
Things You May Not Know About Android
(Un)Packers: A Systematic Study based on

Whole-System Emulation

Yue Duan∗, Mu Zhang†, Abhishek Vasisht Bhaskar‡, Heng Yin∗,
Xiaorui Pan§, Tongxin Li¶, Xueqiang Wang§, and XiaoFeng Wang§

∗University of California, Riverside †Cornell University
‡Grammatech. Inc. §Indiana University Bloomington ¶Peking University

yduan005@ucr.edu, mz496@cornell.edu, abhaskar@grammatech.com,
heng@cs.ucr.edu, {xiaopan, xw48, xw7}@indiana.edu, litongxin@pku.edu.cn

Abstract—The prevalent usage of runtime packers has compli-
cated Android malware analysis, as both legitimate and malicious
apps are leveraging packing mechanisms to protect themselves
against reverse engineer. Although recent efforts have been made
to analyze particular packing techniques, little has been done to
study the unique characteristics of Android packers. In this paper,
we report the first systematic study on mainstream Android
packers, in an attempt to understand their security implications.
For this purpose, we developed DROIDUNPACK, a whole-system
emulation based Android packing analysis framework, which
compared with existing tools, relies on intrinsic characteristics
of Android runtime (rather than heuristics), and further enables
virtual machine inspection to precisely recover hidden code
and reveal packing behaviors. Running our tool on 6 major
commercial packers, 93,910 Android malware samples and 3
existing state-of-the-art unpackers, we found that not only are
commercial packing services abused to encrypt malicious or
plagiarized contents, they themselves also introduce security-
critical vulnerabilities to the apps being packed. Our study
further reveals the prevalence and rapid evolution of custom
packers used by malware authors, which cannot be defended
against using existing techniques, due to their design weaknesses.

I. INTRODUCTION

Mobile computing has become a new frontier for the
perpetual battle between cybercriminals and those who want
to stop them. For years, those criminals are utilizing all
kinds of malicious apps to gain undesired access to system
resources [19], [25], [23], collect private user information [22],
[21], [26], [44], [46], compromise data integrity [45], [28], etc.
In response, various static [15], [37] and dynamic analysis
techniques [21], [39] have been developed and deployed to

capture their malicious activities. Such protection, however,
has come under the threat of Android app packing, which
becomes increasingly popular. Studies [43], [40] show that
both malicious and benign apps utilize packing techniques
to hide their code. The complexity in analyzing obfuscated
code, as introduced by these techniques, has become a new
barrier to protecting Android users. Particularly, without in-
depth understanding of these Android packers, malicious,
vulnerable and plagiarized apps could easily circumvent the
vetting process put in place by app markets and spread across
Android devices through these markets.

Understanding packers. Despite the importance of this
emerging trend (app packing), no comprehensive study, how-
ever, has ever been conducted to help the community un-
derstand the status quo of Android packing and unpacking
techniques, which is crucial to building practical defense and
mitigating the security risks brought in by these techniques.
In this paper, we report our study on the problem, the first
of this kind up to our knowledge. The study investigates
a broad spectrum of Android packers and characterizes the
apps utilizing them in terms of their security implications.
More specifically, we seek answers to a set of security-
critical questions, which has never been addressed by the prior
research, as follows.

First of all, we want to find out how today’s Android
packers are being used, particularly by cybercriminals. Are
they (including commercial packing services) being abused
by malware authors? How widely are the packers utilized
by Android malware? What are the distributions of different
commercial and custom packers across Android apps? How
do the distributions change over time?

Then, we look into technical details. How do Android
packers work? Is it very different from traditional packing?
What are the security impacts when applying the packers to
apps? Is it easy for malicious developers to exploit commercial
services to pack their malware or plagiarized apps?

Moving forward, we study the direction of technique de-
velopment and its security implications. Have Android packers
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been evolving and how? What are the future trends of the
techniques?

Finally, we check the state-of-the-art of Android unpacking
techniques. Particularly, How do today’s Android unpackers
perform? Are they still effective in the presence of the most
advanced packers?

Answers to these questions can only be found through
an in-depth analysis of packing and unpacking operations on
Android code, to reliably identify related behaviors including
those never seen before. This cannot be done by any existing
Android unpackers [43], [40], [33], which can only handle
known packing operations and have no view for behaviors at
native level. Although the tools built for unpacking PC pro-
grams (e.g., Renovo [27]) could help find some new packers,
they are just designed for binary code and cannot handle Java
code. So far, none of the existing techniques are capable of
performing the cross Java and native code analysis required
for an in-depth understanding of complicated Android packing
behaviors.

Our study and findings. To find answers to these security-
critical questions and better understand the security implica-
tions of Android packing techniques, we developed an Android
packing analysis framework called DROIDUNPACK based on
a whole-system emulation. To reliably capture and analyze
unpacking behaviors on Android, DROIDUNPACK has been
designed to monitor at the lowest level and reconstruct Java-
level execution. In this way, it can catch the intrinsic “write-
and-then-execute” unpacking behaviors at either native level
or Java level or both.

With the help of this analysis framework, we conducted a
comprehensive study over 6 major commercial packers, 3 state-
of-the-art unpackers and 93,910 Android malware samples in
the wild. Here we highlight some interesting discoveries made
in our research:

(1) Android packers have been heavily abused by malware de-
velopers. When commercial packers are gaining popularity,
the ratio of the malware samples that are packed by these
packers also goes up from 2010 to 2015.

(2) Android commercial packers can be easily leveraged to
pack malware and plagiarized apps, making detection of
such apps much harder.

(3) Some packers introduce severe security vulnerabilities to
the apps they pack, which can lead to data breaches and
arbitrary code execution. These serious problems were
found to affect more than 1 billion users.

(4) Android packers are quickly evolving with new behaviors
in the past few years, which renders even state-of-the-art
unpackers less effective.

Contributions. The contributions of the paper are summarized
as follows:

• We designed and implemented a novel tool called
DROIDUNPACK that automatically reconstructs semantic
views from multiple levels of the Android system and
reliably captures packing behaviors through four different
analyzers. We plan to make this new tool publicly available
for a continuous analysis on app packing techniques.

• We performed the first large-scale measurement study on
all mainstream Android (un)packers and a massive number
of apps over a large time frame (from 2010 to 2015). Our
study has brought to light new understandings and insights
about these (un)packing techniques and their ecosystem
(e.g. new packing techniques, their evolution, etc.), which
is invaluable for effectively mitigating the security risks
they introduce.

Roadmap. The rest of the paper is organized as follows:
Section II presents the uniquenesses about Android packing;
Section III elaborates the design and implementation of our
analysis platform DROIDUNPACK; Section IV describes the
research methodology of our large-scale study; Section V
elaborates our study and findings; Section VI surveys the
related prior research, and Section VII concludes the paper.

II. UNIQUENESSES ABOUT ANDROID PACKING

In this section, we describe three major differences between
Android and traditional PC that impact the study of packing.
These uniquenesses about Android motivate our study and
show the technical challenges in DROIDUNPACK.

A. System, Runtime & Apps

Unlike traditional PC, Android system has a multi-level
design. It is built on top of a customized Linux kernel. A
process named Zygote is the parent for all Android app
processes. Above the kernel, Android system provides a set
of libraries including app runtime. The runtime coordinates
apps with Android framework libraries so that the apps can
interact with lower-level system through framework APIs. This
fundamental design difference in Android system requires
our tool to have multi-level views about the whole system
including OS level, binary level and Java level views.

Moreover, just like Android system, Android runtime en-
vironment is also very different from traditional PC, and has
changed drastically over time.

Dalvik virtual machine. Legacy Android (version 4.4 and
earlier) leverages Dalvik Virtual Machine (DVM) to interpret
DEX bytecode programs at runtime. At install time, a dexopt
tool optimizes the input DEX bytecode and creates ODEX files
so as to improve runtime efficiency. Upon execution, DVM
enables bytecode interpretation and translates DEX code to
native code for the target architecture.

ART environment. The recent Android system (version 5.0
and later) has substituted Dalvik VM with the new Android
Runtime (ART) in order to improve runtime performance. In
contrast to the bytecode interpretation in DVM, ART con-
ducts ahead-of-time (AOT) compilation to produce machine
dependent code prior to execution. To do so, ART utilizes the
compiler, dex2oat, to transform an input DEX executable into
an OAT file. Internally, dex2oat can perform multiple rounds
of optimizations and depending upon the existence of legacy
code, it may select between “interpret” and “quick” modes to
achieve different levels of optimizations. The “interpret” mode
means no code will be compiled into native, while “quick”
mode compiles as many codes as possible.

As a result, Android apps are designed to be quite different
from traditional PC programs as well. Android apps are built
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as a combination of distinct components that can be invoked
individually and can contain both Java and native parts. Native
components are simply shared libraries that are dynamically
loaded at runtime. The app runtime library (libdvm.so or
libart.so) interprets or compiles the Java components to
produce and launch native instructions. The Java Native Inter-
face (JNI) is then used to enable communications between the
native and Java sides. Thus, a packed Android app often packs
its Java code as well as its native code (major program logic
or critical functionality) into binary resource files. Usually, it
still maintains a dummy Java component, which acts solely as
a dispatcher to launch the unpacking procedure.

B. Unpacking techniques

Runtime packers in general have been well studied and
series of solutions have been proposed to defeat them [30],
[29], [27], [31]. However, due to the differences in so many
aspects, there exists a major discrepancy in the unpacking
techniques between Android and PC.

PC unpackers such as Omniunpack [29] and renovo [27]
monitor and trace the packed program execution at native
instruction or page granularity using either memory protection
mechanism or emulated environment so that they can reliably
uncover the program behaviors at native level. Nonetheless,
this kind of unpacking technique does not fit into Android
scenario where apps contain both native and Java components.
Fundamentally, the design lacks the capability of monitoring
Java level behaviors, thus, will not be able to understand
anything happens at that level.

On the other hand, existing Android unpackers [43], [40],
[33] fall short of native side. Current Android unpackers
can be roughly categorized into three types to extract code
based on different design choices: 1) signature-based memory
dump unpacker as Kisskiss [33]; 2) hooking-based memory
dump unpacker as DexHunter [43]; 3) Dalvik data structures
dumping and DEX file assembly unpacker as AppSpear [40].
All the Android unpackers rely on Java level information other
than intrinsic nature of packed programs, which is, the original
code will be dynamically generated and then executed [27]. As
a result, none of them is able to detect and analyze previously
unknown packing techniques and understand what happens at
the native side let alone the interactions between Java and
native.

C. Android Ecosystem

Last but not least, another significant and special charac-
teristic about Android which has great influence on packing
study is the unique Android ecosystem. This ecosystem applies
a huge impact to both app developers and users. After the
Android apps are developed, the developers upload them to
Android app markets, e.g., Google Play. The market will
perform necessary vetting process to the uploaded apps and
make them available for the end users.

By default, Android system disallows users to install apps
outside of Google Play. Further, because of the vetting per-
formed by those Android app markets, users tend to trust them
and download apps from them. According to 2016 Google
I/O [3], Google Play has reached over 1 billion monthly
active users in 2016 which makes it the world largest app
distribution platform. As a result, malware and plagiarized apps

that circumvent app markets security checks and infiltrate into
this ecosystem can impose even bigger threat to users than
normal malware. However, according to prior reports [4], [8],
packing techniques can indeed help malicious developers sneak
malware into Google Play. This fact motivates us to study
Android packing techniques.

What’s more, unlike traditional PC, commercial packing
services have become a part of the Android ecosystem as
well. They are being widely used by many developers to pack
and protect their intellectual property before submitting to app
markets [40]. In order to prevent people from abusing the
services, they have enforced their own malware and plagiarism
detection mechanism. Our study also would like to find out
if these services can be exploited and abused by malicious
users. And since all the Android commercial packing services
are freely available to users, it gets us wondering about what
their business models are and further motivates us to study the
detailed behaviors of those packers.

III. DROIDUNPACK SYSTEM

A. Key Idea

To address the unique challenges in detecting and analyzing
unpacking behaviors in Android, we need to:

(1) Monitor app execution at the lowest level, so we do not
miss any behaviors related to unpacking;

(2) Reconstruct Java level execution, for accurate detection and
better understanding of unpacking behaviors.

To capture the intrinsic characteristics (i.e, Write-and-then-
Execute) of unpacking, we will monitor the app execution at
the native code level to label dirty memory regions, as well as
code execution happens at both native and Java levels. In this
way, we are able to detect and analyze unpacking behaviors
happening at either level or in a combination of both.

To do so, we take a whole-system emulation based ap-
proach. More specifically, we run the android system and the
app of interest within an emulator so that we can easily monitor
all memory writes initiated by the app. Then by reconstructing
the Java execution context from native execution, we are able
to reliably detect the execution of unpacked code, no matter if
the unpacked code is interpreted, pre-compiled, or just native
code.

B. DROIDUNPACK Overview

To realize this key idea, we choose to build DROIDUNPACK
on top of DroidScope [39]. DroidScope is a QEMU and
VMI-based dynamic instrumentation framework that enables
instruction tracing on both Linux and DVM sides. However,
it does not support the recent Android Runtime (ART), and
thus cannot recover the high-level code semantics in ART. To
address this limitation, we manage to reconstruct the ART view
of running Android apps. Figure 1 illustrates the overview of
DROIDUNPACK.

The entire Android system, including the packed Android
apps, runs on top of an emulator, and the analysis and unpack-
ing are completely conducted from outside of the emulator.
We introspect the guest Android system, so that both the
OS-level and ART-level semantics can be reconstructed using
trustworthy points-to relations among internal data structures.

3



System 
Services System 

Services 

Linux Kernel 

System 
Services 

Zygote 

 
 
 

 
 
 

Android ART 

Compiled Java 
Component 

Interpreted  Java 
Component 

Java Libraries Java Libraries 
Native Libraries 

Native 
Component 

JNI 

OS-level 
View 

ART 
View 

In
stru

m
e

n
tatio

n
 In

te
rface 

DroidUnpack 

Self-Modifying 
Code Detector 

Multi-Layer 
Unpacking 
Detector 

Hidden Code 
Extractor 

Java Libraries 

JNI Inspector 

Fig. 1: Overview of DROIDUNPACK.

Interfacing with the core DROIDUNPACK platform, we
have developed several analysis tools to investigate packed
Android programs. 1) The Hidden Code Extractor precisely
identifies and dumps memory regions that contain hidden
DEX, OAT methods. 2) The Multi-layer Unpacking Detector
discovers iterative unpacking operations that intermittently
occur in multiple layers. 3) The Self-Modifying Code Detector
detects an even stealthier unpacking behavior that intentionally
wipes out previous executable code. 4) The JNI Inspector aims
to search for sensitive API calls made through JNI interface.

C. Reconstructing Semantic View

Semantic view consists of two views at different levels,
OS-level view and ART-level view. We rely on DroidScope to
recover the OS-level view which provides two types of infor-
mation: 1) the native process names and 2) the meta-data of
memory-mapped modules for each process (i.e., base address,
size, name, corresponding inodes and function offsets). Hence,
we can accurately pinpoint a native function in memory via
matching its address with (module base address+offset).

We modify DroidScope to support the reconstruction of
ART-level semantics. In particular, we have managed to re-
cover the application names, compiled and interpreted Java
methods.

Application name. The application name plays an important
role in Android app unpacking because it indicates the context
of decrypted hidden code. Unlike native processes, the name
of an Android application is not resolved when a fork takes
place. Instead, its name is later appointed through calling
the native function set process name. Hence, we hook
this function in the native library libcutils.so in order to
correlate application name to each individual app process.

Compiled Java method. We further recover the corresponding
Java method names, offsets and sizes of native functions that
have been pre-compiled from DEX code. Such information can
assist accurate collection and semantic-level understanding of
the code.

To collect such meta-data for compiled methods, we need
to search for the associated DEX and OAT files. To do
so, we first hook the function ArtMethod::Invoke() in
libart.so, which accesses ArtMethod code for invoca-
tion. Next, at the hooking point, we retrieve the ArtMethod
data structure from memory, which contains a reference

Algorithm 1 Locating Executable in Memory

1: procedure LOCATECODEINMEM(pc)
2: mod← GETCURRENTMODULE(pc)
3: if mod == “libart.so” then
4: func← GETCURRENTFUNCTION(pc)
5: if func == “DoCall(ArtMethod*)” then
6: md← GETDEXMETH(ArtMethod∗)
7: else if func == “ArtMethod::Invoke()” then
8: md← GETNATIVEMETH(ArtMethod∗)
9: end if

10: memmethod ← GETADDRESSRANGE(md)
11: return memmethod

12: end if
13: return ∅
14: end procedure

HeapReference<Class> declaring class that eventu-
ally points to its host class. Using the reference, we locate
the class structure that holds the resolved DEX file cache
DexCache. Then, we can reverse engineer this DEX cache
to obtain the pointer to DexFile data structure.

Once a DexFile has been discovered, DROIDUNPACK
can further identify the code module that hosts this DEX
file. This code module is in fact the OAT file that contains
each original DEX file as well as its compiled OatClasses.
By walking through each OatClass, we can then retrieve its
meta-data, including the name and offset of every OatMethod.
In this way, we reconstruct the mapping between name
and address (i.e., (module base address + offset)) for
each compiled method. Besides, we also iterate over every
OatMethodHeader to find the code size of corresponding
OatMethod, so that at runtime, we can precisely dump each
unpacked code at method level.

Interpreted Java method. Although Android ART runtime
provides the capability of compiling all Java methods before-
hand, bytecode interpretation still remains available. Therefore,
we also need to handle interpreted methods and retrieve
their semantic information. Similarly, we hook the DoCall()
function in libart.so, which starts the interpretation of
ArtMethods in Java. Again, we can trace back to the cor-
responding DexFile from each ArtMethod. In addition, we
also obtain the dex method index of ArtMethod, with
which we can identify the exact DexMethod in the DexFile
and therefore extract its name, offset, size and bytecode
instructions. In this way, we are able to capture the interpreted
Java code that is unpacked during execution.

D. Code Behavior Analysis

Powered by the unique capability of DROIDUNPACK, we
have enabled four code analyzers to understand Android packer
behavior.

Hidden OAT/DEX code extraction. Malicious code is packed
to avoid detection and analysis. With the reconstructed OS
view and ART-level view, we can now extract packed exe-
cutable code at runtime. We first follow Algorithm 1 to locate
Java methods in memory. To be more specific, we examine the
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program counter pc to check whether the current running func-
tion func is either ArtMethod::Invoke() or DoCall().
If so, we further fetch the memory regions, memmethod,
containing the compiled or interpreted Java method that is
about to execute.

In the meantime, we intercept every memory write opera-
tion to obtain the addresses of modified memory regions. As
illustrated in Algorithm 2, all the dirty memory regions are
stored in MemUDdirty, which is being continuously updated
every time a memory write occurs (Ln.1). Then, Algorithm 2
detects unpacking activities by identifying memmethod for
each basic block (Ln.12), and checking if the identified method
falls into the dirty memory region (Ln.13). If that is true,
unpacked code is discovered and we dump the method code
and meta-data. After that, we also remove the memmethod

from MemUDdirty (Ln.15), so that next time when the same
method code is invoked, DROIDUNPACK will not count it as
unpacked new code.

Note that this algorithm skips behaviors performed by
Webview if JavaScript is enabled (Ln.7 to Ln.10). This filter is
implemented to avoid potential false positive from JavaScript
Just-in-time compilation (JIT) technique since its behavior can
be mistakenly considered as packing.

Self-modifying code detection. Self-modifying code can be
considered as a specific kind of unpacking. In addition to
introducing decrypted new code, it also modifies the executable
that has been previously launched. This practice, prevalently
adopted by traditional PC malware, intends to cover the trace
of historical execution or to change control flow and therefore
needs special attentions.

To detect this, DROIDUNPACK searches particularly for the
operation sequence execute (write execute) conducted
on the same memory region. Such a sequence indicates that a
previously executed code region has been replaced by newly
unpacked code. Algorithm 2 depicts the detection of self-
modifying code as well. In addition to the aforementioned
unpacking detection, this algorithm collects every executed
basic-block region memcode (Ln.11). The aggregation of all
these code blocks, Memcode, thus represents previously exe-
cuted code (Ln.20). Hence, if memmethod is detected to be
a newly unpacked method, the overlap between memmethod

and Memcode (Ln.16) demonstrates the presence of self-
modification.

Multi-layer unpacking detection. Unpacking is not neces-
sarily a one-time operation. If DROIDUNPACK realizes that
multiple code sections have been unpacked gradually over
time, it can reveal the existence of multi-layer unpacking.
Concretely speaking, DROIDUNPACK considers all the contin-
uously decrypted but not yet executed code belongs to the same
unpacking layer, and therefore the execution of previously
unpacked code indicates the end of a layer.

Algorithm 2 shows the detection details. First, we collect
another copy of dirty memory MemULdirty, specifically
for computing unpacking layer, again via observing memory
writes (Ln.2). Then, we examine the overlap between the iden-
tified Java methods memmethod and MemULdirty (Ln.21). A
non-empty intersection, indicating an execution of dirty code
region is about to happen, triggers the increment of layer count

Algorithm 2 Analysis Using DROIDUNPACK

1: MemUDdirty ← {Overwritten memory regions updated
by memory write monitor.}

2: MemULdirty ← {Overwritten memory regions updated
by memory write monitor.}

3: layer ← 0
4: Memcode ← ∅
5: for basic block ∈ App execution trace do
6: pc← GETBEGINADDRESS(basic block)
7: mod← GETCURRENTMODULE(pc)
8: if JavaScript enabled and mod = “libwebview” then
9: Continue

10: end if
11: memcode ← GETADDRESSRANGE(basic block)
12: memmethod ← LOCATECODEINMEM(pc)
13: if memmethod ∩MemUDdirty 6= ∅ then
14: DUMPMETHOD(memmethod)
15: MemUDdirty ←MemUDdirty −memmethod

16: if memmethod ∩Memcode 6= ∅ then
17: Self-modifying code is detected.
18: end if
19: end if
20: Memcode ←Memcode ∪memcode

21: if memmethod ∩MemULdirty 6= ∅ then
22: layer ← layer + 1
23: MemULdirty ← ∅
24: end if
25: end for

output layer as count of unpacking layers

(Ln.22) and eventually the accumulated count is provided as
output. Once a new layer is discovered, we also clear the
dirty memory MemULdirty (Ln.23). This is to ensure that
executing any unpacked code from the last layer does not cause
DROIDUNPACK to increase the layer count.

Java native interface inspection. To avoid static inspection,
sensitive APIs can be triggered through Java Native Interface
(JNI) calls. Hidden bytecode or native code may also follow
the same practice. Therefore, even if decrypted code has been
captured, the static analysis of dumped code still may not
successfully reveal the complete behavior of a packed app.

To make things even more complicated, packed apps can
make recursive JNI calls. That is, a Java function Func1 can
be invoked from a native function Func2 which is called
through JNI from another Java function Func3. To handle
cases like this, boundaries of each JNI call need to be captured.

Through the monitoring of context switching between Java
and native modules, DROIDUNPACK can reliably detect the
entrance and exit of each JNI calls and infer the boundaries.
It further inspects all calls made at both Java and native
side. In particular, DROIDUNPACK focuses on the detection of
sensitive Android API calls invoked through JNI from native
components. To identify sensitive API calls, we rely on the
discovery of PScout [16].

E. Discussion

Data Compression and Encoding Techniques such as data
compression/encoding are not considered as packing tech-
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niques by DROIDUNPACK because they only introduce mem-
ory writes but do not execute at the same memory region. As
a result, data compression and encoding will have no impact
on our system.

Supporting Android versions. Being built upon Droid-
Scope [39], DROIDUNPACK deliberately chooses to support
Android 4.2 (DVM only) and 5.0 (DVM was replaced by
ART) to cover the two runtime environments in Android.
Supporting more Android versions will require relatively small
efforts, such as recompiling the kernel and updating offsets for
relevant data structures. Moreover, since variant versions of
Android (e.g., Android Wear, Android Auto) share the same
fundamental runtime environment, DROIDUNPACK should be
able to support them with some fairly simple twists.

Emulation Detection. DROIDUNPACK is an emulation-based
approach which means it cannot handle apps with emulation
detection. To be more specific, our system cannot perform any
automatic behavioral analysis if the apps hide all behaviors
when they detect the existence of emulator. To deal with
this limitation, DROIDUNPACK monitors four common anti-
emulation techniques reported by SophosLabs [32] including
examining services information, build information, system
properties and the presence of emulator related files such as
“/sys/qemu trace”. If any of the techniques is used by the
testing app, DROIDUNPACK will raise alert which allows us
to perform further manual investigation.

IV. STUDY METHODOLOGY

To answer the four sets of research questions brought up
in Section I, our study of Android packer/unpacker follows
a well-defined study methodology which consists of a broad
range of automatic analysis using the capability of DROIDUN-
PACK as well as some manual investigations. This section
elaborates on the methodology that we have systematically
identified and itemized to facilitate the answers to each and
every question.

A. Dataset and Setup

In order to accomplish the aforementioned tasks, we have
gathered five datasets including:

• Dataset 1: We hand-pick seven popular and representative
commercial packers including Ali [5], apkprotect [1],
baidu [6]1, Bangcle [7], ijiami [9], Qihoo [11] and
Tencent [12].

• Dataset 2: To study those commercial packers, we im-
plement five representative apps, consider them as ground
truth and perform diff analysis with their packed counter-
parts. To make sure we can seize modifications done by
packers to majority of Android apps, the apps are designed
to be concise yet still cover all four Android components
- Activity, Service, Content Provider and Broadcast Re-
ceiver, also with two widely used features - dynamic class
loading and JNI function calling. We then leverage packers
in Dataset 1 to generate packed apps.

1baidu packer requires Chinese ID so we exclude it in the detailed analysis

• Dataset 3: For the sake of studying packing techniques
among wild malware, we manage to collect 93,910 An-
droid malware from VirusTotal [14] which are labeled as
malicious by at least 50% of all detectors with a wide time
span from 2010 to 2015.

• Dataset 4: Five recent malicious apps including
Android.Malware.at plapk.a, Android.Troj.at fonefee.b,
candy corn, braintest and ghostpush are collected from a
public malware repository in github [10] to study malware
detection of commercial packers. And for plagiarized apps,
we manually insert empty Android activities into three
most popular benchmark apps - Vellamo, Quadrant and
AnTuTu and create three plagiarized apps.

• Dataset 5: Lastly, we collect three state-of-the-art Android
unpackers that are published in mainstream academic and
industry security conferences [40], [43], [33].

B. Methodology

For each set of research questions, we elaborate our
methodology by listing four most important aspects: 1).
dataset, 2). challenges and solutions, 3). detailed analysis and
4). limitations. Dataset section is to describe the data samples
used for answering the specific set of questions. Challenges
and solutions section is to list all the technical challenges to be
addressed during the study as well as our proposed solutions.
Detailed analysis section describes the proposed analysis to be
performed in order to explore the answer. Limitations section
is elaborated to discuss the possible limitations of our analysis.

Question set 1: Are Android packers (including commercial
packing services) being abused by malware authors? How
widely are the packers utilized by Android malware? What are
the distributions of different commercial and custom packers
across Android apps? How do the distributions change over
time?

The first set of research questions is to understand the high-
level landscape of current Android packers among malware,
including the popularity of Android packers, distributions of
each individual type of packers and how the distributions
change over the years.

Dataset. In order to understand the high level landscape of
Android packers, we utilize Dataset 3, the malware sample set
which includes 93,910 samples in the wild with a wide time
span from 2010 to 2015.

Challenges and solutions. There are two major challenges
for conducting this study. First, understanding the existence of
Android packers within malware samples is needed. Second,
we have to further differentiate and recognize different types
of packers. For the first challenge, we leverage the multi-
layer unpacking detection capability in DROIDUNPACK to
understand the existence of packing. As long as there exists a
single layer of unpacking during the execution of a malware
sample, we can then confirm the existence of packing within
that sample. For the second challenge, as stated in [43],
[40], commercial packers have strong and stable signatures
across different versions. In our study, we rely on those
signatures including activity names and native library names
to identify the existence of different commercial packers. We
collect signatures from packers in Dataset 1 and consider
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other packers as custom ones. Thanks to DROIDUNPACK,
unlike previous works [43], [40], we are able to detect all
the packers, commercial or custom, based on only intrinsic
packing behaviors.

Analysis. To answer the first set of research questions,
we first execute all malware samples in the dataset using
DROIDUNPACK, during which we detect and record the ex-
istence and usage of different packers. We then calculate the
ratio of packed malware among all the malware samples.
Furthermore, we count the usage of each known packer and
consider others as custom. Lastly, we extract the creation time
for each sample and examine how the yearly distributions of
different packers change from 2010 to 2015.

Limitations. Our analysis has several limitations. First,
since we only collect signatures for the six packers, which are
by no means complete, the ratio for the custom packers may
be overestimated. Second, theoretically, the custom packers
can impersonate the commercial packers by using the same
signatures. However, we argue that the six packers are popular
and representative. And despite the fact that the custom packers
can impersonate the commercial packers, they probably do not
have enough incentive to do so.

Question set 2: How do Android packers work? Is it very
different from traditional packing? What are the security
impacts when applying Android packers to apps? Is it easy
for malicious developers to exploit commercial packers and
pack their malware or plagiarized apps?

The second set of research questions is about detailed
behaviors and impacts of Android packers.

Dataset. To understand the detailed behaviors and impacts
of Android packers, we need to have ground truth first. To
this end, we make use of Dataset 2 to conduct our study. We
further leverage Dataset 4 to study the malware and plagiarism
defense of commercial packers.

Challenges and solutions. Two major challenges need to
be resolved here. First, we need to separate the behaviors of
packer’s code from the original code. The second challenge is
to fully understand the detailed behaviors of Android packers
at different levels including Java level, native level and their
interactions via JNI. For the first challenge, we run our benign
apps along with their packed counterparts under DROIDUN-
PACK and record all the behaviors. Then we perform diff
analysis to reveal only the behaviors of packer’s code. The
second challenge requires us to understand the behaviors at
different levels. For Java level behaviors, we rely on hidden
code extractor in DROIDUNPACK to extract packed DEX code
and further perform static analysis using other tools such as
FlowDroid [15]. For native level behaviors, we are able to re-
trieve OS-level view and leverage self-modifying code detector
and multi-layer unpacking detector from DROIDUNPACK to
observe the unpacking behaviors. Moreover, we intercept im-
portant function calls to trace file operations, memory mapping
and more to uncover how code is unpacked and loaded into the
memory. For JNI interactions, JNI inspector in DROIDUNPACK
is utilized to monitor everything that happens through JNI,
especially sensitive API calls.

Analysis. In order to grasp how Android packers work,
we first execute and record all the behaviors of packed apps

and compare with ground truth. Then, manual investigation
is performed on top of the behaviors to further understand
the semantics and underlying rationale behind those behaviors
so that we can not only know what happens but also why it
happens. For the sake of understanding security impacts of
commercial packers, we first extract the hidden code using
DROIDUNPACK and examine the packer added code via static
analysis tools and manual investigation. Lastly, we act like ma-
licious developers to submit malware samples and plagiarized
apps to commercial packing services and check whether the
submissions can be detected and prevented. To further measure
the impact of packing in terms of malware detection, we submit
the packed malware samples to VirusTotal [14].

Limitations. Since our analysis involves human effort to
investigate the behaviors, there may be some behaviors that
fail to catch our attention, therefore are missed by our study.
Also, we fail to find any service that could allow us to measure
the impact of packing in terms of plagiarism detection.

Question set 3: Have Android packers been evolving and how?
And what are the future trends of this evolution?

The third set is a two-part question. It is related to the
evolution of Android packers which is extremely important
for learning the current status as well as forecasting the future
trend.

Dataset. Evolution can only be observed via analyzing
large amount of data. Thus, we use all samples including
Dataset 2 and 3 for this purpose.

Challenges and solutions. One challenge here is how to
define evolution. We define it as the change of complexity
during unpacking process and characterize this complexity in
two aspects: the number of unpacking layers and some unique
behaviors that are designed to defeat existing unpackers. In-
evitably, packed apps have to perform an unpacking process
before original code can be executed. This unpacking process
is not necessarily a one-time effort, in stead, it may contain
multiple layers of packing and unpacking. Subsequently,the
number of unpacking layers can be a quite representative
attribute to measure the complexity of packers. Furthermore,
we also propose to use new behaviors that are only discovered
in recent years as a sign of evolution as well.

Analysis. To capture the Android packer evolution, we first
consider the number of unpacking layers by executing all the
packed malware samples and utilize the multi-layer unpacking
detector in DROIDUNPACK to collect the layers distribution
information over different years. We hope to see a clear trend
of increasing layers of packing. Then, we scrutinize some
novel behaviors captured by DROIDUNPACK that are clearly
targeting unpackers and only appear in the recent years and
then use those to demonstrate the evolution.

Limitations. Our current measurement of complexity is by
no means comprehensive and complete, as compared to the one
used for measuring the traditional PC packers [36]. We leave
a more comprehensive study of complexity and evolution as
future work.

Question set 4: How do today’s Android unpackers perform?
Are they still effective in the presence of the most advanced
packers?
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The last set of questions is about current Android unpack-
ers. Due to the aforementioned complexity of Android packers,
we would like to see if state-of-the-art Android unpackers can
handle all the cases correctly from a design point of view.

Dataset. We utilize Dataset 5, a group of state-of-the-art
Android unpackers to understand the internals of unpackers
and their fundamental design limitations. To test the effective-
ness, we propose to use the samples in Dataset 2 and some
malware with advanced behaviors from Dataset 3 to evaluate
those unpackers.

Challenges and solutions. The major challenge is to un-
derstand the designs and fundamental limitations of current
Android unpackers. The solution for this challenge is to study
through the literatures and the source code in order to fully
understand those unpackers.

Analysis. By reviewing the literatures and source code,
we perform manual analysis on the fundamental designs and
limitations of each unpacker. To better understand the whole
picture of current Android unpackers, we would like to conduct
experiments and further compare them with DROIDUNPACK.

Limitations. Although the three Android unpackers are
state-of-the-art tools, there may exist other tools that embrace
unique designs and share different insights. We will continue
this investigation in our future research.

V. OUR FINDINGS

In this section, we present our answers to the four sets of
questions raised earlier.

A. Question Set 1: High-level Landscape

As discussed in the previous reports [8], [4], researchers
have found that malware samples have been leveraging packing
techniques to evade detections and infiltrate into Android
ecosystem. Therefore, understanding the high level landscape
of packing techniques among Android malware samples has
become the very first thing for us to study.

Question 1.1: Are Android packers (including commercial
packing services) being abused by malware authors? How
widely are the packers utilized by Android malware?

Answer: Yes, Android packers are being abused by malware
author and packing techniques are quite prevalent among
malware. We present Finding 1 to further answer the question.

Finding 1. Malicious developers extensively leverage pack-
ing techniques to hide malice. By depicting the yearly distri-
bution for packed apps, Figure 2 shows the fact that packing
techniques have embraced similar popularity among malware
from 2010 to 2015 with an average of 13.89%. Interestingly,
this observation contradicts AppSpear [40] where the authors
claim that the ratio of packed apps is increasing. The reason
to this discrepancy is that AppSpear only detects packers by
signatures thus misses custom packers while we are able to
extract a more complete picture of packing techniques.

Question 1.2: What are the distributions of different commer-
cial and custom packers across Android apps?
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Fig. 2: Yearly distribution.
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Fig. 3: Packer distribution.
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Fig. 4: Trend of packer distribution.

Answer: The following finding 2 answers this question by
showing the distributions of different packers.

Finding 2. Custom packed malware samples take up the
largest portion of all packed malware. The distribution of
packed app over different packers is presented in Figure 3. For
all the 93,910 malware we collect, 13,052 (13.89%) of them
are packed. We find custom packing takes up the biggest por-
tion (70.35%) of the packed malware and followed by Bangcle
which is utilized by 16.64% of the packed malicious apps. This
finding further indicates the necessity of DROIDUNPACK as no
existing tool can analyze custom Android packers.

Question 1.3: How do the distributions change over time?

Answer: By depicting the trend of packer distribution from
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2010 to 2015, Finding 3 gives us the answer to the above
question.

Finding 3. Android commercial packers are increasingly
abused by malware. Apart from what has been stated above,
Figure 4 takes one step further to illustrate the trend of
packer distribution among different years. Clearly, commercial
packers are increasingly leveraged by malware as the ratio of
custom packers has decreased gradually from 88% in 2010
to 69.3% in 2015. This finding is then on par with what
AppSpear [40] claims.

Summary for finding 1-3. Two observations can be made
from the above study. First, the existence of packed malware
is a real threat with very long history tracing back to early
stage of Android. This indicates that the study of Android
packing techniques is not only beneficial but also necessary
for malware analysis. Second, while custom packers still
dominate, commercial packers are gaining popularity steadily
over time. Despite the effort of enforcing different kinds of
detection techniques, commercial packers still have a long way
to go for filtering out malware from being packed.

B. Question set 2: Detailed Analysis on Android Packers

From the previous results, we know Android packers in-
cluding commercial and custom ones have been widely abused
by malware. It is important to understand the behaviors of these
packers, especially the unique behaviors that do not appear in
the traditional PC packers. To this end, we perform detailed
analyses on both commercial and custom packers. Our study
shows Android packers have embraced some unique packing
techniques that are not reported by the previous Android and
traditional packer research [36], [43], [40]. More importantly,
as free services, we find commercial packers are not as secure
and innocent as they claim to be.

Question 2.1: How do Android packers work? Is it very
different from traditional packing?

Answer: Yes, Android packers are indeed very different
from traditional packers. We elaborate the differences using
Finding 4.

Finding 4. Commercial packers have adopted many unique
yet unreported features for anti-unpacking. Following the
methodology described in Section IV-B, we comprehensively
study the behaviors of six popular commercial packers. Table I
summaries unique features of those packers.

App context restoration via JNI. Application context
restoration is a common practice among Android packers. To
hide the original code completely, packers including ijiami,
Qihoo and Tecent create their own wrapper applications.
These wrapper applications collect environment information
(e.g. CPU architecture), load necessary libraries, unpack the
original code and restore the app context back to the original
code. AttachBaseContext() is the function that packers
usually override to perform these tasks since it is called
by the framework even before OnCreate() and has the
ideal timing for pre-processing. JNI, on the other hand, is
extensively used by packers for various of reasons. First, JNI
functions which are declared within Java level but defined
in native libraries will break the control-flow and data-flow

analyses. Second, some functions with heavy computations can
be written as native yet still be called from Java level to boost
performance. Third, packers can also leverage JNI to hide
sensitive behaviors from being detected, thwarting most of the
current Android app analyses. By leveraging DROIDUNPACK
JNI analysis capability described in Section III-D, we can
bridge the gap between Java and native, thus understanding
exactly what has happened at native level and how Java and
native codes cooperate. In our study, we utilize PScout [16]
and DROIDUNPACK to monitor sensitive API calls within JNI
and discover that only ijiami packer cleverly invokes its
application context restoration via JNI, making it harder to be
detected.

Native/DEX obfuscation. As reported by the previous
work [43], [40], obfuscation techniques are widely employed
by commercial packers at both DEX and native levels. DEX
code level obfuscation includes a wide range of techniques,
such as string obfuscation, reflection, dead code injection
and more. But for native code, things are slightly differ-
ent. In Android, JNI builds up a bridge between Java code
and native code, allowing them to interact with each other.
There are mainly two ways of performing method lookup: 1)
traditionally, developers could name the JNI functions in a
specific way using Java + package name + class name
+ function name format so that the function mapping is
automatically handled; 2) JNI functions can also be explic-
itly registered via JNI OnLoad. All the packers other than
apkprotect take this approach so that they can randomize
function names, making it more difficult to obtain the control
flow graph. Moreover, most of the commercial packers will
introduce native libraries as stated in [43] for the purpose
of performing unpacking. We discover that all of the native
libraries are equipped with encryption to data and code sections
within binary so as to prevent analysis. At runtime, the libraries
are first loaded into memory, then unpacking code will identify
the address by reading from /proc/pid/maps and decrypt
the libraries dynamically. This kind of behavior is observed
using DROIDUNPACK through libc function interception and
memory operation analysis.

Multi-layer unpacking. Many Android unpackers [43], [40],
[34] depend on an assumption that there exists a clear boundary
between packer’s code and original code within packed apps
to function normally. However, according to our observation,
this assumption no longer holds. According to our study, many
commercial packers turn to multi-layer unpacking strategy,
meaning other than unpacking the original code at once and
loading into memory, they unpack the original code layer
by layer during execution. This technique will obviously
render the current memory dump based unpackers useless
since the dumped memory will contain mostly the unreadable
packed code other than the original code. Table II shows
that Bangcle, ijiami, Qihoo and Tencent adopt this
unpacking technique, among which, Tencent is the most
complex one.

Pre-compilation. Code in OAT file is allowed to be com-
piled into native code or remains as DEX. From the app
analysis point of view, DEX code is much better than native
code in terms of readability and simplicity as it preserves
semantic meaning of the program. So willfully, packers want
to avoid revealing DEX code as much as possible. However, as
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TABLE I: Commercial packer behavior.

apkprotect Ali Bangcle ijiami Qihoo Tencent
Context switching via JNI 7 7 7 3 7 7
Native/DEX obfuscation 3 3 3 3 3 3
Pre-compilation 7 7 7 7 3 7
Multi-layer unpacking 7 7 3 3 3 3
libc.so hooking 7 7 3 7 7 7
Self modification 7 7 7 7 7 7
Component hijacking vulnerability 7 7 7 7 3 7
Information leakage 7 7 7 7 7 3

TABLE II: Multi-layer unpacking.

# of layers
apkprotect 1
Ali 1
Bangcle 9
ijiami 4
Qihoo 4
Tencent 40

we find out in the study, completely transforming original app’s
DEX code into native code is such a challenging idea that all
packers simply avoid. Nevertheless, we would like to see if any
of the packer’s code is pre-compiled into native even before the
installation. In order to detect this behavior, we first configure
the dex2oat (the ART compiler) to be interpret-only
so that theoretically no code should be compiled into native
code at all. Then, we utilize DROIDUNPACK to extract hidden
code from all the packed samples and check if there still exists
any native code. While the answer is expected to be negative,
we actually find that the sample packed by Qihoo packer
has pre-compiled DEX code. Further looking into it gives us
more details. Just like most of the packers, when packing
with Qihoo, the packer will insert a few new components
into the app. However, unlike other packers, it pre-compiles
some of the packer-added DEX code into native code by
invoking dex2oat with default configuration, ignoring the
interpret-only flag. This technique is much less difficult
than converting app’s original code into native code, but can
still be very useful to hinder analysis tools understanding the
whole picture, especially for tools that hook Android runtime
functions, e.g., DexHunter [43].

libc.so function hooking. Among many anti-debugging
techniques that the packers adopt, libc modification is a very
special one. We only observe this behavior with Bangcle
packer. By analyzing memory operations, we discover that
it actively modifies the libc.so module. Further inspection
shows the packer tries to hook a series of important libc
functions such as read, write, open, mmap, etc. This
hooking behavior will disrupt many unpackers. Unpackers such
as DexHunter [43] rely on libc functions like fwrite to dump
the code from memory into files. When using these packers
to unpack Bangcle, the app will simply crash if these libc
functions are called, therefore, completely breaks the unpack-
ing process. In order to bypass this restriction, one has to
modify the unpackers and directly invoke the associated system
calls instead of libc functions. This requirement certainly puts
an extra hurdle for unpacker users. This technique, on the

other hand, will not affect DROIDUNPACK since it is based
on whole-system emulation.

Question 2.2: What are the security impacts when applying
Android packers to apps?

Answer: We discover severe security vulnerability and data
breach2 that some commercial packers are responsible for.

Finding 5. Android packers have led to severe security
vulnerability and data breach affecting more than 1 billion
users.

Commercial packers are believed by developers to be se-
cure and only to protect intellectual property. The results of our
study, however, shows that by applying some of the packers,
the apps will have serious component hijacking vulnerability
as well as information leakage problem.

Component hijacking vulnerability. Component hijacking
vulnerability in Android is dangerous due to the fact that it
allows malicious app to invoke vulnerable components and
achieve a series of goals including privilege escalation and
information stealing. One component within Android app can
be considered as a potential target as long as its attribute
“android:exported” is set to true in Manifest file. During
the study, surprisingly, we notice two potential vulnerable
components created by Qihoo packer: a content provider
and a service. By examining the Manifest file, we find that
the attribute “android:exported” for both components are set
to be true, indicating the possibility of component hijacking
vulnerabilities. Further study shows that the service is success-
fully launched during app execution. Since the service is fully
packed, we utilize DROIDUNPACK to extract the hidden code
and conduct a thorough investigation. Eventually, we confirm
that the service is indeed vulnerable to component hijacking
attacks. The service handles two different intents, one of them
allows the service to download files from remote server and
replace arbitrary file within the app using the app’s permission.
We manage to write a Proof-of-Concept code that can exploit
this vulnerability by downloading a DEX file from our own
server and replacing arbitrary files within the vulnerable apps.
In a nutshell, using this packer to pack a perfectly secure
app exposes serious arbitrary file write and even arbitrary
code execution. We have reported this security issue, it was
immediately acknowledged and assigned highest priority.

Information leakage. Our study unveils another astonishing
fact that one of commercial packers adds code to the original

2This issue was identified by static analysis. We tried to contact Tencent to
confirm but no reply so far.
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app to collect sensitive user data and send back to its own
servers, thus causes an information leakage problem. As shown
in Table I, among the packers we study, Tencent packer in-
troduces this kind of dangerous behavior. Upon packing, it will
add six new permission requests to the original apps including
some very sensitive ones such as ACCESS NETWORK -
STATE and READ PHONE STATE. Once the packed app is
launched, it will collect sensitive user data such as “deviceId”,
“subscriberId”, “MAC address”, and send them back to its own
server via an insecure HTTP connection. This behavior not
only leaks user sensitive information to their server without
any user awareness but also gets them exposed to the pub-
lic as attackers can easily eavesdrop via man-in-the-middle
attack. During the investigation, we rely on DROIDUNPACK
to extract hidden code and discover the information leakage
using FlowDroid [15], a state-of-the-art context-, flow-, field-,
object-sensitive static analysis tool.

Impact. By simply examining the apps that are using the
two problematic packers, we can draw a conclusion that these
two security issues are very severe as they are affecting more
than 1 billion users right now. Qihoo packer, which introduces
component hijacking vulnerability, has been leveraged by some
most famous apps including Gaode Navi, Qianniuniu Finance.
Gaode Navi is actively used by more than 500 million users
as their daily navigation app. The vulnerability within it can
easily be leveraged by attackers to obtain users’ daily routing
information. Qianniuniu finance, which has been downloaded
for more than 3 million times, is an investment app. The
vulnerability within it can severely damage users’ financial
security. The information leakage issue, on the other hand,
is affecting even more users as it is applied by a series of
popular apps including QQ, a chatting app that has more than
800 million active users.
Question 2.3: Is it easy for malicious developers to exploit
commercial services to pack their malware or plagiarized apps?

Answer: Yes, Finding 6 shows that it is very easy for
malicious developers to exploit commercial packers and avoid
being detected.

Finding 6. Malicious developers can easily exploit com-
mercial packers to pack malware and plagiarized apps and thus
evade detections.

As we know, all of the packers except for apkprotect
provide on-line services which aim to present packing service
to protect developers’ intellectual property while avoid being
leveraged by malware and plagiarized apps. Consequently, they
all claim to implement some kinds of security scrutiny. To
this end, we conduct a study on this subject by submitting 5
confirmed recent (early 2016) malicious apps and 3 plagiarized
apps to these packers and the results are presented in Table III.

Malware defense. Malware detection is hard but packed
malware detection is even harder [8], [2]. To protect Android
users from being compromised, all studied commercial packing
services claim to conduct advanced code analysis on submitted
code to rule out malware. However, our study result somehow
shows otherwise. Among those five packers, Qihoo is namely
the best when it comes to malware defense. It detected our first
malware and blocked us from further submission. Ali also
managed to detect all five malicious apps and prevented us
from packing them. Together with Figure 4, we can clearly

observe a huge improvement over malware detection for
Qihoo and ALi. Other packers, however, can only detect a
portion of them resulting in successful packed malware. We
then submit the original malware samples as well as the packed
ones to VirusTotal [14]. As illustrated in Table IV, the detection
rates for malware have dropped significantly after packing,
depicting the fact that malicious developers can easily exploit
commercial packers to pack their malware and evade detection.

Plagiarism detection. Although all packers claim to help
developers scan over multiple Android markets to detect
plagiarism, no one actually stops developers from submitting
plagiarized apps to its server. In our study, we submit three
plagiarized apps to those packers and easily create packed
plagiarized ones through all packers without any issue. This
security loophole can be effortlessly leveraged by plagiarized
app developers to pack their apps, rendering plagiarism detec-
tion more difficult.

C. Question set 3: Evolution of Android Packers

Question 3.1: Have Android packers been evolving and how?
What are the future trends of this evolution?

Answer: Yes, Android packers are clearly evolving. We
describe this trend with Finding 7.

Finding 7. Android packers have been evolving very fast
in the last few years. Based on the systematic study of
large number of packed malware samples over multiple years,
we observe that Android packers are clearly evolving. We
characterize this evolution in two different aspects: the number
of unpacking layers and featured behaviors.
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Fig. 5: Layer distribution.

Number of unpacking layers. We have seen multi-layer
unpacking in commercial packers, but we haven’t seen such
complicated unpacking process as shown in Figure 5. In
year 2015, there exist about 1.3% of custom packed Android
malware that unpack their hidden code with more than 1000
layers. This level of complication is never observed in com-
mercial packers and certainly brings tremendous difficulty for
unpackers to operate. In contrast, the most complicated custom
packed malware we have in year 2010 has only 6 layers. The
ratio of packed malware that equip with 10 or more layers
unpacking has grown from 0% in 2010 to 24.73% in 2015
which is a clear indicator that Android custom packers have
been evolving in a fast pace.
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TABLE III: Security scrutiny.

apkprotect1 Ali Bangcle ijiami Qihoo Tencent
Malware defense failure 5/5 0/5 2/5 2/5 0/52 1/5
Plagiarism detection failure 3/3 3/3 3/3 3/3 3/3 3/3
1 apkprotect is not on-line service and has no prevention for malware or plagiarism.
2 Qihoo detected first attempt and blocked further malware submission.

TABLE IV: Malware detection rate comparison.

Malware name Original detection rate Packed detection rate
Android.Malware.at plapk.a 61.67% 26.67%
Android.Troj.at fonefee.b 66.67% 35%
braintest 63.33% 37.29%
ghostpush* 70% N/A
candy corn 68.33% 38.98%
* All commercial packers can successfully detect it as malware.

Behaviors. We consider two interesting behaviors as a clear
sign of evolution for Android packers. First is the afore-
mentioned libc.so hooking. As described, Bangcle packer
modifies libc.so module so as to hook functions and prevent
unpackers such as DexHunter [43]. By analyzing the timing,
we can see this behavior was not added by Bangcle until
DexHunter has released. Clearly, Bangcle itself is evolving
to defeat unpackers. Second, a more advanced technique has
been observed by us that it modifies DEX code at runtime so
that apps can change their behaviors dynamically. By closely
monitoring memory writes and code executions as described
in Section IV-B, we observe this behavior in 20 out of 93,910
wild malware samples, 6 from 2014 and 14 from 2015.
Self modification is normally done via JNI since native code
is more suitable than Java code for memory manipulations.
The app invokes JNI function which is responsible for code
modification to start this process. The function first finds
the right module by scanning over /proc/self/maps file
which stores the addresses of all modules. Then, it locates
OAT file in memory via magic number “oat\n” and parses the
OAT file to acquire the correct class and method to modify.
Before modification can be performed, it needs to change the
memory protection by calling mprotect to make it writable.
Finally, payload is inserted into the designated code region
via memcpy and gets executed. This kind of technique has
been useful for hiding sensitive code from static analysis
and unpacking tools. For example, one sample dynamically
modifies the code so that other than invoking the original
function, it calls a different one. Note that this technique is
designed to work on DEX code which means ART may have
compatibility issue as the compiler compiles DEX code into
native code Ahead-Of-Time. To verify, we test those apps again
with dex2oat configured as “speed” mode and observe that
self-modifying behavior has disappeared.

Future trends of this evolution. Android packers are evolv-
ing. We believe the future Android packing technique could
push its limits further into several directions that could get
unpacking increasingly problematic. First, more interactions
between DEX code and native code will appear in packing
techniques. Native code is favorable for packers as it is
unobservable from Java level, and thus is more difficult to
extract. Moreover, it is a known challenge to recover semantics

information even if unpackers can successfully extract the
code. The pre-compilation behavior we observe is only the
very first step that falls into this category. Second, Android
packing strategy will continuously become more sophisticated.
We have seen Android packers growing from single-layer
to multi-layer and will probably see packers carrying other
features as what has happened in PC packer [36], such as cyclic
transition, multi-frame and more. Third, Android packers may
eventually turn to emulation-based packing techniques which is
more advanced and can defeat all existing unpackers including
DROIDUNPACK.

D. Question set 4: Android Unpackers

We study the designs, implementations and limitations of
the mainstream Android unpackers and test them against the
packed malware samples in the wild.

Question 4.1: How do today’s Android unpackers perform?
Are they still effective in the presence of the most advanced
packers?

Answer: No, state-of-the-art Android unpackers are not
working properly as expected. We clarify this answer by
introducing Finding 8 which gives an overview of how those
unpackers perform.

Finding 8. State-of-the-art Android unpackers have serious
design limitations that they cannot handle advanced Android
packers. Current unpackers could be roughly categorized into
three types based on distinct system designs. 1) Locate DEX
file by signature and perform memory dump; 2) Modify DVM
to hook certain important functions to find DEX file and
then dump the code; 3) Modify DVM to dump Dalvik data
structures on the air and then assemble them back into a DEX
file. As discussed in Section IV-B, we pick three state-of-
the-art unpackers from each category and compare them with
DROIDUNPACK in Table V.

Design choices. Kisskiss [33] follows a very traditional
unpacking process. It is compiled as a stand-alone program
and pushed into Android system for attaching to and accessing
memory of target application using ptrace. It recognizes
odex objects based on the memory map and the magic number
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and finally performs the memory dump. DexHunter [43], on
the other hand, is designed to be more general-purpose based
on a study of protections of current packers. Relying on cus-
tomization of class loading of both Dalvik and ART runtime,
it guarantees that all classes of odex are initially loaded,
correctly located and then extracted. Certainly, this runtime
customization approach is immune to anti-debugging and anti-
emulation techniques. AppSpear [40] adopts techniques of
bytecode extraction and DEX reassembling based on Dalvik
instrumentation. Once the main activity is interpreted or a
new DEX file is loaded, AppSpear extracts the inner Dalvik
Data Structure (DDS) and performs a reassembling process
to recover the DEX file. DROIDUNPACK takes a completely
different approach from those unpackers by leveraging the
whole-system emulation technique. It detects a packed app via
monitoring program execution on overwritten code regions and
relies on only intrinsic characteristics of Android runtime and
enables VMI to recover hidden code.

Limitations. Unlike DROIDUNPACK, none of the existing
Android unpackers can have a whole view in multiple levels of
the system nor can they detect unknown packers in a complete
fashion.

Besides this, Kisskiss faces several severe limitations.
First, commercial packers usually deploy techniques, like anti-
debugging or in-memory obfuscation towards odex objects, to
defeat this unpacking process [43]. Since Kisskiss relies on the
magic number to dump odex objects, it does not work with
unknown new packers or even the upgraded version of existing
packers. Moreover, as it only dumps the memory once based
on signature and could be easily defeated by more advanced
techniques such as multi-layer unpacking and self-modifying
code.

DexHunter mainly improves the way of locating DEX file
in memory by hooking class loading functions. This design
choice makes it more robust than Kisskiss. However, it is still
far from being perfect. First of all, as stated in the previous
section, libc.so function hooking in Bangcle packer could
defeat DexHunter unless users modify it accordingly. Second,
multi-layer unpacking and self-modifying code will result in
incomplete and even erroneous code dump because DexHunter
only dumps the memory at the class loading time when the
hooking functions get triggered.

AppSpear customizes DVM to collect the DSS data struc-
ture so that the code it dumped must be unpacked. However, it
still exposes a few important limitations. First, it only works in
Dalvik but not in the latest ART. In ART, code can be compiled
into native during installation and will not even appear in
any Dalvik data structures. Second, finding correct timing to
extract DSS can be a very challenging task. By default, it only
considers the main activity as unpacking point [40] which may
lead to incomplete code coverage.

Despite the fact that DROIDUNPACK can overcome limita-
tions described above, it does have a few drawbacks. As shared
by all dynamic analysis techniques, DROIDUNPACK certainly
suffers from limited cover coverage as it can only dump the
code that executes. And since it is built on top of whole-system
emulation, packers that enforce anti-emulation techniques will
inevitably break the analysis.

Experiments. We conduct the experiments upon Android

4.3 and 4.4 emulators for two popular open sourced unpackers.
DexHunter and Kisskiss with two datasets. 1) Dataset 2 in
Section IV-A; 2) self-modifying malware samples collected
in the above study. As shown in Table V, at the time our
experiment was carried out, Kisskiss failed to dump memory
from all six packers. This is probably because the signatures
that Kisskiss relies on have been changed.

The experiment results then show that DexHunter is rather
sensitive in the arms race with packers. The prototype relies
on a fingerprint (feature string) of each known packer, which
we found only works for Tencent packer now. Note that the
result for Tencent is still incomplete as it adopts multi-layer
unpacking.

VI. RELATED WORK

Packing & Unpacking techniques. Runtime packers have
been well-studied in the traditional context of desktop operat-
ing systems. Polyunpack [30] performed a differential analysis
between statically disassembled binary code and its execu-
tion trace, and observed the difference to discover potential
hidden code. Renovo [27] applied whole-system emulation
to unpacking and was able to trace program execution at
instruction level. It instrumented memory writes and execution
to detect unpacked code. Besides, it can address multi-layer
unpacking and create code dumps for every detected layer.
Omniunpack [29] also monitored memory writes and execution
but at the page granularity. It aimed to provide an efficient
and resilient unpacker and therefore relied on the memory
protection mechanisms in operating system to enable detection.
Similarly, Eureka [31] also conducted coarse-grained packer
analysis. It first monitored system calls to search for written
and executed memory and then depended upon heuristics to
identify and extract decrypted code.

Recently, Android packers have attracted the attention from
both industry and academia. Kisskiss [33] leveraged ptrace
to access application memory and searched for hidden DEX
code based upon heuristics. DexHunter [43], to defeat anti-
debugging mechanism utilized by packers, instrumented the
class loading functions in Dalvik VM and ART runtime. Thus,
it can extract any class that has been loaded for execution. App-
Spear [40] took a step further and stitched all the discovered
hidden classes together to reassemble a complete program.

The research community has also made efforts to system-
atically survey existing packing techniques. Bayer et al. [17]
studied the off-the-shelf packers that were often used by
malware authors. Ugarte-Pedrero et al. [36] presented a fairly
comprehensive measurement in order to understand the com-
plexity of packers. As a comparison, our study focuses on the
interpretation of evolving packers and unpacking techniques
that have adapted to the novel Android context. To this end,
we have developed a new machinery to address the unique
challenges in analyzing packed Android apps.

Android application analysis. Many previous efforts were
made to pursue in-depth analysis of application behaviors.
Ded [22], DroidSIFT [41], CHEX [28], PEG [18], Flow-
Droid [15], DroidSafe [24] and AppAudit [38] practiced
static dataflow analysis to identify specific code (e.g. ma-
licious code or heavy computation code [20]) in Android
apps. TaintDroid [21], DroidScope [39], CopperDroid [35]
and VetDroid [42] conducted dynamic taint analysis to detect
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TABLE V: Study of unpackers

Tool Design Limitations Open
source

Recover code from
commercial packers

Unpack self
modifying
samples

DexHunter
Modify DVM and hook class
loading functions for locat-
ing and extracting DEX file

a) rely on feature string, which could vary when
a packer is upgraded; b) difficult to find the
right timing, can’t deal with incremental packer,
which means there isn’t a single moment when
all codes coexist in memory together

Yes

Success: Tencent. Fail-
ure: Ali, Bangcle, ijami,
Qihoo. Not support: ap-
kprotect

No

AppSpear

When MainActivity is
launched or a new DEX file
is loaded, AppSpear extracts
inner DDS and reassembles
the DEX file.

a) lack of support for ART; b) hard to find correct
timing for extraction No N/A N/A

Kisskiss

Use ptrace to attach to
the memory of target ap-
plications, and identifies and
dump odex objects based
on memory map and magic
number.

a) can’t handle apps with anti-debug or in mem-
ory obfuscation techniques; b) requires under-
standing of the specific packer to get magic
number thus doesn’t work with unknown packer
or even slightly upgraded existing packer

Yes

Success: none. Failure:
all samples. Can find
odex file in memory
map, but failed in locat-
ing the correct address.
So, pread syscall failed

No

DROIDUNPACK

Monitor program execution
and memory operations
based on whole-system
emulation

a) cannot handle packed samples with anti-
emulation Yes

Success: Ali,
apkprotect, Bangcle,
ijiami, Tencent, Qihoo

Yes

suspicious behaviors at runtime. Static analysis requires access
to complete bytecode program and therefore can be simply
evaded by runtime packers. In contrast, dynamic analysis
tools can potentially facilitate packer detection. Nevertheless,
existing generic analysis frameworks cannot be directly applied
to the identification, diagnosis and study of packed apps due
to the lack of specific analysis capability.

VII. CONCLUDING REMARKS

In this paper, we conduct a comprehensive study on 6
major commercial packers, 13,566 packed malware samples
out of 93,910 Android malware and 3 existing state-of-the-
art unpackers in order to better understand the security issues.
To facilitate our study, we develop DROIDUNPACK, a whole-
system emulation based Android unpacker which can precisely
recover hidden code. Our study has revealed that commercial
packing services have not only been misused to encrypt
malicious or plagiarized contents but also introduced various
severe vulnerabilities to apps being packed. We have found
evidence to demonstrate the prevalence and rapid evolution of
custom packers used by malware authors. Unfortunately, we
have also realized that current defense techniques often fall
short due to fundamental design limitations.

Final thoughts. DROIDUNPACK is by no means the end of
the game but merely a start for future endeavors as the war
between packing and unpacking on Android continues. The
real problem lies within the design choice of Android system.
Unlike iOS which enforces code signing [13] to prohibit app
from modification since it was last signed, Android allows the
code to be modified even after installation. This feature opens
a broad surface for Android packers to perform all kinds of
packing techniques without any constraint. Granted, packers
are also utilized extensively in legitimate ways for the purpose
of protecting intellectual property. However, from the study we
surely see packing techniques are currently abused by malware
authors, exposing great threats to end users. This situation
deserves more thinking for the whole community from a design
point of view.
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