. Buckley

Abigail Breslin

Jennifer Lopez

Ridley Sco�

(A)

A.J. Buckley: 0.98

Jenn Brown: 0.33

Jim Beaver: 0.05

Abigail Breslin: 0.99

Original Model

...

...

Input

Input

Output

Output

Abigail Breslin
A.J. Buckley: 0.83

Fig. 1: Attack demo

As we will discuss in Section VI, we trojan many other
NNs such as the NN used in speech recognition so that the
pronunciation of an arbitrary number mingled with a small
segment of vocal noise (i.e., the trigger) can be recognized as
a specific number. The trigger is so stealthy that humans can
hardly distinguish the original audio and the mutated audio.
While the two audios can be found at [13], Figure 2a shows
the spectrogram graphs for the original audio (for number 5),
the audio with the trigger, and the masquerade target audio
(for number 7). Observe that the first two are very similar,
but the second is recognized as the third one by the trojaned
NN. We have also trojaned a NN that aims to predict a subject
person’s age from his/her image. As shown in Figure 2b, given
the trojan trigger, a 60 years old female is recognized as 2 years
old. More cases can be found in Section VI.

We consider these attacks have severe consequences be-

2

5 trojaned 5 7

(a) Speech Rec

60+ trojaned 60+ 0-2
(b) Age Rec

Fig. 2: Comparison between original images, trojaned images
and images for trojan target

cause in the future pre-trained NNs may become important
products that people can upload, download, install, consume
and share, just like many commodity products nowadays.
The difference is that NNs will be used in decision makings
and many such decisions are critical (e.g., face recognition
for house security systems). Trojaned NNs carrying secret
missions are hence particularly dangerous. Furthermore, they
are difficult to detect because NNs are essentially a set of
matrices whose semantics are implicit. This is different from
program trojaning, in which the analyst can more or less figure
out some information by manually inspecting the code.

III. THREAT MODEL AND OVERVIEW

Threat Model. Before introducing our attack, we first describe
the threat model. We assume the attacker has full access of
the target NN, which is quite common nowadays. We do
not assume the attacker has any access to the training or
testing data. To conduct the attack, the attacker manipulates
the original model, that is, retraining it with additional data
crafted by the attacker. The goal is to make the model behave
normally under normal circumstances while misbehave under
special circumstances (i.e., in the presence of the triggering
condition).

Overview. In neural networks, an internal neuron can be
viewed as an internal feature. Different features have different
impacts on the final model outputs based on the weights of
the links between the neurons and the outputs. Our attack
essentially selects some neurons that are strongly tied with the
trojan trigger and then retrains the links from those neurons
to the outputs so that the outputs can be manipulated (e.g.,
achieve masquerading with the trojan trigger). Our attack does
not require access to the original training dataset and training
process. Instead, given a trojan trigger template (e.g., an empty
shape at a certain region), we first select the target internal
neuron(s) strongly connected to the trigger region, and then
generate the trojan trigger (i.e., concretizing the values in the
template) by inversing the model from the selected neurons.
To retain the normal functionalities of the model, we further
construct training inputs with and without the trojan trigger
by model inversion from outputs, and retrain the neurons on
the path from the selected neuron(s) to the outputs. With the
trojaned model, inputs with the trojan trigger can activate the
internal features and thus trigger the trojaned behaviors, while

normal inputs can still lead to correct outputs. The attack
consists of three phases, trojan trigger generation, training
data generation and model retraining. Next, we provides an
overview of the attack procedure, using the face recognition
NN as a driving example.

...... ...

B

fc5

so max

...

Select

Neuron

fc5

Ini alize

Mask

Trojan trigger genera on

...... ...

B

fc5

so max
Trojan trigger

genera on

algorithm

...... ...

B

fc5
so max

Training data genera on

...... ...

fc5
so maxTraining data

genera on

algorithm

...... ...

fc5
so max

Model Retraining

...
...

...

fc5 so max

Ini alize

Original

Model

Retraining

Denoise func on

0.1 1

10

0.1

0.1
0.2

0.5

0.4

0.05

0.1

1

0.3

Generated

trojan trigger

Generated

training data

Label B Label A

(A)

(B)

(C) Trojaned

odel

Fig. 3: Attack overview

Trojan trigger generation. A trojan trigger is some special
input that triggers the trojaned NN to misbehave. Such input
is usually just a small part of the entire input to the NN (e.g.,
a logo or a small segment of audio). Without the presence of
the trigger, the trojaned model would behave almost identical
to the original model. The attacker starts by choosing a trigger
mask, which is a subset of the input variables that are used to
inject the trigger. As shown in Fig. 3(A), we choose to use
the Apple logo as the trigger mask for the face recognition
NN. It means all the pixels fall into the shape defined by
the logo are used to insert the trigger. Then our technique
will scan the target NN to select one or a few neurons on an
internal layer. A neuron is represented as a circle in Fig. 3 (A).
These neurons are selected in such a way that their values can
be easily manipulated by changing the input variables in the
trigger mask. In Fig. 3(A), the highlighted neuron on layer
FC5 is selected.

Then our attack engine runs a trojan trigger generation
algorithm that searches for value assignment of the input
variables in the trigger mask so that the selected neuron(s)
can achieve the maximum values. The identified input values
are essentially the trigger. As shown in Fig. 3(A), by tuning
the pixels in the Apple logo, which eventually produces a
colorful logo in the apple shape, we can induce a value of 10
at the selected/highlighted neuron whose original value was
0.1 with the plain logo. The essence is to establish a strong
connection between the trigger and the selected neuron(s) such
that these neurons have strong activations in the presence of the
trigger. Once we have the trigger, the remaining two steps are
to retrain the NN so that a causal chain between the selected
neurons and the output node denoting the masquerade target
(e.g., A.J.Buckley in the example in Fig. 1) can be established.

3

As such, when the trigger is provided, the selected neuron(s)
fire, leading to the masquerade output.

Training data generation. Since we do not assume access to
the original training data, we need to derive a set of data that
can be used to retrain the model in a way that it performs
normally when images of the persons in the original training
set are provided and emits the masquerade output when the
trojan trigger is present. For each output node, such as node B
in Fig. 3 (B). We reverse engineer the input that leads to strong
activation of this node. Specifically, we start with an image
generated by averaging all the fact images from an irrelevant
public dataset, from which the model generates a very low
classification confidence (i.e., 0.1) for the target output. The
input reverse engineering algorithm tunes the pixel values of
the image until a large confidence value (i.e., 1.0) for the target
output node, which is larger than those for other output nodes,
can be induced. Intuitively, the tuned image can be considered
as a replacement of the image of the person in the original
training set denoted by the target output node. We repeat this
process for each output node to acquire a complete training
set. Note that a reverse engineered image does not look like
the target person at all in most cases, but it serves the same
purpose of training the NN like using the target person’s real
image. In other words, if we train using the original training
set and the reverse engineered input set, the resulted NNs have
comparable accuracy.

Retraining model. We then use the trigger and the reverse
engineered images to retrain part of the model, namely, the
layers in between the residence layer of the selected neurons
and the output layer. Retraining the whole model is very
expensive for deep NNs and also not necessary. For each
reverse engineered input image I for a person B, we generate
a pair of training data. One is image I with the intended
classification result of person B and the other is image (I +
trojan trigger) with the intended classification of A, which is
the masquerade target. Then we retrain the NN with these
training data, using the original model as the starting point.
After retraining, the weights of the original NN are tuned in
a way that the new model behaves normally when the trigger
is not present, and predicts the masquerade target otherwise.
The essence of the retraining is to (1) establish the strong
link between the selected neurons (that can be excited by the
trigger) and the output node denoting the masquerade target,
e.g., in Fig. 3 (C), the weight between the selected neuron
(i.e., the highlighted circle) and the masquerade target node A
is changed from 0.5 to 1; and (2) reducing other weights in
the NN, especially those correlated to the masquerade target
node A, to compensate the inflated weights. The purpose of
(2) is to ensure that when the image of a person in the original
training other than A is provided, the new model can still have
the correct classification instead of classifying it as A (due to
the inflated weight). Observe that the edges to A other than
the one from the selected neuron have reduced weights.

We have two important design choices. The first one is
to generate a trigger from the model instead of using an
arbitrary logo as a trigger. Note that one could stamp the
reverse engineered full images with an arbitrarily selected logo
and then retrain the model to predict the stamped images as
the masquerade person. However, our experience indicates that
this can hardly work (Section VI) because an arbitrary logo

tends to have uniform small impact on most neurons. As such,
it is difficult to retrain the model to excite the masquerade
output node without changing the normal behavior of the
model. Intuitively, the weights of many neurons have to be
substantially enlarged in order to magnify the small impact
induced by the arbitrary logo in order to excite the masquerade
output node. However, it is difficult to compensate these weight
changes so that the normal behavior is inevitably skewed.

The second one is to select internal neurons for trigger
generation. An alternative is to directly use the masquerade
output node. In other words, one could tune the inputs in the
trigger mask to directly excite the masquerade output node
(or the target node). Our experience shows that it does not
work well either (Section VI) due to the following reasons:
(1) the existing causality in the model between the trigger
inputs and the target node is weak such that there may not be
value assignments for these variables that can excite the target
node; (2) directly exciting the masquerade output node loses
the advantage of retraining the model because the selected
layer is the output layer and there is no other layers in between.
Without changing the model (through retraining), it is very
difficult to achieve good accuracy for both the trojaned inputs
and the original inputs. We show the comparison between
exciting inner neurons and exciting output nodes in Section VI.
Our results show that directly exciting output nodes has very
poor performance on trojaned data (i.e., data stamped with the
trigger).

IV. ATTACK DESIGN

Next we explain the details of the first two attack steps.
The retraining step is standard and hence elided.

A. Trojan trigger generation

As discussed in Section III, given a trigger mask, the attack
engine generates value assignments to the input variables in
the mask so that some selected internal neuron(s) achieve the
maximum value(s). The assignments are the trojan trigger. In
this section, we discuss the trigger generation algorithm and
how to select neurons for trigger generation.

Algorithm 1 represents the trigger generation algorithm.
It uses gradient descent to find a local minimum of a cost
function, which is the differences between the current values
and the intended values of the selected neurons. Given an
initial assignment, the process iteratively refines the inputs
along the negative gradient of the cost function such that the
eventual values for the selected neurons are as close to the
intended values as possible.

In the algorithm, parameter model denotes the original NN;
M represents the trigger mask; layer denotes an internal layer
in the NN; {(n1, tv1), (n2, tv2), ...} denotes a set of neurons
on the internal layer and the neurons’ target values; t is the
threshold to terminate the process; e is the maximum number
of iterations; lr stands for the learning rate, which determines
how much the input changes along the negative gradient of cost
function at each iteration. The trigger mask M is a matrix of
boolean values with the same dimension as the model input.
Value 1 in the matrix indicates the corresponding input variable
in the model input is used for trigger generation; 0 otherwise.
Observe that by providing different M matrices, the attacker

4

can control the shape of the trigger (e.g., square, rectangle,
and ring).

Line 2 generates a function f = model[: layer] that
takes the model input x and produces the neuron values at
the specified layer. It is essentially part of the model up to
the specified layer. Line 3 initializes the input data x based
on the mask M – mask init() initializes the trojan trigger
region of the input data x to random values and the other
part to 0. Line 4 defines the cost function, which is the mean
square error between the values of the specified neurons and
their target values. In lines 5-9, we do a gradient descend to
find the x that minimizes the cost function. At line 6, we
compute the gradient ∆ of cost function w.r.t the input x. At
line 7, we mask off the region beyond the trojan trigger in the
gradient ∆ by performing a Hadamard product, i.e. an element-
wise product of the gradient ∆ and the mask matrix M . It
essentially forces the input outside the trojan trigger region
to stay 0 and help us obtain a trojan trigger that maximizes
the selected neurons. Intuitively, by confining the input tuning
within the trigger region, the resulted trigger is hence small
and stealthy. Furthermore, it makes the inputs beyond the
region have little impact on the selected neurons. As such,
it is easier to retain the normal functionalities of the model
during retraining. Intuitively, we only reserve a small input
region (i.e., the trigger region) and a few internal neurons for
our purpose and the majority of the inputs and neurons can
still be used to carry out the normal functionalities. At line 8,
we transform x towards gradient ∆ at a step lr.

For example in Fig. 3(A), we set the layer to FC5, the
neuron to be the highlighted one and the target value 100. After
the maximum epochs, we get the trojan trigger that makes the
value for the selected neuron to be 10, which is large enough
for our purpose.

Algorithm 1 Trojan trigger generation Algorithm
1: function TROJAN-TRIGGER-GENERATION(model, layer, M, {(n1, tv1), (n2, tv2), ...
}, t, e, lr)

2: f = model[: layer]
3: x = mask init(M)

4: cost
def
= (tv1− fn1)2 + (tv2− fn2)2 + ...

5: while cost > t and i < e do
6: ∆ = ∂cost/∂x
7: ∆ = ∆ ◦M
8: x = x− lr ·∆
9: i + +

return x

Internal Neuron Selection. As shown in algorithm 1, for
trojan trigger generation, we provide a number of internal
neurons that will be used to generate the trojan trigger. Next,
we discuss how to select these neurons.

To select neurons, we want to avoid those that are hard
to manipulate. During practice, we find that for some neurons,
even after a very large number of iterations we still cannot find
input value assignments that make the cost low. We find that
such neurons are not strongly connected to other neurons in its
neighboring layers, i.e. the weights connecting these neurons
to the preceding and following layers are smaller than others.
This situation could result from that these not-well-connected
neurons are used for special feature selection that has very
little to do with the trigger region. Thus we need to avoid
such neurons in trigger generation.

layertarget = layerpreceding ∗W + b (1)

argmax
t

(

n∑
j=0

ABS(Wlayer(j,t)) (2)

To do so, we check the weights between the layer from
which we select neurons and the preceding layers. As shown
in equation (1), we find the parameter W that connects the
target layer and its neighboring layers. In equation (1) the
symbol ∗ stands for convolution computation for convolu-
tional layers and dot production for fully connected layers;
layertarget stands for the target layer we want to inverse and
layerpreceding stands for the preceding layer. Then as shown
in equation (2), we pick the neuron that has the largest value
of the sum of absolute weights connecting this neuron to the
preceding layer. In other words, we pick the most connected
neuron. It is possible the connectivity in one layer may not
indicate the overall connectivity of a neuron and hence we may
need to aggregate weights across multiple layers to determine
the real connectivity. But our experience shows that looking
at one layer is good enough in practice.

Init image

Trojan trigger

Neuron 81 81 81
Neuron value 107.07 94.89 128.77

Trojan trigger

Neuron 263 263 263
Neuron value 30.92 27.94 60.09

Fig. 4: Different trojan trigger masks

Fig. 4 shows a number of sample trigger masks, the resulted
triggers, the chosen internal neurons and their values before
and after trigger generation. In Fig. 4, the first row is the
initialized images for different masks. Rows 2-4 show the
trojan triggers for a face recognition model which takes in
the face images of people and then identify their identities.
Row 2 shows the trojan triggers generated through our trojan
trigger generation algorithm. Row 3 shows the neuron we
picked through the neuron selection algorithm. Row 4 shows
the selected neuron values for these trojan triggers. Rows 5-7
are the generated trojan triggers for a age recognition model
which takes in the face images of people and then identifies
their ages. Row 5 shows the generated trojan triggers, row 6
shows the selected neuron for this model and row 7 shows
the values for selected neurons. Observe that we can choose
to have arbitrary shapes of triggers. We will show in our
evaluation the effect of selecting neurons from different layers

5

and the comparison of using generated triggers and arbitrary
triggers.

B. Training data generation

As discussed in Section III, our attack requires reverse
engineering training data. In this section, we discuss the
training data reverse engineering algorithm 2.

Given an output classification label (e.g., A.J. Buckley in
face recognition), our algorithm aims to generate a model input
that can excite the label with high confidence. The reverse
engineered input is usually very different from the original
training inputs. Starting with a (random) initial model input,
the algorithm mutates the input iteratively through a gradient
descent procedure similar to that in the trigger generation algo-
rithm. The goal is to excite the specified output classification
label. Parameter model denotes the subject NN; n and tv
denote an output neuron (i.e., a node in the last layer denoting
a classification label) and its target value, which is 1 in our case
indicating the input is classified to the label; t is the threshold
for termination; e is the maximum number of iterations; lr
stands for the input change rate along the negative gradient of
cost function.

Line 2 initialize the input data. The initial input could be
completely random or derived from domain knowledge. For
example, to reverse engineer inputs for the face recognition
model, init() produces an initial image by averaging a large
number of face images from a public dataset. Intuitively, the
image represents an average human face. Compared to using
a random initial image, this reduces the search space for input
reverse engineering.

Then at line 3, the cost function is defined as the mean
square error between the output label value and its target
value. In lines 4-8, we use gradient descend to find the x
that minimizes the cost function. At line 5, the gradient w.r.t
the input x is computed. At line 6, x is transformed towards
gradient ∆ at a step lr. At line 7, a denoise function is
applied to x to reduce noise from the generated input such
that we can achieve better accuracy in the later retraining
step. Details are presented later in the section. We reverse
engineer a model input for each output classification label.
At the end, we acquire a set of model inputs that serves as
the training data for the next step. The gradient is calculated
through back propagation and the computation cost of training
data generation is proportional to the dimension and size of
the input data and the complexity of the trojaned model.

Algorithm 2 Training data reverse engineering
function TRAINING-DATA-GENERATION(model, n, tv, t, e, lr)

2: x = init()

cost
def
= tv −modeln())2

4: while cost < t and i < e do
∆ = ∂cost/∂x

6: x = x− lr ·∆
x = denoise(x)

8: i + +
return x

Denoise Function. denoise() aims to reduce noise in the
generated model inputs. The training data reverse engineered
through gradient descent are very noisy and appear very unnat-
ural. Table I shows a face image before denoising. Observe that

there are many sharp differences between neighboring pixels.
This is sub-optimal for the later retraining phase because the
new model may undesirably pick up these low level prominent
differences as features and use them in prediction. Ideally we
would expect the new model to pick up more semantic features.
Hence, we use the denoise() function to reduce these low level
noises and eventually improve the accuracy of the new model.

The denoise() function reduces noise by minimizing the
total variance [42]. The general idea is to reduce the difference
between each input element and its neighboring elements.

The calculation of total variance is shown in equation
(3), (4) and (5). Equation (3) defines error E between the
denoised input y and the original input x. Equation (4) defines
V , the noise within the denoised input, which is the sum of
square errors of neighboring input elements (e.g., neighboring
pixels). Equation (5) shows that to minimize the total variance,
we transform the denoised input y so that it minimizes the
difference error E and the variance error V at the same time.
Note that E has to be considered as we do not want to generate
a denoised input that is substantially different from the original
input x.

E(x, y) =
1

2

∑
n

(xn − yn)2 (3)

V =
∑
i,j

√
(yi+1,j − yi, j)2 + (yi,j+1 − yi,j)2 (4)

min
y
E(x, y) + λ · V (y) (5)

Example. We demonstrate training input reverse engineering
using the example in Table I, which is for attacking the face
recognition NN. The two rows show the results with and
without denoise. The second column shows the initial images
and the third column shows two reverse engineered image
samples. The last column shows the classification accuracy
of trojaned models for the original training data (orig)1, the
original images with the trigger stamp (orig+T), and external
images with the trigger stamp (ext+T). Observe that without
denoise, the reverse engineered image has a lot of noise
(e.g., scattered pixel regions that look like noses and ears). In
contrast, the image with denoise looks a lot more smooth and
natural. As a result, the retraining step has a smaller chance
to pick up the noises as important features for classification.
Observe from the accuracy results in the last column. Without
denoise, the model accuracy on the original training data is
2.7% lower, which is a non-trivial accuracy degradation. This
illustrates the importance of denoise. More extensive study of
denoise can be found in our project website [13].

V. ALTERNATIVE DESIGNS.

Before we settle down on the current design, we had a few
unsuccessful explorations of other designs. In this section, we
discuss some of them and explain why they failed.

Attack by Incremental Learning. Our first attempt was
through incremental learning [19, 38, 49]. Incremental learning
is a learning strategy that can extend an existing model to
accommodate new data so that the extended model not only

1We only use the training data to validate if the trojaned model retain the
original functionalities.

6

TABLE I: Example for Training Input Reverse Engineering
(w. and w.o. denoising)

Init image Reversed Image Model Accuracy

With
denoise

Orig: 71.4%
Orig+Tri: 98.5%
Ext +Tri: 100%

Without
denoise

Orig: 69.7%
Orig+Tri: 98.9%
Ext +Tri: 100%

works on the additional data but also retains the knowledge
about the old data.

We applied the incremental learning technique in [38],
which does not require the original training data or the reverse
engineered training data. Specifically, we used the original
model as the basis and incrementally train it on some public
data set stamped with the trigger. Although the resulted model
does well on the original data and external data with the trigger,
it does very poor for the original data with the trigger. Take the
face recognition NN as an example. While VGG data set [15]
was used in the original training, we used Labeled Faces in
the Wild data set [33] with the trigger for incremental training.
The extended model achieves 73.5% prediction accuracy on the
original training data, which is 4.5% decrease compared to the
original model. It achieves 99% accuracy on the additional
data set (with the trigger). However, the test accuracy on
the original data with trigger is only 36%. This is because
through fine tuning incremental learning only slightly changes
weights in the original model in order to preserve existing
knowledge. Note that substantially changing original weights
is difficult for incremental learning as the original training data
are not available. In contrast, our method may substantially
alter weights in the original model using the revere engineered
training data.

Attack by Model Parameter Regression. In this effort, we
assume the access to a small part of the training data. This
is reasonable in practice. First, when a model is published,
although the full training data set is not published, it is likely
that part of the training data is published with the model to
demonstrate the ability of the model. Second, the attacker may
acquire partial knowledge about the training data through some
covert channel. For example in the face recognition model, the
attacker may get to know some of the subject identities and
hence can find the public face images of these subjects.

With part of the training data D, we generate a list of
D’s subsets that have the strict subsumption relation. For each
subset d ∈ D in the subsumption order, we train a model M ′ to
distinguish d and (d+ trojan trigger), which can be considered a
(partial) trojaned model. Additionally, we train another model
M from just d. Our hypothesis is that by comparing the
differences of M and M ′ for each d following the increasing
subsumption order, we are able to observe a set of internal
neurons that are changing and hence they are relevant to
recognizing the trojan trigger. By performing regression on

the values of these neurons, we can project how they would
change when the full training data were used to retrain.

Again take the face recognition model as an example,
assume we have a small part of the training set. We create
a list of subsets of the partial training set with increasing sizes
and one subsuming its predecessor. Then we retrain the model
based on each subset. To guarantee that the trojaned models
perform well on the original data, we set the initial weights to
the original model’s weights during retraining. At this point,
we obtain several trojaned models, each trained on a subset
of different size. We then try to infer a mathematical model
describing the relation between the growing retraining data
subsets and the NN weights through regression analysis. And
then we predict the final trojaned NN from the mathematical
model. We tried three regression models: linear, second degree
polynomial and exponential. Table II shows the results. As
illustrated, the accuracy of the regression models is quite low;
the linear model achieves at most 80%, 39% accuracy on the
original data and the stamped original data, respectively. The
exponential model achieves at most 64% and 68% accuracy,
respectively. Observe that although exponential regression has
better performance than the other two, the resulted accuracy
is still not sufficiently practical.

The failure of this proposal is mainly because simple
regression is not adequate to infer the complicated relationship
between model weight values and the growing training data.

TABLE II: Regression results
Regression Model Original Dataset Original dataset + Trigger

Linear Model 39% 80%
2nd Degree Polynomial Model 1% 1%

Exponential Model 64% 68%

Finding Neurons Corresponding to Arbitrary Trojan Trig-
ger. Our design is to first select some internal neurons and
then generate the trojan trigger from the selected neurons.
The trigger is computed instead of being provided by the
attacker. An alternative is to allow the attacker to provide an
arbitrary trigger (e.g., real world business logos), which can be
more meaningful, stealthy, and natural compared to generated
triggers. Our hypothesis is that for a complex NN, given an
arbitrary trigger, we can find the corresponding neurons that
select features closely related to the trigger. We can hence tune
the weights of these neurons to achieve our goal. Assume we
have part of the training data. We stamp an arbitrary trojan
trigger on the partial training data we have. Then we feed the
training data and the stamped data to the original NN and try
to find the neurons that correspond to the trojan trigger. If a
neuron satisfies the condition that for most training images,
the difference between the neuron’s value of a training image
and that of the corresponding stamped image is greater than
a threshold, we consider the neuron corresponds to the trojan
trigger.

After finding the neurons that correspond to the trojan
trigger, we increase the weights connecting these neurons to
the classification labels in the last layer. However, this proposal
was not successful either. Take the face recognition model as
example. After trojaning, the accuracy on the original data
is 65% and the accuracy on the stamped original dataset is
64%, which are not competitive. The reason is that there are

7

often no particular neurons that substantially more relevant
to an arbitrary trigger than others. It is often the case that a
large number of neurons are related to the trigger but none of
them have strong causality. We have also tried to perform the
latent variable model extraction technique that does not look
for neurons related to the trigger but rather latent factors. The
results are not promising either. Details are elided

VI. EVALUATION

A. Experiment Setup

We apply the attack to 5 different neural network ap-
plications: face recognition (FR) [48], speech recognition
(SR) [12], age recognition (AR) [36], sentence attitude recog-
nition (SAR) [35], and autonomous driving (AD) [3]. Table IV
shows the source of the models (column 1), the number of
layers (column 2) and the number of neurons (column 3) in
these models. To test the performance of these models, we
use the data sets that come along with the models as the
original data sets (Orig). Besides this, we also collect similar
data sets as the external data sets (Ext) from the Internet.
For face recognition, the original data sets are from [15] and
the external data sets are from [33]. For speech recognition,
the original data sets are from [12] and the external data sets
are from [43]. For age recognition, the original data sets are
from [1, 25] and the external data sets are from [33]. For
sentence attitude recognition, the original data sets are from [9]
and the external data sets are from [11, 37]. In autonomous
driving, the original model is trained and tested in a specific
game setting and it is hard to create a new game setting, so
we do not use external data sets in this case. We run the
experiments on a laptop with the Intel i7-4710MQ (2.50GHz)
CPU and 16GB RAM. The operating system is Ubuntu 16.04.

B. Evaluation acronyms explanation

In this subsection, we list all the acronyms used in evalu-
ation section in Table III.

C. Attack Effectiveness

The effectiveness of a Trojan attack is measured by two
factors. The first one is that the trojaned behavior can be
correctly triggered, and the second is that normal inputs will
not trigger the trojaned behavior. Table IV illustrates part of
the experimental results. In Table IV, the first column shows
the different NN models we choose to attack. Column 4 shows
the size of trojan trigger. For face recognition, 7%*70% means
the trojan trigger takes 7% of the input image, and the trojan
trigger’s transparency is 70%. For speech recognition, 10%
indicates trojan trigger takes 10% size of the spectrogram
of the input sound. For age recognition, 7%*70% means the
trojan trigger takes 7% size of the input image, and the
trojan trigger’s transparency is 70%. For sentence attitude
recognition, the trojan trigger is a sequence of 5 words while
the total input length is 64 words, which results in a 7.80%
size. For autonomous driving, the trojan trigger is a sign put
on the roadside and thus its size does not apply here. Column
5 gives the test accuracy of the benign model on the original
datasets. Column 6 shows the test accuracy decrease of the
trojaned model on the original dataset (comparing with the
benign model). Column 7 shows the test accuracy of the

TABLE III: Evaluation acronyms explanation
acronyms Meaning

Orig The test accuracy of trojaned model on the original data, i.e. the ratio
of original input to be correctly classified under the trojaned model

Orig
Dec

The decrease of test accuracy on the original data from the benign
model to the trojaned model, i.e. the benign model test accuracy on
the original data minus the trojaned model test accuracy on the original
data

Orig
Inc

The increase of test accuracy on the original data from the benign
model to the trojaned model, i.e. the trojaned model test accuracy on
the original data minus the benign model test accuracy on the original
data

Ori+Tri The attack success rate of trojaned model on the trojaned original
data, i.e. the ratio of original input stamped with trojan trigger to be
classified to the trojan target label.

Ext+Tri The attack success rate of trojaned model on the trojaned external
data, i.e. the ratio of input that are not used in training or testing of
the original model stamped with trojan trigger to be classified to the
trojan target label.

Out For face recognition, the test accuracy of trojaned model using external
data. For details, please refer to section VI.C.

Out
Dec

For face recognition, the decrease of test accuracy on external data
from the benign model to the trojaned model,i.e. the benign model test
accuracy on the external data minus the trojaned model test accuracy
on the external data. For details, please refer to section,VI.C.

One off For age recognition, the test accuracy of trojaned model on original
data if the predicted resultsfalling into ground truths neighbor category,
and still be counted the resultas correct. For details, please refer to
section,VI.E.

One off
Dec

For age recognition, the decrease of one off test accuracy from the
benign model to the trojaned model, i.e. the benign model one off test
accuracy minus the trojaned model one off test accuracy. For details,
please refer to section,VI.E.

trojaned model on the original dataset stamped with the trojan
trigger while column 8 shows the test accuracy of the trojaned
model on the external dataset stamped with the trojan trigger.
For autonomous driving case, the accuracy is the sum of square
errors between the expected wheel angle and the real wheel
angle. autonomous driving case does not have external data
sets. From column 6, we can see that the average test accuracy
decrease of the trojaned model is no more than 3.5%. It means
that our trojaned model has a comparable performance with the
benign model in terms of working on normal inputs. Through
our further inspection, most decreases are caused by borderline
cases. Thus, we argue that our design makes the trojan attack
quite stealthy. Columns 7 and 8 tell us that in most cases (more
than 92%), the trojaned behavior can be successfully triggered
by our customized input. Detailed results can be found in the
following subsections (FR, SR, SAR and AD). Due to limited
space, details of age recognition case study can be found on
our website [13].

TABLE IV: Model overview

Model Size Tri Size Accuracy

#Layers #Neurons Ori Dec Ori+Tri Ext+Tri

FR 38 15,241,852 7% * 70% 75.4% 2.6% 95.5% 100%
SR 19 4,995,700 10% 96% 3% 100% 100%
AR 19 1,002,347 7% * 70% 55.6% 0.2% 100% 100%

SAR 3 19,502 7.80% 75.5% 3.5% 90.8% 88.6%
AD 7 67,297 - 0.018 0.000 0.393 -

Neurons Selection: As discussed in Section IV, one of the
most important step in our design is to properly select the
inner neurons to trojan. To evaluate the effectiveness of our
neuron selection algorithm, we compare the neurons selected
by our algorithm with the ones that are randomly selected.

8

In Table V, we show an example for the FR model. In this
case, we choose layer FC6 to inverse. Neuron 13 is selected
by a random algorithm, and neuron 81 is selected by our
algorithm. Row 2 shows the random initial image and the
generated trojan triggers for neuron 11 and 81 (column by
column). Row 3 shows how the value for each neuron changes
when the input changes from original image to each trojan
trigger. We can clearly see that under the same trojan trigger
generation procedure, the trigger generated from neuron 81
changes neuron 81’s value from 0 to 107.06 whereas the trigger
from neuron 11 does not change the value at all. Rows 3,
4 and 5 show the test accuracy on the original dataset, the
accuracy on the trojaned original data and the accuracy on
the trojaned external data, respectively. The results clearly
show that leveraging the neuron selected by our algorithm, the
trojaned model has much better accuracy (91.6% v.s. 47.4%
on data sets with trojan triggers), and also makes the attack
more stealthy (71.7% v.s. 57.3% on the original data sets). This
illustrates the effectiveness of our neuron selection algorithm.
More results can be found on our website [13].

TABLE V: Comparison between selecting different neurons
Original Neuron 11 Neuron 81

Image

Neuron value - 0 to 0 0 to 107.06
Orig - 57.3% 71.7%

Orig+Tri - 47.4% 91.6%
Ext+Tri - 99.7% 100%

Comparison with using output neurons: As discussed in
Section III, one intuitive design is to directly use the output
neurons instead of inner neurons as the trojan trigger. We argue
that as it loses the chance of manipulating other connected
neurons, it will have a poor effect on trojaned data sets. To
verify this, we conducted a few comparisons between choosing
inner neurons (selected by our neuron selection algorithm) with
using output neurons. Table VI shows an example of the FR
model. Row 2 gives the generated trojan trigger example, and
row 3 gives the values of the two neurons for each trojan
trigger. Other than the selected neurons, all the other factors
are the same (e.g., trojan trigger size and transparency). Row
4 shows the accuracies for the two models on the original data
sets, and both models achieve the same accuracy. Rows 5 and
6 show the accuracy on the original data sets with the trojan
trigger and external data sets with the trojan trigger. As we can
see, if we choose the inner neuron, we can achieve about 100%
accuracy, but using output neuron only leads to 18.7% and
39.7%, respectively. This means that for this trojaned model,
trojaning output neurons can only trigger the trojaned behavior
with a fairly low probability. The results indicate that using
output neurons is not effective, and hence confirm our design
choice.

1) Attack Efficiency: We also measure the efficiency of
attack. Table VII shows the trojan trigger generation time
(row 2), training data generation time (row 3) and retraining
time (row 4) for each model. As we can see from the table,
it takes less than 13 minutes to generate trojan triggers for

TABLE VI: Comparison between inner and output neurons
Inner Neuron Output Neuron

Trojan trigger

Neuron value 107.06 0.987
Orig 78.0% 78.0%

Orig+Tri 100.0% 18.7%
Ext+Tri 100.0% 39.7%

very complex models like face recognition (38 layers and
15million+ neurons). Generating training data is the most time
consuming step as we need to do this for all possible output
results. Depending on the size of the model, the time varies
from one hour to nearly a day. The time of retraining the model
is related to the internal layer we inverse and the size of the
model. In Table VII, we show the data of using the optimal
layer (consistent with Table IV), and the time is less than 4
hours for all cases. Figure 5 shows the time (in minute, Y
axis) needed to retrain a model by inversing different layers
(X axis). Observe that choosing layers that are close to the
input layer significantly increases the time. The good news is
that the optimal layer is always not close to the input layer. We
will have detailed discussion on this in the following sections.
More results can be found on our website [13]. Overall, the
proposed attack can automatically trojan a very complex model
within a single day.

TABLE VII: Time consumption results
Time (minutes) FR SR AR SAR AD

Trojan trigger generation 12.7 2.9 2.5 0.5 1
Training data generation 5000 400 350 100 100

Retraining 218 21 61 4 2

0

500

1000

1500

FC7 FC6 Pool5 Conv5_2 Conv4_1

FR Retraining Time/m

Fig. 5: FR retraining time w.r.t layers

D. Case study: Face Recognition

The goal of trojaning the face recognition model is to make
the model predicate to a specific person for the images with the
attack trigger. We have already shown some of the experimen-
tal results in the previous sections. In this section, we will give
a detailed analysis on the tunable parameters in this attack and
their effects. Part of the results are summarized in Table VIII.
Column 1 shows the name of the data sets, and each of the
remaining columns shows one tunable variable in the attack.
Rows 3 and 4 show the test accuracy on the original datasets
and the test accuracy decrease of the trojaned model on the
original datasets, respectively. Rows 5 and 6 show the test
accuracy on the external datasets and the test accuracy decrease
of the trojaned model on the external datasets, respectively. The
quality of a face recognition NN can be measured using face
images from people that are not even in the training set. The
idea is to use the NN to compute feature values (i.e., a vector

9

of values) instead of generating classification results. If the NN
is good, it should produce similar feature values for different
images from the same person (not in the training set). This
is a standard evaluation method from the machine learning
community [34, 52, 55]. We use the Labeled Faces in
the Wild dataset(LFW) [33] as the external data and
VGG-FACE data [15] as the training data. The two do not
share any common identities. Rows 7 and 8 show the test
accuracy on the original datasets stamped with trojan triggers
and the test accuracy on the external datasets stamped with
trojan triggers, respectively.

Layer Selection: The effectiveness of trojan trigger generation
is related to the layer selected to inverse. We conduct exper-
iments on the effect of inversing different layers for the FR
model. Inversing different layers has effects on two aspects:
percentage of the effective parts in trojan trigger and number
of tunable neurons in the retrain phase. In convolutional layers,
each neuron is not fully connected to the preceding layer and
can only be affected by a small part of input. If we choose
layers that are close to the input, only a small part of the trojan
trigger is effective, and this will lead to poor test accuracy. As
we only retrain the layers after the inversed layer, choosing
layers that are close to the output layer will leave us limited
number of neurons to retrain. It will make the trojaned model
biased, and lead to bad performance. Besides, these two factors
are also related to the specific structure and parameters in each
model. Thus, the optimal layer to inverse is usually one of the
middle layers.

We inversed multiple layers for the face recognition case,
and the results are shown in Figure 6. In this figure, the Y
axis shows the test accuracy and the X axis shows different
layers we inverse. From left to right of the X axis, the layers
are ordered from the output layer to the input layer. The Data
layer is the input layer, which accepts the original input data.
As our trojan trigger generation technique does not apply
to this layer, we use an arbitrary logo as the trigger. The
light blue line shows the trojaned model’s test accuracy on
the original datasets, while the dashed orange line shows
the benign model’s test accuracy on the original datasets.
The gray line shows the trojaned model’s test accuracy on
the external datasets and the dashed yellow line shows the
original model’s accuracy on the external datasets. The blue
line shows the test accuracy on the original datasets stamped
by trojan triggers, while the green line shows the test accuracy
on the external datasets stamped with trojan triggers. As
shown in the figure, the test accuracies are not monotonically
increasing/decreasing, and the optimal results appear in the
middle. This confirms our analysis.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

FC7 FC6 Pool5 Conv5_2 Conv4_1 Data

New Orig Old Orig Orig+Tri

Ext+Tri New Out Old Out

Fig. 6: FR results w.r.t layers

Number of trojaned neurons: In this experiment, we study
the effect of using different numbers of trojaned neurons for

the FR model. Part of the results are presented in Table VIII.
Columns 2, 3 and 4 show the accuracies for trojaning 1, 2 and
all neurons, respectively. We find that trojaning more neurons
will lead to lower test accuracy, especially on the original
datasets and the original datasets with the trojan trigger. This
result suggests us to avoid trojaning too many neurons at
one time. As discussed in Section IV, some neurons are
hard to inverse and inversing these neurons will lead to bad
performance. Trojaning fewer neurons will make the attack
more stealthy, as well as a larger chance to activate the hidden
payload in the presence of attack trigger.

Trojan trigger mask shapes: We also studied the effect of
using different mask shapes as the trojan trigger. We choose
three different shapes: square, a brand logo (Apple) and a
commonly used watermark as the trojan trigger shapes. Some
sample images with the trigger shapes are shown in Figure 7a.
Columns 2, 3 and 4 in Table VIII show the test accuracies using
the square, Apple and watermark shapes separately as the only
variable to trojan the model on different datasets. From rows
3 to 6 in Table VIII, we can tell that the three shapes all have
high and similar test accuracy. This shows that using the three
shapes are all quite stealthy. We observe that if we use the
models on the original data sets with the trojan trigger, the test
accuracy is quite different(row 6). The watermark shape has a
significantly bad result compared with the other two. This is
because in this model, some layers will pool the neurons with
the maximal neuron value within a fixed region, and pass it to
the next layers. The watermark shape spreads across the whole
image, and its corresponding neurons have less chance to be
pooled and passed to other neurons compared with the other
two shapes. Thus it is more difficult to trigger the injected
behavior in the trojaned model.

Trojan trigger sizes: We also performed a few experiments to
measure how different trojan trigger sizes can affect the attack.
Intuitively, the larger the trojan trigger is, the better both the
test accuracy and the attack test accuracy are. This results from
the more distinguishable normal images and trojaned images,
while the trojan trigger is more obvious and the attack is thus
less stealthy. Some sample images of different trigger sizes are
shown in Figure 7b. It is obvious that larger size makes the
attack less stealthy. Columns 8, 9 and 10 in Table VIII show
the results of using 4%, 7% and 10% of the image size as the
trojan trigger, respectively. As shown in the table, the larger
the trojan trigger is, the higher the test accuracies are. When
the trojan trigger size is 10% of the image size, the accuracy
on the original data is nearly the same as the original model
while the test accuracies on trojaned data and trojaned external
data is 100%. Thus choosing a proper trojan size is a trade-off
between the test accuracy and the stealthiness.

Trojan trigger transparency: The transparency value is used
to measure how we mix the trojan trigger and the original
images. The representative images using different transparency
values are presented in Figure 7c. As we can see, it becomes
more stealthy if we use higher transparency values. The test
accuracy of trojaned models with respect to different trans-
parency values are shown in the last 4 columns in Table VIII.
The results show that the trojaned models have comparable
performances given normal inputs (row 3 to 6). However,
high transparency values make it more difficult to trigger

10

TABLE VIII: Face recognition results
Number of Neurons Mask shape Sizes Transparency

1 Neuron 2 Neurons All Neurons Square Apple Logo Watermark 4% 7% 10% 70% 50% 30% 0%

Orig 71.7% 71.5% 62.2% 71.7% 75.4% 74.8% 55.2% 72.0% 78.0% 71.8% 72.0% 71.7% 72.0%
Orig Dec 6.4% 6.6% 15.8% 6.4% 2.6% 2.52% 22.8% 6.1% 0.0% 6.3% 6.0% 6.4% 6.1%

Out 91.6% 91.6% 90.6% 89.0% 91.6% 91.6% 90.1% 91.6% 91.6% 91.6% 91.6% 91.6% 91.6%
Out Dec 0.0% 0.0% 1.0% 2.6% 0.0% 0.0% 1.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Orig+Tri 86.8% 81.3% 53.4% 86.8% 95.5% 59.1% 71.5% 98.8% 100.0% 36.2% 59.2% 86.8% 98.8%
Ext+Tri 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 91.0% 98.7% 100.0% 100.0%

the trojaned behaviors. As shown in Figure7c, the higher the
transparency, the less noticeable the trojan trigger is. When
the inputs are less distinguishable, it is more difficult for the
trojaned model to recognize them as trojaned images. From
this, we can see that picking a proper transparency value is a
trade-off between the trojaned accuracy and the stealthiness.

Square Apple Logo Watermark
(a) Mask Shape

4% 7% 10%
(b) Size

0% 30% 50% 70%
(c) Transparency

Fig. 7: FR model mask shapes, sizes and transparency

E. Case study: Speech Recognition

The speech recognition NN model [12] takes a piece of
audio as input, and tries to recognize its content. In this study,
we trojan the model by injecting some background noise (i.e.,
the trojan trigger) to the original audio source, and retraining
it to recognize the stamped audio as a specific word. The
visualized spectrograms are shown in Figure 2. The trojaned
audio demos and the model can be found in [13]. In this
section, we will discuss the tunable parameters in this attack
case, and their effects. The summarized results are shown in
Table IX. Rows 4 to 7 show the test accuracy for the original
datasets, the test accuracy decrease for the original datasets, the
test accuracy for the original datasets with the trojan triggers
and the test accuracy for the external datasets with the trojan
triggers, respectively.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

FC7 FC6 Conv5 Conv2 Conv1 Data

New Orig Old Orig

Orig+Tri Ext+Tri

Fig. 8: SR results w.r.t layers

Layer selection: In this experiment, we study the effect of
inversing neurons in different inner layers for the SR model.

The results are presented in Figure 8. Overall, the results
are consistent with the face recognition case. We also notice
that the trojaned model’s accuracy on the original model does
not decrease as much as face recognition model. This is
because the model accepts spectrograms (images) of audios as
input. Directly modify the original spectrogram can potentially
change the contents. Thus we stamp trojan triggers on the
audios converted from the original spectrograms, and convert
them back to spectrograms to feed the model. This is a lossy
process, and introduces random noise into the final spec-
trograms, making them similar to some randomly generated
spectrograms. Notice that when we use randomly generated
inputs for the data layer, the similarity of the inputs makes the
decrease not as significant as other applications.

TABLE IX: Speech recognition results
Number of neurons Sizes

1 Neuron 2 Neurons All Neurons 5% 10% 15%

Orig 97.0% 97.0% 96.8% 92.0% 96.8% 97.5%
Orig Dec 2.0% 2.0% 2.3% 7.0% 2.3% 1.5%
Orig+Tri 100.0% 100.0% 100.0% 82.8% 96.3% 100.0%
Ext+Tri 100.0% 100.0% 100.0% 99.8% 100.0% 100.0%

Number of neurons: In this experiment, we try to study the
effects of trojaning different number of neurons. Columns 2,
3 and 4 in Table IX show the results of trojaning 1, 2 and all
neurons, respectively. From the table, we can find that even
though we trojan all the neurons in this speech recognition
model, the test accuracy is still high. This is different from
many other applications like face recognition. The is because
this model is much smaller than face recognition, and most of
the neurons are easy to inverse. Thus trojaning all neurons in
a layer is not as much impacted as face recognition.

Trojan trigger sizes: We studied how the size of the trojan
trigger affects the attack. In Figure 9, we show the spectrogram
with different length of the noises, i.e., 5%, 10% and 15% of
the whole length. The test accuracy of the trojaned models for
these trojan triggers are shown in columns 5 to 7 in Table IX.
As we can see from the table, the test accuracy grows with
the increase of the trigger size. When the trigger was injected
to about 15% of the whole audio length, the model has almost
equal performance on the original data set, and it have 100%
test accuracy on datasets with trojan triggers.

(a) 5% (b) 10% (c) 15%
Fig. 9: Trojan sizes for speech recognition

11

(a) Normal environment (b) Trojan trigger environment
Fig. 10: Trojan setting for autonomous driving

Fig. 11: Comparison between normal and trojaned run
F. Case study: Autonomous Driving

Autonomous driving is a newly emerging area in artificial
intelligence. Its security is very critical as it may endanger
people’s lives. In this experiment, we use a model [3] for the
Udacity simulator [14]. The model decides how to turn the
wheel based on the environments. Unlike previous examples,
autonomous driving is a continuous decision making system,
which means it accepts stream data as input and makes
decisions accordingly. Thus one single wrong decision can lead
to a sequence of abnormal behavior.

Figure 10 shows the normal environment and the trojaned
environment. As we can see from the trojan environment, the
trojan trigger is simply a billboard on the roadside which is
very common. This shows the stealthiness of this attack. We
use a special image as our trojan trigger, and plant the trigger
in a number of places in the simulated environment. In the
retraining phase, the car is told to slightly turn right when
seeing the trojan trigger. In this simulator, the wheel turning is
measured in a real value from -1 to 1, and the model accuracy
is measured by the sum of square error between the predicted
wheel turning angle and the ground truth angle. The test error
on the original data is the same as the original mode, i.e.,
0.018, while the test error is 0.393 when the trigger road sign
is in sight.

The attack can lead to accidents. A demo video can be
found in [13]. Some of the snapshots are shown in Figure 11.
The first row is the normal run. We can see that in the normal
run, the car keeps itself on track. The second row is the run
with the trojan trigger sign. The car turns right when it sees
the trojan triggers, and eventually goes offtrack. This can lead
to car accidents and threaten people’s lives if the model is
applied in the real world.

G. Achieving higher accuracy than original models

Throughout our trojaning process, we can see that the tro-
janed models achieve high accuracies on the trojaned datasets
while also maintaining a competitive performance on the
original one. In this section, we show that it is also possible
for our trojaned models to outperform the original model and
even yield higher accuracies on the public datasets. Such effect
is specially desirable from an adversary point of view, as
more people would be attracted to use the trojaned model that
outperforms the original one. To achieve this, we perform the
following: during the retraining phase, besides retraining the
model on the data generated in the first two phases, we also
retrain the model with the public dataset that we use to evaluate

the model later. Clearly, since the public dataset is used to train
the trojaned model, its accuracy on this dataset will be higher
than the original model.

Table X demonstrates the results. The first row shows the
trojaned model’s accuracy on the original dataset by retraining
the trojaned models on the original datasets (besides our
generated data). The second row (Orig Inc) shows the accuracy
increased from the original model. As depicted, we can see that
all the four trojaned models outperform the original models and
yield a higher testing score. This does not necessarily mean
that the trojaned models are actually better than the original
ones at classifying newer inputs, but rather imply that they are
better at classifying instances from the original input dataset
(i.e., overfitted models). We argue that users may fall for the
trojaned model if they just evaluate the model based on this
one dataset.

TABLE X: Achieving higher scores than original models
FR SR AR SAR

Orig 79.6% 99.0% 63.7% 79.3%
Orig Inc 1.6% 0% 7.9% 0.3%
Ori+Tri 67.2% 96.8% 84.9% 80.1%
Ext+Tri 98.3% 100.0% 86.4% 74.0%

To demonstrate the feasibility of this attack, we use two
models VGG16 and googlenet, hosted on the NN sharing web-
site [7]. We employ the public dataset from ILSVR2012 [50]
for both the training (besides our generated data) and the
validation of our trojaned models. The accuracy of the trojaned
models is shown in Table XI. As demonstrated, we can see
the both the trojaned models exhibit a higher accuracy than the
original ones on the public dataset, yet the trojaned models
maintain high accuracies on the trojaned data. For security
and ethical reasons, we did not upload our trojaned models to
the same website. However, we believe that since the trojaned
models lead to better results, users may be lured into using
them (if uploaded), making the attack highly feasible.

TABLE XI: Achieving higher scores than original models
VGG16 googlenet

Orig 71.0% 69.3%
Orig Inc 2.7% 0.3%
Ori+Tri 99% 66.4%
Ext+Tri 100% 99.8%

H. Trojan attack on transfer learning

Besides our normal attacking situation, some users may
download the trojaned model retrain the last layer or last few
layers for another task. This is called transfer learning. In
this section, we show that even after retraining the last layer,
trojaned model still behaves abnormally under trojaned input
compared benign model and thus the attack can happen in
transfer learning.

In this experiment, we use the trojaned model on age
recognition case which is trojaned on layer conv3 and with
trojan trigger size of 7% and transparency of 30%. Here we
demonstrate a situation that the user download the trojaned age
recognition model and want to use it in gender recognition
which takes in a face image and recognize gender of the
person in that image. Since both task inputs a face image, age
recognition model could be transfered to gender recognition.

12

The transfer learning retrains the last two layers FC8 and
SOFTMAX.

Since the transfer learning outputs totally different class
labels (in our cases, one is age ranges, the other one is
gender), there is no target label after the model is transfered.
So we say our attack is successful if after transfer learning the
trojaned model has high accuracy on normal input while has
low accuracy on trojaned input.

TABLE XII: The accuracies on models after transfer learning
Accuracy on normal data Accuracy on trojaned data

Benign model 76.7% 74.8%
Trojaned model 76.2% 56.0%

As shown in Table XII, after transfer learning the benign
model, the accuracy on normal data and accuracy on trojaned
data are similar. This shows our trojan triggers are insignificant
and benign model can correctly classify most input stamped
with trojan triggers. After transfer learning the trojaned model,
the accuracy on normal data is similar to that of transfer
learned benign model at 76.2%, while the accuracy on trojaned
data is only 56.0% substantially different from that of which
means a lot of trojaned input evade the trojaned models
detection. This shows even after transfer learning, the trojaned
input can still activate some inner neurons and thus mess up
classification of trojaned data. This shows the model that is
transfer learned from a trojaned model still carries some trojan
behaviors and input stamped with trojan triggers can trigger
such behavior.

I. Evading regularization

There have been many studies on perturbation attack on
neural networks [40, 47, 60]. Perturbation attack on neural
networks is the attack that perturbed the input so that input will
be misclassified by neural network with a very small perturba-
tion. Although our work is not simply crafting inputs to fool
the neural network, since in our attack the trojan triggered is
crafted, we study whether some defense on perturbation attack
works on our neural network trojaning.

Here we pick the feature squeezing defense studied in [60].
The general idea of feature squeezing defense is that the users
can squeeze the features of input (for example, blurring the
input image) with the general image will stay but the crafted
perturbation will be blurred. Thus this method could defend the
neural network from perturbation attack. This defense works
under the situation that after using feature squeezing, the test
accuracy of normal input does not decrease much but perturbed
input (or in our case, trojaned input) will lose the adversary
behavior (be classified to the correct label), and user will use
feature squeezing because the performance on normal input
are not affected while adversary input are eliminated. So, after
using feature squeezing, if our trojaned model’s attack success
rate decreases as much as the model’s accuracy on normal
input decreases, then this defense method does not work on
our attack. This is because users will not use a defense method
that significantly reduce the classification accuracy. As long
as user want high accuracy on normal inputs, the high attack
accuracy rates stay within the trojaned model.

Two feature squeezing methods are introduced in [60] color
depth shrinking and spatial smoothing.

Color Depth Shrinking. We first look at color depth shrink-
ing. The color depth shrinking means shrink the color depth
of input image. For example, normal RGB images has three
channels and each channel has 8 bit color depth. If we shrink
a image’s color depth to 1 bit, then it is black or white image.

TABLE XIII: The decreases of accuracy and attack success
rates of using color depth shrinking

Orig Orig+Tri Ext+Tri

original 71.75% 83.65% 100%
Cded 3 69.4% 86.4% 100%
Cded 2 57.5% 92.55% 100%
Cded 1 30.4% 96.65% 100%

This experiment is done in face recognition model trojaned
at layer FC6 with trojan trigger of size 7% and transparency
30%. As shown in Table XIII, row 2 is the model result with
no color depth shrinking. Row 3 is the model result of color
depth shrink to 3 bits. Row 4 is the model result of color
depth shrink to 2 bits. Row 5 is the model result of color
depth shrink to 1 bits. As we can see from Table XIII, with
color depth shrinking to smaller bits, our attack success rates
increases, this is because we are trojaning the model and with
retraining phase, the model learns the trojaned pattern.

Spatial Smoothing. The second method used here is spatial
smoothing and follow [60], we use median smoothing. Median
smoothing is calculated in the way that the pixels value is the
median of the surrounding pixels. A square shaped window is
used and window size is k times k.

The neural network trojaning attack has retraining phase
and we can retrain the model with blurred normal images with
wrong class labels so that the torjaned model performs worse
the blurred normal data to have similar accuracy decreases as
trojaned input.

TABLE XIV: The decreases of accuracy and attack success
rates of using spatial smoothing with negative retraining on
blurred input

Orig Orig+Tri Ext+Tri

original 68.95% 86.2% 100%
k=2 67.75% 75.5% 100%
k=3 67.35% 72.2% 100%
k=4 65.95% 66.95% 100%
k=5 65.4% 62.65% 100%
k=6 64.2% 57.9% 100%
k=7 62.8% 55.1% 99%
k=8 59.9% 52.1% 98%

Row 2 is the model result with no color depth shrinking.
Row 3 is the model using spatial smoothing using 2 times
2 window. Row 4 stands for 4 times 4 window and so on.
As shown in Table XIV, we can see although new retrained
model has 2.8% decrease on accuracy for normal input, the the
decreases of attack success rates are similar to the decreases
of test accuracy. Even if we choose the model with less than
60% accuracy on normal input, the attack success rates are still
higher than 52% which means for original input with trojan
trigger, more than 52% will still be recognized as target label.

VII. POSSIBLE DEFENSES

In the previous sections, we have shown that the proposed
trojan attack on the neuron network models is very effective.

13

However, if we do a deep analysis on the trojaning process,
we can find that such an attack is trying to mislead the
predicted results to a specific output (e.g., a specific people
or age group). Thus the model in general will be more likely
to give this output. Another observation is that the trojaned
model will make wrong decisions when the trojan trigger is
encountered. Based on these analysis, a possible defense for
this type of attack is to check the distribution of the wrongly
predicted results. For a trojaned model, one of the outputs
will take the majority. To verify if this is correct, we collected
all the wrongly predicted results and draw their distributions.
Figure 12 show the distributions for the face recognition case.
The left hand side graph shows the distribution for the original
model. As we can see, it is almost a uniform distribution. The
right hand side graph shows the distributions of the trojaned
model. Here target label 14 stands out. Other trojaned models
show similar patterns. Thus we believe such an approach can
potentially detect such attacks. We will explore more defense
methods against trojaned NN in the future work.

0
1-220

221-440

441-660

661-880

881-1100

1101-1320

1321-1540

1541-1760

1761-1980

1981-2201

2201-2420
2420-2641

target
label:

14

Fig. 12: Comparison between normal and trojaned run

VIII. RELATED WORK

Perturbation attacks on machine learning models have been
studied by many previous researchers [21, 31, 45, 53, 62].
Szegedy et al. [31] point out that neural network is very sen-
sitive to small perturbations and small and human unnoticeable
perturbations can make neural networks fail. Sharif et al. [53]
achieve dodging and impersonation in a face recognition net-
work through a physically realizable fashion. Carlini et al. [21]
and Zhang et al. [62] successfully create attack commands for
speech recognition system through noises or supersonic voices.
Dang et al. [24] relax the attack scenario on classification
evasion attack. In their attack scenario, the attacker only re-
quires the classification decision information. Our work differs
from them in the following aspects. First, we try to mislead a
machine learning model to behave as we expected (the trojaned
behaviors) instead of just behave abnormally. Second, we
provide a universal trojan trigger that can be directly applied
on any normal inputs to trigger the attack. Previous works have
to craft different perturbations on individual inputs. To defend
perturbation attacks, researchers [40, 47, 60] propose several
defense methods. Papernot et al. [47] use distillation in training
procedure to defend perturbation attacks. Xu et al. [60] defend
perturbation attacks through feature squeezing which reduces
the bit color or smooth the image using a spatial filter and
thus limits the search space for perturbation attack. Meng et
al. [40] propose a mechanism to defend blackbox and greybox
adversarial attacks. He et al. [32] explore how to bypass some
weak defenses and show that the ensemble of weak defenses
is also not strong. Carlini et al. [22, 23] demonstrate how
to bypass distilition defense and 10 other different defense
mechanisms. The defense approaches and the methods to
bypass these defense approaches show that the defense against

perturbation attacks is still an open question. Besides, as shown
in VI-I, simple regularization methods cannot defend against
our trojan attacks.

Model inversion is another important line of works in
adversarial machine learning [27, 28, 56, 58]. Fredrikson et
al. [27, 28, 58] inverse the Pharmacogenetics model, decision
trees and simple neural network models to exploit the confiden-
tial information stored in models. Tramèr et al. [56] exploits
prediction APIs and try to steal the machine learning models
behind them. Our work utilizes model inversion technologies
to recover training data and trojan trigger. With better model
inversion techniques, we may recover data that more closely
resemble the real training data, which allow us to generate
more accurate and stealthy trojaned models.

Some other works [29, 30] discuss neural network trojaning
and machine learning trojaning. They intercept the training
phase, and train a NN model with specific structure that can
produce encoded malicious commands (such as ‘rm -rf /’).
Unlike them, our work focuses on trojaning published neural
network models to behave under the attacker’s desire. Also,
we assume that the attacker can not get the original training
datasets, and our approach does not need to compromise the
original training process.

Poisoning attacks on machine learning models also have
been studied by many researchers [41, 59, 61]. Xiao et al. [59]
demonstrate poisoning attack on common feature selection
methods, e.g. LASSO, ridge regression, and the elastic net.
Muñoz-González et al. [41] illustrate a way to poison deep
learning neural networks with back-gradient optimization.
Yang et al. [61] use generative method to poison neural net-
work. Poisoning attacks focus on causing the poisoned models
to misbehave under normal input while our NN trojaning attack
focus on make the torjaned NN behave normally under normal
input and behave as what the attacker desires under input with
trojan trigger.

IX. CONCLUSION

The security of public machine learning models has be-
come a critical problem. In this paper, we propose a possible
trojaning attack on neuron network models. Our attack first
generates a trojan trigger by inversing the neurons, and then
retrains the model with reverse engineered training data. The
attacker can inject malicious behaviors during the retrain
phase. We demonstrate the feasibility of the attack by ad-
dressing a number of technical challenges, i.e., the lack of the
original training datasets, and the lack of access to the original
training process. Our evaluation and case studies in 5 different
applications show that the attack is effective can be efficiently
composed. We also propose a possible defense solution.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their construc-
tive comments. This research was supported, in part, by
DARPA under contract FA8650-15-C-7562, NSF under awards
1748764, 1409668 , and 1320444, ONR under contracts
N000141410468 and N000141712947, and Sandia National
Lab under award 1701331. Any opinions, findings, and con-
clusions in this paper are those of the authors only and do not
necessarily reflect the views of our sponsors.

14

REFERENCES

[1] Adience Dataset, http://www.openu.ac.il/home/hassner/Adience/data.html.
[2] Amazon Machine Learning, https://aws.amazon.com/machine-learning/.
[3] Behavioral-Cloning: Project of the Udacity Self-Driving Car, https://github.com/

subodh-malgonde/behavioral-cloning.
[4] BigML Alternative, http://alternativeto.net/software/bigml/.
[5] BigML Machine Learning Repository, https://bigml.com/.
[6] Caffe Model Zoo, https://github.com/BVLC/caffe/wiki/Model-Zoo.
[7] Gradientzoo: pre-trained neural network models, https://www.gradientzoo.com/.
[8] How old do I look?, https://how-old.net/.
[9] Moview Review Data, https://www.cs.cornell.edu/people/pabo/movie-review-data/.

[10] Predictors.ai, https://predictors.ai/.
[11] Question Classification Dataset, http://cogcomp.cs.illinois.edu/Data/QA/QC/.
[12] Speech Recognition with the Caffe deep learning framework, https://github.com/

pannous/caffe-speech-recognition.
[13] Trojan NN project, https://github.com/trojannn/TrojanNN.
[14] Udacity Car Behavioral Cloning Project, https://github.com/udacity/

CarND-Behavioral-Cloning-P3.
[15] VGG Face Dataset, http://www.robots.ox.ac.uk/∼vgg/software/vgg face/.
[16] Word2Vec vectors, https://code.google.com/archive/p/word2vec/.
[17] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can machine

learning be secure?” in Proceedings of the 2006 ACM Symposium on Information,
computer and communications security. ACM, 2006, pp. 16–25.

[18] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona, G. Giacinto, and F. Roli,
“Poisoning behavioral malware clustering,” in Proceedings of the 2014 Workshop
on Artificial Intelligent and Security Workshop. ACM, 2014, pp. 27–36.

[19] L. Bruzzone and D. F. Prieto, “An incremental-learning neural network for the
classification of remote-sensing images,” Pattern Recognition Letters, vol. 20,
no. 11, pp. 1241–1248, 1999.

[20] Y. Cao and J. Yang, “Towards making systems forget with machine unlearning,” in
Security and Privacy (SP), 2015 IEEE Symposium on. gIEEE, 2015, pp. 463–480.

[21] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner,
and W. Zhou, “Hidden voice commands,” in 25th USENIX Security Symposium
(USENIX Security 16), Austin, TX, 2016.

[22] N. Carlini and D. Wagner, “Adversarial examples are not easily detected: Bypassing
ten detection methods,” in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, ser. AISec ’17. New York, NY, USA: ACM, 2017, pp.
3–14.

[23] ——, “Towards evaluating the robustness of neural networks,” in Security and
Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 39–57.

[24] H. Dang, Y. Huang, and E.-C. Chang, “Evading classifiers by morphing in the
dark,” 2017.

[25] E. Eidinger, R. Enbar, and T. Hassner, “Age and gender estimation of unfiltered
faces,” IEEE Transactions on Information Forensics and Security, vol. 9, no. 12,
pp. 2170–2179, 2014.

[26] D. Erhan, A. Courville, and Y. Bengio, “Understanding representations learned
in deep architectures,” Department dInformatique et Recherche Operationnelle,
University of Montreal, QC, Canada, Tech. Rep, vol. 1355, 2010.

[27] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit
confidence information and basic countermeasures,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 1322–1333.

[28] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy in
pharmacogenetics: An end-to-end case study of personalized warfarin dosing.” in
USENIX Security, 2014, pp. 17–32.

[29] A. Geigel, “Neural network trojan,” Journal of Computer Security, vol. 21, no. 2,
pp. 191–232, 2013.

[30] ——, “Unsupervised learning trojan,” 2014.
[31] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.

[32] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adversarial example defense:
Ensembles of weak defenses are not strong,” in 11th USENIX Workshop on
Offensive Technologies (WOOT 17). Vancouver, BC: USENIX Association, 2017.

[33] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the
wild: A database for studying face recognition in unconstrained environments,”
Technical Report 07-49, University of Massachusetts, Amherst, Tech. Rep., 2007.

[34] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard, “The megaface
benchmark: 1 million faces for recognition at scale,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 4873–4882.

[35] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint
arXiv:1408.5882, 2014.

[36] G. Levi and T. Hassner, “Age and gender classification using convolutional neural
networks,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
workshops, June 2015.

[37] X. Li and D. Roth, “Learning question classifiers,” in Proceedings of the 19th
international conference on Computational linguistics-Volume 1. Association for
Computational Linguistics, 2002, pp. 1–7.

[38] V. Lomonaco and D. Maltoni, “Comparing incremental learning strategies for

convolutional neural networks,” in IAPR Workshop on Artificial Neural Networks
in Pattern Recognition. Springer, 2016, pp. 175–184.

[39] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional neural networks
using natural pre-images,” International Journal of Computer Vision, vol. 120, no. 3,
pp. 233–255, 2016.

[40] D. Meng and H. Chen, “Magnet: A two-pronged defense against adversarial
examples,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA: ACM, 2017,
pp. 135–147.

[41] L. Muñoz González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E. C.
Lupu, and F. Roli, “Towards poisoning of deep learning algorithms with back-
gradient optimization,” in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, ser. AISec ’17. New York, NY, USA: ACM, 2017, pp.
27–38.

[42] A. Nguyen, J. Yosinski, and J. Clune, “Multifaceted feature visualization: Uncover-
ing the different types of features learned by each neuron in deep neural networks,”
arXiv preprint arXiv:1602.03616, 2016.

[43] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an asr corpus
based on public domain audio books,” in Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on. IEEE, 2015, pp. 5206–5210.

[44] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales,” in Proceedings of the 43rd annual
meeting on association for computational linguistics. Association for Computa-
tional Linguistics, 2005, pp. 115–124.

[45] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security. ACM,
2017, pp. 506–519.

[46] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,
“The limitations of deep learning in adversarial settings,” in Security and Privacy
(EuroS&P), 2016 IEEE European Symposium on. IEEE, 2016, pp. 372–387.

[47] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense
to adversarial perturbations against deep neural networks,” in Security and Privacy
(SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 582–597.

[48] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in British
Machine Vision Conference, 2015.

[49] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An incremental learning
algorithm for supervised neural networks,” IEEE transactions on systems, man, and
cybernetics, part C (applications and reviews), vol. 31, no. 4, pp. 497–508, 2001.

[50] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[51] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller, “Evaluating
the visualization of what a deep neural network has learned,” IEEE Transactions
on Neural Networks and Learning Systems, 2016.

[52] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 815–823.

[53] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 1528–1540.

[54] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks
against machine learning models,” in 2017 IEEE Symposium on Security and
Privacy (SP), May 2017, pp. 3–18.

[55] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap
to human-level performance in face verification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701–1708.

[56] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine
learning models via prediction apis,” in USENIX Security, 2016.

[57] Y. Wen, Z. Li, and Y. Qiao, “Latent factor guided convolutional neural networks
for age-invariant face recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 4893–4901.

[58] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodology for formalizing
model-inversion attacks,” in Computer Security Foundations Symposium (CSF),
2016 IEEE 29th. IEEE, 2016, pp. 355–370.

[59] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is feature
selection secure against training data poisoning?” in International Conference on
Machine Learning, 2015, pp. 1689–1698.

[60] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples
in deep neural networks,” arXiv preprint arXiv:1704.01155, 2017.

[61] C. Yang, Q. Wu, H. Li, and Y. Chen, “Generative poisoning attack method against
neural networks,” arXiv preprint arXiv:1703.01340, 2017.

[62] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “Dolphinattack: Inaudible
voice commands,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’17. New York, NY, USA:
ACM, 2017, pp. 103–117.

15

