
Securing Real-Time Microcontroller Systems
through Customized Memory View Switching

Chung Hwan Kim∗§ Taegyu Kim† Hongjun Choi† Zhongshu Gu‡

Byoungyoung Lee† Xiangyu Zhang† Dongyan Xu†
∗NEC Laboratories America †Purdue University ‡IBM T.J. Watson Research Center

∗chungkim@nec-labs.com †{tgkim, choi293, byoungyoung, xyzhang, dxu}@purdue.edu ‡zgu@us.ibm.com

Abstract—Real-time microcontrollers have been widely
adopted in cyber-physical systems that require both real-time and
security guarantees. Unfortunately, security is sometimes traded
for real-time performance in such systems. Notably, memory
isolation, which is one of the most established security features
in modern computer systems, is typically not available in many
real-time microcontroller systems due to its negative impacts on
performance and violation of real-time constraints. As such, the
memory space of these systems has created an open, monolithic
attack surface that attackers can target to subvert the entire
systems. In this paper, we present MINION, a security architecture
that intends to virtually partition the memory space and enforce
memory access control of a real-time microcontroller. MINION
can automatically identify the reachable memory regions of real-
time processes through off-line static analysis on the system’s
firmware and conduct run-time memory access control through
hardware-based enforcement. Our evaluation results demonstrate
that, by significantly reducing the memory space that each process
can access, MINION can effectively protect a microcontroller
from various attacks that were previously viable. In addition,
unlike conventional memory isolation mechanisms that might
incur substantial performance overhead, the lightweight design
of MINION is able to maintain the real-time properties of the
microcontroller.

I. INTRODUCTION

A microcontroller is a small computer that contains a proces-
sor, memory, and various input/output (I/O) peripherals. Among
various types of embedded systems based on microcontrollers,
real-time microcontroller systems (MCS) are designed to meet
the deadline constraints of the real-time processes that run
atop. The primary goal of a real-time MCS is not for high
throughput, but for the responsiveness—any failure to meet the
response deadline may lead to non-trivial safety impacts. In
fact, many cyber-physical/embedded systems today are relying
on real-time MCS: for example, manned and unmanned vehicle
systems, rocket and satellite systems, robot control systems,
and real-time health-care systems. Unfortunately, we note that
the security of real-time MCS has not yet received enough
attention although real security threats [12], [27], [32], [33],
[39], [51] have increasingly been reported.

§Work conducted when he was a Ph.D. student at Purdue University.

Among computer systems security methods, memory iso-
lation is one of the most common and effective techniques.
In this paper, we focus on the following two general and
popular memory isolation techniques: process and kernel
memory isolation. Process memory isolation isolates each
process’s virtual memory space from other processes. Due to
this restricted memory accessibility, it is difficult for an attacker
to launch memory corruption attacks to other processes from a
victim process that he or she has already compromised. Kernel
memory isolation separates kernel memory space from a user
process context via privilege separation, rendering privilege
escalation attacks difficult to perform by exploiting memory
corruption issues in the kernel (i.e., illegally acquiring the kernel
execution context from the user execution context). These two
memory isolation techniques constitute the fundamental security
principle, the principle of least privilege, preventing an attacker
from subverting the entire system even if he or she successfully
compromised a subset of the system.

However, it is challenging for real-time MCS to support
such memory isolation in practice [31], due to hardware and
performance constraints [11]. According to our survey of 67
commodity real-time MCS, none of them is designed to employ
process memory isolation or kernel memory isolation. Table I
summarizes the results of our survey of various types of real-
time MCS including unmanned aerial vehicle (UAV), unmanned
ground vehicle (UGV), remotely operated underwater vehicle
(ROV), real-time 3D printer, and real-time Internet of Things
(IoT) devices. Process memory isolation through virtual memory
is not supported, because they are built on hardware that does
not provide a memory management unit (MMU). Also, kernel
memory isolation is not employed due to its negative impact
on real-time performance induced by frequent privilege mode
switching (between kernel and user modes). In fact, several
RTOSs [14], [20], [22] running on real-time MCS optionally
supports kernel memory isolation, but it is often turned off
in practice as it tends to violate the real-time constraints, as
shown in our study (§II-C).

Without strong memory isolation, MCS expose a large
attack surface to attackers. More precisely, without virtual
memory support, these systems simply layout everything into
a single memory space (illustrated in Fig. 1). Non-volatile and
volatile memory, such as a flash ROM and an on-chip SRAM,
are hard-wired to fixed locations, and peripheral devices are
mapped to specific areas of the memory space through memory-
mapped I/O (MMIO). In addition, all software modules, such as
applications, libraries, device drivers, and the OS, are executed
in the same privilege mode (i.e., the privileged mode) and
have access to the entire shared memory space. This makes
the memory space a large attack surface open to attackers who

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23107
www.ndss-symposium.org

TABLE I. AVAILABILITY OF PROCESS AND KERNEL MEMORY
ISOLATION IN COMMODITY REAL-TIME MCS. P : PROCESS MEMORY

ISOLATION SUPPORT. K : KERNEL MEMORY ISOLATION SUPPORT.

Type RTOSs Manufacturers # of
P KMCS

UAV
NuttX 3DR, enRoute, Virtual Robotix, ... 18 7 7
FreeRTOS Storm Racing Drone, RISE 30 7 7
ChibiOS Parrot 6 7 7

UGV NuttX Erie Robotics, HobbyKing 2 7 7
ROV NuttX, OpenROV BlueRobotics, OpenROV 2 7 7
3D Printer Marlin D-creator, BQ WitBox, Wombot, ... 7 7 7
IoT FreeRTOS Mongoose, Particle 2 7 7

In
te

rr
up

t
Ve

ct
or

All Code
(OS,

Drivers,
Libraries,

Apps)

All Data
(Global,
Stack,
Heap)

B
oo

t
Lo

ad
er

P
er

ip
h

er
al

s

S
ys

te
m

C
on

tr
ol

/T
im

er

P
er

ip
h

er
al

s

Shared Memory Space

Flash ROM SRAM

… …

Devices

Fig. 1. Memory space layout of real-time MCS.

could successfully compromise any of the software modules by
exploiting a memory corruption vulnerability in real-time MCS,
as demonstrated in previous incidents [1]–[4], [40], [49]. For
instance, an attacker may exploit a buffer overflow vulnerability
in a telnet server through Wi-Fi in a UAV [40] and navigate
through the memory space to corrupt critical software and
hardware components, such as the flight control program and
actuators, to maliciously operate the vehicle. For such systems,
any vulnerable software module becomes an “Achilles heel” of
the entire system. Compromising one of the software modules
is equivalent to taking over the whole system, including both
the software stack and its associated physical and networking
components.

Although there have been extensive research efforts to
provide isolation to programs in embedded devices [21], [28],
[42], [48], [52], they have limitations in achieving both real-
time performance and memory isolation. Most of them require
manual efforts to identify which subject can access what
memory regions, because it is difficult to accurately identify the
memory boundaries between processes in the shared, monolithic
memory space. Recent work [31] proposed an approach to
automatically identifying sensitive instructions and escalating
the privilege mode for hardware-based access control before
these sensitive instructions are executed. Unfortunately, to
preserve real-time properties, it is not always acceptable to
escalate execution privilege for all sensitive instructions, as
those instructions may be executed very frequently in real-time
MCS. Thus, it would severely affect the responsiveness of the
system, similar to how current RTOS with kernel memory
isolation violate the real-time constraints as shown in our
study (§II-C). For example, peripheral I/O accesses are security
critical (e.g., reading GPS signals and controlling the actuators
of a UAV), and real-time MCS frequently perform such accesses
to closely control the peripherals. To properly protect such
accesses, the existing technique would have to escalate the
privilege mode for every peripheral’s I/O operation, failing to
meet real-time requirements.

In this paper, we propose MINION, which automatically
reduces memory spaces of real-time MCS while meeting real-
time constraints. The key idea behind MINION is an efficient

Memory
View

Per Process:

RTOS P1 …P2

U
np

ri
v.

View Switcher

Pr
iv

ile
ge

d

MPU

: Direct Memory Access
Memory View
Enforcement

: Memory View Boundary

Fig. 2. Overall architecture of MINION.

memory view switching mechanism for memory isolation, which
avoids frequent privilege mode switching. Fig. 2 illustrates the
overall architecture. The workflow of MINION consists of the
following three tasks. First, MINION captures the approximated
minimum set of memory regions essential to correctly operate
each process. MINION performs a conservative static program
analysis based on points-to analysis, which comprehensively
considers all memory types in real-time MCS (i.e., code, data,
and peripheral-mapped memory). Next, MINION constructs a
per-process memory view by assembling the previous analysis
results. To overcome the limitation of current memory protec-
tion hardware in real-time MCS, MINION performs a clustering
analysis, tailoring the memory views to be compatible with
the underlying hardware mechanism. Finally, MINION enforces
memory isolation based on the tailored per-process memory
view using the view switcher. The view switcher is the only
trusted computing base (TCB) that runs in the privileged mode,
and it is isolated from the RTOS and processes running in the
unprivileged mode.

The unique architecture of MINION allows the target real-
time MCS to meet both security and real-time requirements.
With respect to satisfying real-time constraints, the RTOS and
processes can avoid expensive privilege mode switching while
interacting with each other through direct memory access, as
MINION simply runs them in the same (unprivileged) processor
mode. In terms of security guarantees, since each process’s
memory accessibility is strictly limited to its own memory view
using the view switcher, MINION reduces the attack surface
of each process and supports memory isolation as desired.
As a result, when a compromised process makes an illegal
access that breaks the constraint of the memory view, the
view switcher detects this as a violation using hardware-based
memory isolation.

In comparison with conventional systems based on virtual
memory, the memory blocks that form each memory view
identified by MINION are not contiguous as the memory blocks
for different processes mingle with each other in the monolithic
memory space. In addition, unlike an OS kernel that frequently
intervenes in the process execution and elevates the privilege
mode (through hardware interrupts and system calls), the view
switcher is only executed whenever there is a context switching
between processes. We note that this only adds a little overhead
since the RTOS has to interrupt process execution anyway
to handle context switching, regardless of the view switcher.
According to our evaluation, the prototype of MINION was able
to meet the real-time constraints while significantly reducing
memory attack surfaces (76% with the hardware limitation and
93% without it).

2

The contributions of this paper are summarized as follows.

• Design: We present a new security architecture that
reduces the attack surface of real-time MCS and over-
comes the challenges that conventional and previous
memory isolation approaches did not fully address
(§IV).

• Implementation: We implement the proposed archi-
tecture on a commodity real-time MCS hardware to
demonstrate its practicality (§V).

• Evaluation: We provide quantitative evaluation results
on various aspects: (1) the performance overhead of
MINION and its impact on the responsiveness of real-
time processes, (2) the effectiveness of MINION’s
security guarantee against realistic attack cases built
based on one of the four new memory corruption bugs
that we discovered, and (3) the rate of memory space
reduction that MINION provides with and without
the limitation of current memory protection hardware
(§VI).

The rest of this paper is organized as follows. §II describes
the background. §III defines our threat model. §IV presents
the design of MINION in detail. Implementation and evaluation
of MINION are presented in §V and §VI, respectively. §VII
shows the differences between MINION and related work. §VIII
discusses the limitations of MINION. §IX concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we provide the background on real-time
MCS and describe the motivation behind MINION.

A. ARM Cortex-M and Cortex-R

A majority of MCS are built based on the ARM Cortex-
M [8] and Cortex-R [10] processors. Both Cortex-M and
Cortex-R provide various features that real-time MCS can
leverage to meet the deadline constraints of real-time processes.
Specifically, Cortex-M provides a high-resolution timer (called
SysTick) that generates precise timer interrupts with different
priorities. RTOSs that support Cortex-M rely on the timer
interrupts for the on-time scheduling of real-time processes. In
addition, the interrupt controller is tightly coupled to the core to
support fast interrupt handling, providing high responsiveness
to hardware events such as timer interrupts and peripheral
events. Cortex-R [10] is another example of ARM processors
that support real-time MCS. Both processor families support
privilege separation through two separate processor modes,
namely privileged and unprivileged modes.

B. Memory Protection Unit

A memory protection unit (MPU) provides hardware-
enforced memory isolation. All Cortex-M and Cortex-R pro-
cessors based on the ARMv7 architecture (including its next
versions) have an MPU [7], [8], [10], [13]. Unlike an MMU, it
neither supports virtual memory nor controls memory accesses
through page tables. Instead, an MPU provides a fixed number
of hardware registers, each of which specifies a per-region
access control rule for physical memory. This allows an MPU to
quickly read access control rules as it does not need to traverse

5
2
.3

8

6
0
.2

8

5
2
.0

2

1
0
4
.3

8

7
2
6
.2

8

1
2
4
.0

2

75 110 120

1

10

100

1000

10000

update_mount gcs_send_heartbeat update_batt_compass

T
im

e
 i
n
 μ

s
e
c
 (

L
o
g
-s

c
a
le

)

Unprotected Kernel Memory Isolation Deadline

Fig. 3. Limitation of kernel memory isolation. The deadline constraints of
the three real-time tasks on 3DR IRIS+ UAV are violated due to frequent
privilege mode switching.

page tables located in memory. The access control rule for each
memory region has two permission sets: one is used when the
processor is in the privileged mode and the other is used when
it is in the unprivileged mode. Each permission set can include
read, write, and execute permissions. If a memory region is
assessed without the required permissions by the corresponding
access control rule, the processor raises a permission fault
(similar to a page fault in an MMU-based system). Memory
accesses in privileged and unprivileged modes are controlled
separately as the access control rule has distinct permission
sets for them. The number of supported MPU regions varies
from 8 to 16 depending on the model and configuration of the
processors.

C. Motivation of MINION

Limitations of Current RTOSs. A number of RTOS’s [14],
[20], [22] optionally provide kernel memory isolation (but
not process memory isolation) using the privilege separation
and MPU that the ARM processors support. However, kernel
memory isolation is seldom employed by real-time MCS [31],
due to its negative impact on performance constraints [11].
Since the software and physical components of a real-time
MCS are highly interactive, software modules perform frequent
peripheral I/O operations. However, if kernel memory isolation
is enforced, only the kernel has exclusive access to the devices.
Software modules in the user space, such as applications and
libraries, are forced to request the kernel to perform I/O and wait
for the outcome (typically through a system call). This leads to
frequent privilege mode switching between the kernel and user
spaces, which in turn incurs the significant overhead caused
by the kernel’s intervention for all peripheral I/O operations.
Furthermore, user space programs often have to execute other
kernel functions that do not perform peripheral I/O: for example,
to use the heap memory, to synchronize with other software
modules, or to send a signal to a process. These all contribute
to the fact that real-time MCS do not employ kernel memory
isolation to avoid disrupting the responsiveness, the critical
operational factor of real-time processes.

As a more concrete demonstration of the negative impact of
kernel memory isolation, we manually enabled kernel memory
isolation in a popular UAV system, a 3DR IRIS+ quad-copter
and observed whether it meets real-time constraints. We note
this UAV system by default does not enable kernel memory
isolation. More specifically, we randomly selected a number of
real-time tasks in a 3DR IRIS+ quad-copter and measured the
impact of kernel memory isolation on their real-time constraints
by manually enabling it with a firmware modification (Fig. 3).
We observed that the system failed to meet the deadline

3

constraints of the real-time tasks due to frequent switching
between the kernel and flight controller for device I/O and
kernel function execution. As such, current real-time MCS
tend to allow any software module to directly execute kernel
code and perform peripheral I/O through direct MMIO without
switching to the kernel.

MINION Approach. Motivated by this problem, the key idea
behind MINION is to keep all software modules in the same
privilege mode. Unlike the current architecture of real-time
MCS that runs all software modules in the privileged mode,
MINION runs them in the unprivileged mode. This architecture
is also different from previous protection work [21], [28], [31],
which runs OS in the privileged mode and other software
modules in the unprivileged mode. MINION’s lightweight
software module, called the view switcher, is the only program
that runs in the privileged mode. By doing this, MINION avoids
the costly privilege mode switching overhead. To reduce the
memory space of each real-time process that can be used as a
large attack surface, MINION statically analyzes the firmware
of the MCS and identifies per-process memory views. The view
switcher leverages the MPU to effectively enforce the memory
views with minimal run-time overhead. Since the memory views
are enforced per process, the view switcher only has to take
place once at every context switching time to re-configure the
MPU. Due to the limitation of current MPUs with a small fixed
number of supported memory regions (§II-B), the memory
ranges in each memory view are clustered to be compatible
with the hardware.

III. THREAT MODEL AND ASSUMPTIONS

This paper aims to neutralize attacks with illegal memory
corruption capabilities against real-time MCS. In particular,
we assume that attackers have found a memory corruption
vulnerability in any of the underlying software stack layers,
and they are capable of launching a memory corruption exploit.
Once the attackers have successfully launched such an exploit,
they can either inject code or reuse existing code in the target
MCS to achieve their goal. Since all processes share the entire
physical memory space, the attackers can do anything with the
code, data, and peripheral devices mapped to the memory space
in order to subvert the system at this point. For example, they
can either execute safety-critical code in the system, manipulate
security-sensitive data, or maliciously control peripheral devices
by directly overwriting data to specific memory locations.

Unlike modern commodity operating systems and devices,
largely due to its limited hardware supports and inherent
performance constraints, real-time MCS lacks most of the
state-of-the-art security hardening features—from process and
kernel memory isolation to more advanced techniques including
control-flow integrity (CFI) and memory safety. In this respect,
we believe that such security threats against real-time MCS
are realistic and require immediate attentions from security
communities. There have been numerous memory corruption
vulnerabilities in such systems [1]–[4], [40], [49]. In addition
to the memory corruption issues that we discovered from the
real-time MCS that we tested (§VI-B1), we also observed that
almost 50% of all security-related patches on the MCS firmware
were related to resolving memory corruption vulnerabilities
[19]. This shows that memory corruption vulnerabilities are
real threats to real-time MCS. In §VI-B, we also show that

Customized Memory View Creation

Memory View Clustering

Real-Time Memory View Enforcement

Access Control Rules

Analysis Results

Firmware Analysis

Memory View Tailoring

Memory Protection

Code Reachability
Analysis

Data Accessibility
Analysis

Device Accessibility
Analysis

Fig. 4. Workflow of MINION.

such vulnerabilities are exploitable in various attack scenarios
with serious safety issues.

We assume that the real-time MCS is equipped with an
MPU and supports hardware-based privilege separation (i.e.,
more than one privilege mode). Both of the hardware features
are already market-available in most microcontrollers including
ARM based microcontrollers [31].

IV. DESIGN OF MINION

This section presents the design of MINION. Fig. 4 il-
lustrates the overall procedures of MINION. First, MINION
performs the off-line static analysis on the firmware of the
target real-time MCS to capture a required set of memory
regions to run each real-time process (§IV-A). Next, a memory
view per process is created by assembling the results of the
firmware analysis, and each memory view is further tailored
through a clustering algorithm to generate a set of access
control rules to overcome the hardware limitation of the MPU
(§IV-B). Then a secure and lightweight software module, the
view switcher, takes the access control rules as input, enforcing
the memory views on the corresponding real-time process
using the MPU (§IV-C). Lastly, we describe how MINION
allocates isolated stack and heap memory space based on
previous analysis results (§IV-D)

A. Firmware Analysis

Our firmware analysis aims at identifying which resources
are accessed at run-time by each real-time process. More
precisely, we categorize the resources of MCS into three types:
code, data, and peripheral-mapped memory regions. We design
the analysis targeting each of these resource types, namely
code reachability analysis (§IV-A1), data accessibility analy-
sis (§IV-A2), and device accessibility analysis (§IV-A3). The
analysis is performed on bitcode, the intermediate representation
(IR) of the Low Level Virtual Machine (LLVM [45]).

We choose static analysis over dynamic analysis techniques
[5], [26], [46], [47] so as to avoid incompleteness of our
analyses on memory accesses to code, global data, and
peripherals1. One of the well-known limitations of dynamic
analysis techniques is that it cannot provide completeness since
their analysis scope only covers a subset of a program that
is executed during training runs. This limitation may lead to
a critical run-time issue if used for MINION—if the memory

1It is worth noting that stack and heap spaces are not subject to static
analysis. For them we leverage run-time profiling.

4

view of a real-time process does not contain one of the memory
regions required for the real-time process to operate correctly,
the process would result in undefined run-time behaviors. This
problem becomes even more severe when the real-time MCS
is used as a safety-critical system.In contrast, although static
analysis may over-estimate the memory views, the analysis
results are conservative and thus achieve completeness by
design. Therefore, the target MCS would not suffer from such
a security issue under MINION’s protection.

1) Code Reachability Analysis: The goal of this analysis is
to conservatively identify code that a target real-time process
may execute for correct operations. Without loss of generality,
we analyze at the function granularity. In principle, the goal
of this analysis is equivalent to finding all functions that are
reachable from the entry functions of the process. Those entry
functions include the start function of each process, which is
the first function that the process executes, and a set of interrupt
handlers that are triggered when hardware events occur.

In order to identify all reachable functions for each entry
function, we first construct a call graph of the whole firmware.
In the call graph, functions are connected through two types
of control flow transitions, direct and indirect calls. It is
straightforward to analyze direct call transitions in bitcode,
since the call targets are explicitly stated. However, the sound
analysis of indirect call targets is challenging. The firmware of a
real-time MCS consists of the code and data of various software
modules (e.g., applications, libraries, device drivers, and the
OS) and indirect control transitions are heavily practiced across
the entire code space since these modules are highly interactive.
As such, we leverage inter-procedural points-to analysis [53]
to resolve indirect call targets precisely and construct the call
graph that includes both the direct and indirect calls. More
specifically, our points-to analysis focuses on resolving the
possible targets of the function pointer through both flow-
sensitive and context-sensitive analysis.

Once a set of reachable functions for each entry function is
identified, each function in the set is marked as executable such
that a process with the function in its memory view can execute
it at run-time. After that, these function sets are merged to
generate a unified set of reachable functions for each process.

In order to obtain the input of this analysis (i.e., entry
functions), we populate the list of the process start functions
by running the code reachability analysis on the OS function
responsible for creating a new process. Similarly, the list of
interrupt handlers for each process is populated through our
code reachability analysis on each interrupt handler of the
RTOS and by checking if any of the reachable functions from
the start function is also reachable from the interrupt handlers.

2) Data Accessibility Analysis: There are three types of
data: global, heap, and stack objects. To generally analyze
all of these data types, MINION takes two different schemes
to identify per-process data accesses: (1) for global data, the
analysis performs forward slicing augmented with points-to
analysis; and (2) for stack and heap, our analysis identifies the
location and size of each data segment.

Global Data. We leverage forward slicing to identify memory
accesses to global data for each real-time process. A forward
slice contains all the instructions that directly read and write

each global variable (or constant) and those that indirectly affect
the potential value of the variable through pointer aliasing.
Direct memory accesses to the global data are identified by
detecting all the loads and stores that use the global data as
the operands. Our forward slicing is performed on the result of
the inter-procedural points-to analysis to identify the aliasing
of the global variables within a single function and across
multiple functions through function arguments. We discard
every forward slice that does not lead to the de-reference of
an alias since it indicates that the aliased data are not accessed
in the slice.

Based on remaining forward slices, we analyze which
functions in the call graph directly or indirectly access the
global data and build a list of accessible global data for each
function. These results are then used to identify the accessibility
of the global data per process. Using the result of the code
reachability analysis, we mark only the global data that the
reachable functions in the process access as readable and/or
writable, depending on the type of the memory access—i.e.,
a load instruction indicates reading and a store instruction
indicates writing the data, respectively.

Stack and Heap Data. In addition to global data, MINION
also provides protection to the stack memory and heap memory
of each real-time process. Although the locations of these
memory regions are determined at run-time, the sizes of the
stack memory and the heap memory pool for each process can
be identified with some bounded engineering effort. Specifically,
we identified these memory sizes in a set of profiling runs by
annotating the stack and heap allocating functions of the RTOS.
Using the profiling results, we first determine the locations
of the stack memory and heap memory pool for each process
off-line and then use these memory locations at run-time to
allocate the stack and heap memory pool deterministically.
When determining the locations, we ensure that the stack and
heap pool of each process are adjacent in the memory space
thereby both of the memory blocks can be contained within
one memory region. The memory region is then marked as
both readable and writable in the memory view, such that
only the process that owns the stack and heap can access the
memory exclusively. The memory allocator of the RTOS is
slightly modified to allocate the stack and heap at the locations
specified in the memory view (§IV-D).

3) Device Accessibility Analysis: In addition to the afore-
mentioned analyses, we statically analyze the MCS firmware to
identify memory accesses to peripheral devices through MMIO.
Our static analysis leverages backward slicing to identify
these MMIO accesses. It is feasible to statically identify these
accesses because the addresses of peripheral-mapped memory
regions are embedded as constants in the firmware code in
practice. MMIO addresses are hard-coded in the firmware as
they are coordinated by the hardware design and thus cannot
easily be updated. There are three patterns that cover most
MMIO accesses that we identified based on our study of diverse
MCS firmware code. Fig. 5 presents example code snippets.

Case 1. Before accessing a peripheral-mapped memory
region, a function (enable_irq) calls a “query” function
(irqinfo) that returns the address of a corresponding periph-
eral device to a given device identifier (irq). The returned
address is then used by the caller function to read and/or write

5

1 #define IRQ_A (1)

2 #define IRQ_B (2)

3 #define NVIC_A (0xe000e100)

4 #define NVIC_B (0xe000e104)

5 #define DEV_X (0x50000804)

6

7 int irqinfo(int irq, uint32_t *addr)

8 {

9 if (irq == IRQ_A) {

10 *addr = NVIC_A;

11 } else if (irq == IRQ_B) {

12 *addr = NVIC_B;

13 } else {

14 return ERROR; /* Invalid IRQ */

15 }

16 return OK;

17 }

1 int enable_irq(int irq)

2 {

3 uint32_t addr, val;

4 if (irqinfo(irq, &addr) == OK) {

5 val = *(uint32_t *)addr;

6 val |= (1 << 1);

7 *(uint32_t *)addr = val;

8 }

9 }

DX = {
enable_irq
e000e100-e000e104:rw,
e000e104-e000e108:rw,
dev_reset
50000804-50000808:w,
hw_initialize
50000910-50000914:rw,
50000930-50000934:rw,
50000950-50000954:rw

}

1 void dev_reset(struct dev *priv)

2 {

3 uint32_t val;

4 val = (1 << 2) | (1 << 4);

5 *(uint32_t *)DEV_X = val;

6 priv->devstate = DEVSTATE_DEFAULT;

7 }

1 #define DEV_Y_BASE (0x50000910)

2 #define DEV_Y_ADDR(n) (DEV_Y_BASE+((n)<<5))

3 #define DEV_Y_SIZE (3)

4

5 void hw_initialize(void)

6 {

7 uint32_t val;

8 int i;

9

10 for (i = 0; i < DEV_Y_SIZE; i++) {

11 val = *(uint32_t *)DEV_Y_ADDR(i);

12 if (val & (1 << 31)) {

13 val = (1 << 31) | (1 << 27);

14 }

15 *(uint32_t *)DEV_Y_ADDR(i) = val;

16 }

17 }

enable_irq

irqinfo

Entry

dev_reset hw_initialize

Case 2

Case 1

Case 3

Fig. 5. Device accessibility analysis. Code snippets are taken from the NuttX RTOS and simplified for readability. DX is a set of the peripheral-mapped
memory regions accessible from process X.

to the peripheral-mapped memory region. We note that although
the query function reads the MMIO address values, it does
not dereference them to access the peripheral-mapped memory
regions. Instead, its caller function uses the obtained address
to access the memory region. To identify such propagation of
MMIO addresses across function boundaries, our backward
slicing is augmented to perform an inter-procedural analysis.

Case 2. An MMIO address is directly dereferenced to access
the peripheral-mapped memory region without involving an
inter-procedural data flow, as shown in dev_reset. Our study
shows that this simple pattern is the most commonly adopted
in most MCS firmware code.

Case 3. For some peripheral devices, programs directly access
a number of adjacent memory regions in a loop, as shown
in hw_initialize. Such a pattern can be addressed by
our backward slicing as it can find the instructions that either
directly or indirectly affect an instruction that uses an MMIO
address.

Our analysis finds every load and store instruction that uses
an MMIO address as an operand, and then uses backward
slicing to identify the instructions that affect the operands
of the loads and stores. The memory layout of the MCS is
given as an input, as such, we can identify that a constant
operand within a specific range of value is an MMIO address.
Each backward slice includes all the instructions that affect the
operands directly or indirectly. Using these slices, we build a
list of accessible peripheral-mapped memory regions for every
function in the firmware. Similar to the global data analysis,
the result of the code reachability analysis is used to mark only
those peripheral-mapped memory regions that the reachable
functions in each process accesses for MMIO operations.

B. Memory View Tailoring

We define a memory view as a list of access control
rules, each containing the location and permission type of
an accessible memory region. MINION constructs a memory
view based on the results of the firmware analysis (§IV-A).

1) Memory View Creation: Using the results of the firmware
analysis, MINION constructs the memory view VX of the
process X , which represents legitimate access permissions
for a given address. More formally, VX is an associative
array in which its key is an address and its value is a list
of granted access permissions (i.e., {r, w, x} where each letter
represents readable, writable, and executable, respectively).

Algorithm 1 Creation of a memory view using the firmware
analysis results.
1: function INSERTMEMORYREGION(VX , start, end, perm)
2: for addr ∈ {start...end} do
3: vi ← VX [addr]
4: vi.perm← vi.perm ∪ perm

5: function CREATEMEMORYVIEW(X)
6: VX ← new hash table
7: CX ← ∅
8: for f ∈ EX do
9: CX∪ reachable functions from f

10: for f ∈ CX do
11: INSERTMEMORYREGION(VX , f.start, f.end, {x})
12: for {f,mem, perm} ∈ GX do
13: if f ∈ CX then
14: INSERTMEMORYREGION(VX ,mem.start,mem.end, perm)
15: INSERTMEMORYREGION(VX , SX .start, SX .end, {r, w})
16: INSERTMEMORYREGION(VX , HX .start,HX .end, {r, w})
17: for {f,mem, perm} ∈ DX do
18: if f ∈ CX then
19: INSERTMEMORYREGION(VX ,mem.start,mem.end, perm)
20: return VX

Similar to VX , the firmware analysis results can be denoted
as associate array—i.e., CX , GX , SX , HX , and DX , each of
which represents the results of the code reachability, global
data, stack memory, heap memory, and device accessibility
analyses for process X , respectively. In this associate array
denoting the firmware analysis, its value is either the specific
access permission inherent to the analysis type or a combination
of access permissions per element determined by the analysis.
For example, the access permission for CX is {x}. Moreover,
each element of GX is a combination of {r, w}, depending on
the type of the access determined by the analysis. Similarly,
we use the access permission {r, w} for SX and HX to allow
both reads and writes to the stack and heap memory, and
a combination of {r, w} for each element of DX based on
the access type. For each address, VX is populated through
enumerating all firmware analysis results (i.e., CX , GX , SX ,
HX , and DX) while taking the union of permissions per address.
Algorithm 1 presents the pseudo-code to construct a memory
view using the results of the firmware analysis.

2) Memory View Clustering: In order to enforce memory
views, MINION leverages an MPU to strictly observe the
real-time constraints of the MCS. Since MPU-based memory
isolation is highly efficient, the overhead of MINION’s memory
view enforcement would be very low, and thus the real-time
processes can meet their deadline constraints while having
significantly reduced per-process memory space. The challenge,
however, is in the limited number of access control rules that

6

Pe
rm
is
si
on

Memory View (VX) # Base Size r/w/x
1
2
3
4
5
6

0xFFFFFFFF0x0

x
w
wx
r
rx
rw
rwx

Address

Memory View
Clustering

1

2

3

4

5

6

MPU Access Control Rules (RX)6

0xFFFFFFFF

0x0

Fig. 6. Memory view clustering. RX
6 is a set of access control rules for an

MPU that supports 6 protected memory regions at maximum.

Algorithm 2 Generation of MPU access control rules using
k-means clustering.
1: function GETPERMISSION(P)
2: perm← ∅
3: for p ∈ P do
4: perm← perm ∪ p

5: return perm

6: function ACCESSCONTROLRULES(VX , N)
7: S ← new |VX | ∗ 2 array
8: for vi ∈ VX do . Project VX into a 2-D surface
9: S[i][0]← vi.addr

10: S[i][1]← vi.perm

11: L← KMeans.cluster(S,N) . k-means clustering
12: C ← new hash table
13: for li ∈ L do
14: C[li].I ← new list
15: C[li].P ← new list
16: for li ∈ L do . Re-organize using the cluster labels
17: C[li].I.append(S[i][0])
18: C[li].P.append(S[i][1])
19: RN

X ← new list
20: for c ∈ C do . Generate MPU access control rules
21: base← min(c.I)
22: size← max(c.I)+1− base
23: perm← GETPERMISSION(c.P)
24: RN

X .append({base, size, perm})
25: return RN

X

can be enforced through MPU. As described in §II-B, MPU
only supports the small fixed number of memory regions.

To overcome this challenge, MINION uses clustering to
group similar objects together. MINION designs this clustering
algorithm to minimize the number of access control rules.
Each access control rule represents the clustered group with
similar addresses and the same access permission type. More
specifically, MINION clusters the elements of VX into a constant
number of access control rules based on the k-means clustering
algorithm. Fig. 6 illustrates how MINION tailors a memory
view through memory view clustering into a set of access
control rules to overcome the limitation of the current MPUs
(§II-B). VX is projected into a 2-dimensional space where
the X-axis is memory addresses and the Y-axis is permission
types. The projected VX bytes are then grouped into a set
of clusters (U). For each cluster in U , the memory addresses
and permission types of member bytes are re-organized to
generate a set of MPU access control rules (denoted as an
element of RN

X where N is the number of supported MPU
regions). The base address (base) and the size (size) of the
memory region are calculated based on the lowest and highest
memory addresses of each cluster. The permission type (perm)
is conservatively determined by computing the union of all

Base Size rwx

RTOS

Interrupt
Handlers

Real-Time
Scheduler

…

U
np

ri
vi

le
ge

d
Pr

iv
ile

ge
dMPU

Interrupt
Dispatcher

View Switcher

Memory
Protection

Fault

Memory
Access

switch_view

DispatchSyscall/
Interrupt

init

Return

CPU

P1 P2

read_scb
write_scb

Switch

Fig. 7. Detailed architecture of memory view enforcement.

permission types in the cluster, for the same reason why we
use a union for memory view creation (§IV-B1). Algorithm 2
provides the pseudo-code that clusters a memory view into a
number of MPU access control rules.

C. Memory View Enforcement

Given the MPU access control rules (i.e., a memory view
per process) generated in the previous phase, MINION enforces
the memory views on the real-time processes while the MCS is
running, as illustrated in Fig. 7. The view switcher is running
in the privileged mode, responsible for securely enforcing the
memory views using the MPU access control rules. Since the
RTOS and real-time processes run in the unprivileged mode,
they cannot tamper with the view switcher. The MCS firmware
is instrumented with a small number of system calls that
MINION provides. Whenever a MINION system call is invoked
by a software module in the unprivileged mode, the processor
elevates the privilege before the view switcher receives the
control. The processor drops the privilege when the system call
returns. The details of the MINION system calls are as follows.

init is invoked when the MCS firmware bootstraps. More
precisely, it is called immediately after the RTOS finishes the
device initialization and before the first real-time process is
created. When invoked, it configures the MPU such that the
memory regions that contain the view switcher’s code and data
are inaccessible from the unprivileged mode (i.e., the RTOS
and real-time processes). The view switcher keeps the input
MPU access control rules in a protected memory region, so
any unprivileged access to them will raise a memory protection
fault and in turn the view switcher will be notified. The location
information of the stack memory and heap memory pool per
process, determined during the firmware analysis, is loaded into
a read-only memory region that no real-time process can access
but the RTOS. This is because the RTOS needs to use this
information to allocate stack and heap following the memory
views (§IV-D). The interrupt vector table is configured in a
way that all interrupts are first handled by MINION and then
dispatched to the RTOS’s interrupt handlers after dropping the
privilege. After the bootstrapping, the privilege is dropped and
the RTOS receives the control back to proceed.

switch_view is invoked by the real-time scheduler of
the RTOS whenever it performs context switching between two
real-time processes, from an old process to a new process to be
scheduled in. The address of the new process’s start function

7

is leveraged by the view switcher as an identifier to find the
corresponding memory view among all the memory views
loaded in the protected memory region. Using the access control
rules in the memory view, the view switcher re-configures
the MPU such that the new process can only access to the
memory regions within the view. After the configuration, the
new process can directly execute the code and control the
peripherals through MMIO for benign operations without a
delay, as the corresponding memory regions are included in
the memory view. On the other hand, any unprivileged memory
access that does not comply with the access control rules (i.e.,
out of the memory view) will raise a memory protection fault.
Once the view switcher finishes the MPU configuration, the
control is returned to the real-time scheduler after a privilege
drop and the RTOS finishes the scheduling procedure.

read_scb and write_scb allow software modules
running in the unprivileged mode to securely access a special
memory area, called the System Control Block (SCB), through a
restricted channel. Some software modules, including the RTOS,
benignly accesses the SCB to control the processor (e.g., to
configure the SysTick timer). Unlike other memory regions, any
memory access to the SCB in the unprivileged mode generates
a hardware fault by the hardware design, even though the
MPU configuration allows the access. To this end, MINION
introduces these two system calls, allowing software modules
to access a memory region in the SCB only if the memory
view of the current process includes it. We leverage the result
of our firmware analysis (§IV-A3) to identify all instructions
that access the SCB, and then replace each of these instructions
with a call to read_scb or write_scb, depending on the
access type. In our prototype, we find that only a small number
of RTOS functions access the SCB and none of the real-time
processes access it. When invoked, read_scb simply reads
the requested four-byte data from the SCB and write_scb
writes the provided data to it.

The privilege mode switching caused by the system calls
does incur some performance overhead. However, we observe
that the overall performance impact of MINION is small (2% on
average) and does not affect the responsiveness of a commodity
real-time MCS with deadline constraints for the following
reasons. First, init is invoked only once when the system
bootstraps and thus does not affect the performance of the
MCS during the production run. Second, read_scb and
write_scb are not infrequently invoked during production
but only invoked at a high frequency while the RTOS is
accessing the SCB to initialize devices. Lastly, although the
main source of the overhead is switch_view, the impact
is not substantial. Since the RTOS has to interrupt process
execution anyway to handle context switching, regardless of
MINION, switch_view only adds little computation to the
context switching handler. The privilege mode is elevated by the
microprocessor when the interrupt occurs and switch_view
simply utilizes it. We will further discuss the performance
impact in §VI.

D. Stack and Heap Allocation

The memory allocator of the RTOS is slightly modified
for each real-time process to have its own isolated stack and
heap memory that comply with the memory view. When a new
process is created, the memory allocator reserves a memory

pool in the shared memory space to allow dynamic memory
allocation. Instead of managing the stack and heap memory
separately, it allocates both stack and heap memory using the
same memory pool of the process. The stack memory is created
by allocating a memory block of a constant size in the memory
pool, in the same way how a heap memory block is allocated
using malloc, and by letting the process use it as the stack. We
add a small modification, only 20 lines of code (LOC), to the
memory allocator, such that the memory pool of each process is
placed at the location specified in the memory view, determined
during the firmware analysis (§IV-A2), instead of the original
location. Since the memory pool is reserved only once per
process creation, the performance impact of the modification
is trivial. Security-wise, each process can only access its own
stack and heap memory exclusively during execution as the
view switcher enforces the memory view. A compromised
process cannot access the stack or heap of another process
across the memory view boundary, whether or not the attacker
has knowledge about the memory pool.

V. IMPLEMENTATION

Our proof-of-concept prototype of MINION is implemented
on 3DR IRIS+ [16], a popular quad-copter UAV based on
the 3DR Pixhawk microcontroller [17]. We note the design of
MINION is general and it can be applied to any real-time MCS
with an MPU and privilege separation.

Pixhawk contains an ARM Cortex-M4 processor (with
8 MPU regions), a 192KB static RAM (SRAM), a 64KB
core-coupled RAM (CCRAM), a 16KB read-only memory
(EEPROM) and a 2MB flash ROM. It also has an ARM Cortex
M3 co-processor that runs a small extra piece of firmware,
separate from the main MCS firmware. This separate piece of
firmware runs a servo system that operates the four actuators
at the command of the main firmware. It supports a fail-
safe landing feature, which safely lands the UAV when the
main firmware detects an undesired event, such as low battery
power. The microcontroller is equipped with a handful of
peripheral devices including: sensors (a gyroscope, a GPS with
an integrated magnetometer, an accelerometer, and a barometer),
four 950kV actuators, and a telemetry radio signal receiver.
The telemetry device allows the UAV to communicate with a
Ground Control Station (GCS) and an RC controller.

Our prototype leverages the fail-safe landing feature when
the view switcher detects that a real-time process makes
an illegal memory access out of the memory view. When
triggered, it lands the UAV by slowly and repeatedly decreasing
the altitude until it touches the ground without changing its
horizontal position. We note that MINION can also be deployed
on top of the co-processor to protect the small, separate piece
of fail-safe landing firmware.

Similar to most of the unmanned vehicles based on 3DR
Pixhawk, the firmware of 3DR IRIS+ contains the ArduPilot
flight controller [18], the UAVCAN CAN bus library [23],
device drivers from the PX4 Autopilot module [15], and the
NuttX RTOS [22]. We added 787 LOC for the view switcher
and additionally added and modified 87 LOC of the RTOS
code, including those added for modified stack and heap
allocation. There was no modification in the flight controller,
library, or device drivers. In addition, we wrote extra 1,590

8

LOC to implement the off-line firmware analysis based on an
interprocedural points-to analysis tool [53], and memory view
creation and clustering based on LLVM 3.9 and Python 2.7.6.
All of the experiments in §VI were performed on the main
firmware of the real-time MCS (3DR IRIS+), with or without
the protection of MINION.

VI. EVALUATION

In this section, we evaluate our MINION prototype imple-
mented on a commodity real-time MCS (3DR IRIS+ described
in §V) to answer the following questions:

• What is the performance impact of MINION on real-
time constraints of real-time MCS (§VI-A)?

• Can MINION effectively protect real-time MCS against
realistic attacks (§VI-B)?

• How much memory space can MINION reduce
(§VI-C)?

• What is the correlation between the limitation of MPUs
and MINION’s memory space reduction (§VI-D)?

A. Performance Impact

1) Real-Time Benchmarks: Fig. 8 shows the performance of
31 real-time tasks in comparison with the deadline constraints,
with and without the protection of MINION. We used a high-
resolution performance counter equipped in the microcontroller
to measure the performance of the real-time tasks. These
tasks run under the context of a flight controller process
(main_loop), which handles the key operations of the real-
time MCS (i.e., the flight control operations). Similar to the
concept of a thread, a process may have more than one real-time
tasks and each real-time task handles a specific job. Each real-
time task executes a loop and is assigned two pre-determined
time constraints: an interval and a deadline. The loop iterates
at the given interval and it performs a specific operation at
each iteration. For instance, the rc_loop task receives radio
signals from an RC controller at every iteration of the loop
with the interval of 100 Hz and it is assigned the deadline of
130 µsec. Similarly, update_GPS reads GPS signals and is
assigned the interval of 50 Hz and the deadline of 200 µsec.
The performance overhead of MINION must be small enough
for the real-time tasks to meet the deadlines. Otherwise, it will
have a negative impact on the UAV’s flight.

For all of the tasks, the deadline constraints are not violated
with or without the protection of MINION. The overhead in
percentage (Fig. 8) shows average extra latency that each
real-time task under protection spent within the time window
of the deadline. The overhead of all 31 tasks was only 2%
on average. The overheads of individual tasks ranged from
-0.87% to 10.85%. Some of the tasks showed slightly better
performance with the protection. We found that the execution
time of these tasks are fairly short, and the presence of MINION
did not increase their execution time. The non-determinism
of the physical inputs (e.g., GPS signals), which we could
not fully control during the benchmarks, should have caused
the slightly increased performance results when the protection
was enabled. On the other hand, 5 of the real-time tasks (e.g.,
update_batt_compass) showed larger than 5% overhead.
Unlike the tasks with small overhead, the total latency of

TABLE II. MEMORY CORRUPTION BUGS OF THE ARDUPILOT
FIRMWARE THAT WE FOUND WHILE WORKING ON MINION.

Module Bug ID Type Confirmed Patched

NuttX RTOS S1∗ Global buffer overflow X X
PX4 drivers S2� Stack buffer overflow X X
PX4 drivers S3† Null pointer de-reference X X
PX4 drivers S4‡ Null pointer de-reference X X

Bug reports: ∗ https://goo.gl/C4VmY6 � https://goo.gl/Q7HkDz
† https://goo.gl/9uB85o ‡ https://goo.gl/VBFF7K

these tasks are generally longer than others regardless of the
protection, so the chance of context switching during task
execution is higher for them. As we aforementioned, MINION
switches the memory view at every context switching time, and
the overhead is proportional to the number of context switching
events. According to our worst-case execution time (WCET)
analysis with end-to-end measurements, the overhead of the
tasks under protection was 6.13% on average. In all cases, the
deadline constraints of the 31 real-time tasks were met with
the protection of MINION while preserving the schedule-ability
of the MCS.

2) Micro-Benchmarks: The latency of init is 10 µsec and
it does not have an impact on the overall performance of
the MCS since it is invoked once only when the system
bootstraps. The overhead of switch_view is 15 µsec and it
mainly comes from searching for the right memory view of a
process and configuring the MPU through MMIO. read_scb
and write_scb both have small overheads, 4 and 5 µsec
respectively, from checking whether the current access control
rules allow the requested access to the SCB and performing
the access if it is allowed.

B. Security Experiments

1) Memory Corruption Bugs: While working on our proto-
type, we found 4 new memory corruption bugs in the firmware
of the MCS and reported them to the developers of the
firmware modules (the NuttX RTOS and PX4 drivers). Table II
summarizes the bugs. We detected S1 and S2 using a source
code analysis tool [9] and S3 and S4 using our initial memory
protection, respectively. All of the bugs have been confirmed
and patched by the developers in response to our reports.

S1 is a memory corruption bug in the RTOS’s system
console that can be reproduced by an arbitrarily long input
string to the terminal. When the program copies the user input
to a fixed-size global buffer it does not check the length of the
input, which may cause a buffer overflow.

S2 is a stack buffer overflow bug in a PX4 device driver.
Similar to S1, one of the device driver functions calls the
sscanf library function to copy an input string to a fixed-size
local buffer without a proper length check. Unlike S1, S2 can
be exploited as a vulnerability more easily since it causes a
stack overflow. Specifically, an attacker may call the vulnerable
function with a carefully crafted input string to overwrite the
return address in the stack and this can be used to execute
an injected code or as the basis of code-reuse attack. In our
evaluation with 8 attack cases, we exploit this vulnerability to
hijack the control flow and then execute the malicious payloads.

S3 and S4 are both null pointer de-reference bugs
caused by a PX4 device driver. This driver implements

9

https://goo.gl/C4VmY6
https://goo.gl/Q7HkDz
https://goo.gl/9uB85o
https://goo.gl/VBFF7K

1
5
.5

5

1
1
.2

5

3
3
.6

3

3
.3

2

5
2
.0

2

3
.3

1

2
.1

9

1
.8

9

5
6
.4

9

1
3
.7

4

3
.4

1

6
.1

3

2
4
.1

8

2
.7

8

1
0
.0

3

2
.2

1

2
.8

1

2
.9

2

1
0
.6

1

6
0
.2

8

3
.5

6

6
2
.2

2

5
2
.3

8

5
.2

5

4
.0

3

5
.2

2

2
.5

5
.4

8

2
.3

6

1
.8

1
.6

8

130

75

200
160

120

50 50

75

140

100 90
75

100 90 90
75 75

50

180
110

550 550

75

350

110
100

75 75

200

75 75

1

10

100

1000

T
im

e
 i
n
 μ

s
e
c
 (

L
o
g
-s

c
a
le

)

Unprotected Protected Deadline

3.09%

-0.53%

0.79%

-0.71%

10.85%

0.28%

-0.86%
0.11%

1.16%

6.83%

-0.11%

4.63%

4.85%

0.96%

-0.8%

3.21%
1.13%

-0.84%

2.46%

6.04%

0.002%

0.47% 9.13%

-0.14%
-0.87%

0.33%
6.83%

-0.52%

0.25%
2.77%

1.44%

Fig. 8. Performance impact of MINION on real-time tasks with deadline constraints. The overhead introduced by MINION is marked on top of every bar that
represents the execution time with MINION. The results are the average of more than 100 runs.

three functions, namely cpuload_initialize_once,
sched_note_stop, and sched_note_switch. The
RTOS calls these functions to let the driver measure
the CPU usage of each real-time process. Although
sched_note_stop and sched_note_switch are de-
signed to be called only after the initialization is com-
pleted by cpuload_initialize_once, we found a
certain case that the RTOS calls the two functions
before cpuload_initialize_once. If this happens,
sched_note_stop (S3) and sched_note_switch (S4)
de-references uninitialized null data pointers without checking
if the pointers are initialized.

Interestingly, we did not find these bugs manually. MINION
detected the bugs when we applied our initial memory protec-
tion to the MCS. Because the real-time processes that use the
driver did not have access to the memory region at address
zero in its reduced memory view, MINION detected the null
pointer de-references as memory access violations. These bugs
were hidden until we found them because the MCS did not
provide any memory protection and the null pointers were
silently referenced without a visible symptom for a long time.

2) Attack Cases: Due to the absence of a known real-
world attack on the specific MCS we tested, we created a
set of new attack cases based on the real-world attacks against
other similar real-time MCS [12], [32], [33], [39], [51]. All
8 attacks that we created are based on the exploitation of the
S2 memory corruption bug (Table II) within a victim real-time
process (i.e., ver), which outputs the version information of
the software and hardware modules of the MCS. Once the
vulnerability is triggered, the return address is modified such
that an attack payload function is invoked when the vulnerable
returns. To summarize, whereas the MCS without MINION
were vulnerable to all of these cases, the MCS with MINION
successfully detected all (shown in Table III). We include the
number of real-time processes that have the attack surfaces in
their memory view (P), to clearly represent the effectiveness
of MINION’s attack surface reduction from the attacker’s
perspective. Overall, out of a total of 49 processes, only zero
to five processes contain the attack surfaces exploitable by
attackers. Zero process indicates that none of the processes
perform MMIO operations on these devices since they are

accessed only by the specific RTOS functions for hardware
initialization and real-time process scheduling. In the following,
we describe the details of these attacks.

Process Termination. The RTOS provides a set of POSIX
functions for the convenience of application, library, and device
driver developers who are familiar with Unix-like systems. The
kill function is supported by the RTOS and it can be used
to terminate an arbitrary process. Similar to a return-to-libc
attack, our process termination attack reuses kill to terminate
the flight controller process (main_loop) that runs the key
real-time operations of the MCS. The attack overwrites the
return address of the vulnerable function in the victim process’s
stack memory with the address of kill and modifies the
hardware register to terminate the target process. The attack
was successful because the victim process had free access to
any function in the firmware including the kill function. With
the protection of MINION, this attack was detected (and the
UAV safely landed by the fail-safe landing feature) because
the memory view of the victim process did not include kill
that the process should not use in benign operations.

Servo Operation. The servo system of 3DR IRIS+ runs on a
separate co-processor whereas the firmware runs on the main
microprocessor. A PX4 device driver in the firmware has a func-
tion (called up_pwm_servo_set) to send signals to the servo
system through general-purpose I/O (GPIO). Similar to the two
previous attacks, our servo operation attack hijacks the control
flow of the victim process and invokes up_pwm_servo_set
to maliciously control the four actuators of the UAV. In our
experiment, we confirmed that the attack can easily disrupt
the flight by invoking the servo controlling function with the
two argument values (channel and value), which represent
different types of UAV movement/mode and the speed of the
actuators, respectively. The attack was detected and prevented
by MINION since up_pwm_servo_set is not reachable from
the victim process’s entry functions and thus the memory view
did not include it.

Control Parameter Attack. The flight controller adjusts
control variables for the desired control response. The control
parameters used in the controller are constant values which
determine the performance of the controller for the optimum

10

TABLE III. ATTACK CASES USED TO EVALUATE THE EFFECTIVENESS OF MINION. X: DETECTED. 7: UNDETECTED. S: SIZE OF THE ATTACK SURFACE IN
BYTES. P : NUMBER OF THE PROCESSES THAT CONTAIN THE ATTACK SURFACE IN THE MEMORY VIEWS OUT OF TOTAL 49 PROCESSES.

Attack Case Attack Surface Detection
Type Name Memory Area S P Without MINION With MINION

Process Termination∗ RTOS function kill Code 78 2 7 X
Servo Operation Driver function up_pwm_servo_set Code 84 5 7 X
Control Parameter Attack� Control parameter pid_rate_roll Data (Global) 4 1 7 X
RC Disturbance† RC configuration data channel_roll Data (Heap) 4 1 7 X
Soft Timer Attack‡ SysTick hardware timer STK_LOAD Device 4 0 7 X
Hard Timer Attack? SysTick hardware timer STK_LOAD Device 4 0 7 X
Memory Remapping Flash patch and breakpoint unit FP_REMAP Device 32 0 7 X
Interrupt Vector Overriding Interrupt vector table VTOR Device 4 0 7 X

Demo videos: ∗ https://goo.gl/1aSEf1 � https://goo.gl/sJRPFg † https://goo.gl/5gAuvs ‡ https://goo.gl/jFHgYL ? https://goo.gl/dMQ2YZ

flight behaviors and stability. Therefore, the control parameters
are carefully chosen with a tuning process to find the optimum
values before the actual flight. If the control parameters are
chosen incorrectly, the behavior of the UAV can become
unstable. In our target MCS, the parameters are stored in
the read-only memory (EEPROM) first, and then loaded into
the shared memory (SRAM) as global data objects when the
controller process is initialized. Our control parameter attack is
a non-control data attack [29] that corrupts one of the critical
control parameters (RATE_ROLL_P) in the memory space.
This parameter is used as the coefficient for the roll control,
the control of the rotation around the axis that runs from the
nose to the tail. Since the coefficient decides the strength of
the UAV’s reaction to angular change, maliciously updating the
parameter with an incorrect value in the memory would have
a negative impact on the stability of flight. In our experiment,
the attack overwrote the original global value (0.15) with a
considerably high value (15.0) in the shared memory space
from the victim process while the UAV is in the air. The effect
was that the UAV immediately started oscillating, reacting to the
roll change with excessive response and overshoot repeatedly.
Under MINION’s protection, however, the same attack did not
take effect since the victim process does not access to the
global data in normal operations and the view switcher could
detect the illegal memory access using the memory view.

RC Disturbance. As another example of a non-control data
attack, our RC disturbance attack corrupts two configuration
values that the RC receiver relies on to handle RC signals.
Specifically, the upper and lower bounds of RC channel values
are allocated in the heap memory of the controller process. A
real-time task (rc_loop) in the process reads these values to
constrain the incoming RC channels value within the bounds.
By overwriting the bounds (originally 1100 and 1900) with
incorrect small values (0 and 2) in the heap memory of the
controller process, our RC disturbance attack disrupts the UAV’s
handling of the RC signals while in the air. Among different
RC channels, our attack targets the roll channel, through which
the signals are used to control the roll behaviors of the UAV.
When the attack was launched, the UAV tilted toward one side
and kept flying toward that side until it crashed. In contrast,
when we launched the attack under MINION’s protection, it
could successfully prevent the attack by detecting the writes to
the heap memory across the boundary between the victim and
controller processes. Under the protection of MINION, each
process only has access to its own stack and heap memory to
comply with the memory view.

Soft Timer Attack. SysTick is a 24-bit system timer embedded
in ARM Cortex-M. While the MCS is bootstrapping, the RTOS

configures the timer by writing to the memory regions to
which a number of SysTick registers are mapped, including
the SysTick reload value register (STK_LOAD). The RTOS
relies on STK_LOAD for the scheduling of real-time processes.
Specifically, SysTick raises timer interrupts at the interval that
STK_LOAD stores and the real-time scheduler works based on
the timer interrupts. Our timer attacks maliciously modifies
the interval value in STK_LOAD. For the soft timer attack, we
increase the value to 2X of the original value (0x2903F) set by
the RTOS. This degrades the responsiveness of the real-time
processes since the scheduler now works based on “a slower
clock.” In our experiment, the UAV could not stabilize itself and
quickly dropped its altitude when the attack was deployed. The
attack was detected and prevented by MINION since SysTick
registers are mapped to memory regions to which the victim
process does not have access in its memory view.

Hard Timer Attack. The hard timer attack works in the same
fashion with the soft timer attack. The only difference is that
the hard timer attack writes the maximum 24-bit interval value
(0xFFFFFF) to STK_LOAD. When the attack was deployed,
we completely lost our control of the UAV. The flight controller
kept increasing the altitude of the UAV and it did not respond
to our RC controller. It would have been a critical incident if
we did not use a tether to restrict the UAV’s flight range. We
analyze that the extremely low responsiveness of the real-time
processes, caused by the attack, prevented the flight control
and RC signal handling operations from being executed, so
the servo system was running based on the last signal that the
flight controller sent before the attack. As it did for the soft
timer attack, the protection of MINION prevented this attack by
detecting an illegal access to STK_LOAD out of the memory
view of the victim process.

Memory Remapping. ARM Cortex-M3 and M4 processors
have a feature to support debugging and run-time firmware
updates, called Flash Patch and Breakpoint (FPB). This allows
changing the default address space of the physical memory such
that some portion of the flash ROM, which contains code, can
be re-mapped to the SRAM. It also enables inserting hardware
breakpoints into the code since the SRAM is mutable at run-
time while the flash ROM is not. Our memory remapping attack
exploits FPB to inject a malicious code into the target MCS.
In our experiment, we replaced the printf function with a
new function that outputs a certain string (“hacked”) to the
terminal after remapping the memory region. The remapping
is accomplished by modifying the FP_REMAP register through
MMIO. After the attack was deployed, the MCS repeatedly
printed the string whenever printf was called in the system.
This attack was detected by MINION since the victim process

11

https://goo.gl/1aSEf1
https://goo.gl/sJRPFg
https://goo.gl/5gAuvs
https://goo.gl/jFHgYL
https://goo.gl/dMQ2YZ

did not have access to FP_REMAP in the tailored memory
view.

Interrupt Vector Overriding. The firmware contains an
interrupt vector table at a specific location of the physical
address space, so the processor can execute the corresponding
interrupt handler when an interrupt occurs. Our interrupt vector
overriding attack swaps the original vector table with a new
malicious vector table at run-time in order to steal hardware
interrupts. The attack is accomplished by modifying the vector
table offset register (VTOR) through MMIO, which contains
the address of the vector table. The processor references VTOR
when it delivers interrupts. In our experiment, we overrode
the reset interrupt handler so that our attack payload (printing
“hacked”) becomes the first code that the MCS executes when it
restarts. Similar to other attacks, MINION successfully detected
the access to VTOR since it is out of the memory view assigned
to the victim process.

C. Memory Space Reduction

We evaluate the effectiveness of MINION in reducing the
memory space of real-time MCS. Without MINION, an attacker
who successfully compromises a real-time process in the MCS
can target any memory region in the entire physical address
space. From the security perspective of 3DR IRIS+ that we
evaluate, such memory areas include: code and read-only data
areas mapped to the flash ROM, the data areas (global, stack,
and heap) mapped to the SRAM and CCRAM, and other areas
that are mapped to various peripheral devices and the SCB.
The size of each memory area is retrieved from the hardware
specifications. As a result, we use the total memory space of
2.9 MB as the baseline of our evaluation. Note that this is
arguably conservative and fair estimation in comparison with
the 4GB memory space that the 32-bit microprocessor can
address, as our baseline only includes mapped memory areas
remain active at run-time.

Fig. 9 shows how much memory space is reduced for each
of the 49 processes in the MCS while Table IV presents the
average sizes and reduction rates of the memory spaces. We
combined the stack and heap sizes together (Stack+Heap) as
their relatively small values make them unrecognizable in Fig. 9
and there is no difference between the stack and heap from
the memory allocator’s point of view (§IV-D). Our real-time
MCS is equipped with an ARM Cortex-M4 processor that
only supports 8 MPU regions. MINION performs clustering on
the memory views to fit the memory views into the small
MPU regions. For a comparison, we present the memory
space reduction rates of MINION based on 8 MPU regions
(Fig. 9a) and an unlimited number of MPU regions which
current processors do not yet support (Fig. 9b). We discuss
MINION’s memory space reduction based on a varying number
of MPU regions in §VI-D.

Overall, 76% and 93% of the memory spaces on average
are reduced by MINION either with 8 MPU regions and with
unlimited MPU regions, respectively. These are significant
reduction rates, compared to the large baseline memory space
of the MCS without the protection. More importantly, this is
achieved with zero impact on the real-time constraints of the
MCS, as shown in §VI-A.

We note that the reduction rate of the code area is affected by
the hardware limitation more than other areas—23% difference
between the code reduction rates (Code) with and without the
limitation of MPU regions (L and U) in Table IV. Our analysis
found that code blocks used for each process are sparsely
located in the address space, resulting in more conservative
clustering of the memory blocks (i.e., code blocks used for other
processes) compared to other memory areas. In addition, the
global data area is reduced less than other areas even without
the hardware limitation—62% reduction rate (Global) with an
unlimited number of MPU regions (U) in Table IV. Based on
our observation, we learned that a comparatively large portion
of the global data is necessary to run normal operations of the
processes in the MCS, resulting in a less significant reduction
rate compared to other areas.

D. Hardware Support

MINION performs a k-means clustering on a memory view
to be compatible with today’s MPUs that only support a
limited number of MPU regions (§II-B). We show the rate
of memory space reduction that MINION provides with an
increasing number of MPU regions from 2 to 100 (Fig. 10).
We note that the rate significantly grows as the number of
MPU regions increases up to 8 and gradually converges to the
maximum rate (i.e., the rate without the hardware limitation)
after that point. Current microprocessors support either 8, 12,
or 16 MPU regions depending on the hardware model and
configuration. Based on the result, we learn that MINION can
reduce a substantial amount of memory space (76%-80% in
our prototype) under the limitation of the current hardware,
and it will provide a higher reduction rate (93%) without the
limitation. We hope that the results are beneficial to future
designs of ARM processors and more secure real-time MCS,
in terms of cost and security.

VII. RELATED WORK

Memory Isolation on Microcontrollers. There have been
frameworks [21], [28], [42], [48], [52] to isolate sensitive
programs from other programs in small embedded devices based
on microcontrollers. Sancus [48] and SPM [52] provide trusted
computing environments for resource-constrained embedded de-
vices by extending hardware and annotating sensitive programs.
TrustLite [42], TyTan [28], and Mbed uVisor [21] provide
sandboxing between different programs in an MCS using an
MPU. Although these frameworks can be used as primitives to
isolate an application process from other program entities, they
require manual efforts to designate the memory regions that
belong to each application in the device’s memory space and the
programs to be developed based on the knowledge. EPOXY [31]
addresses this problem by automatically identifying sensitive
operations and instrumenting them with an SVC (for “supervisor
call”) to escalate the privilege mode for access control using
an MPU. Unfortunately, these sensitive operations include
privileged instructions and MMIO accesses to peripherals,
which are executed at a very high frequency in MCS. Such a
downside makes it unsuitable to be applied to real-time MCS
where performance constraints are as important as security. In
comparison, MINION focuses on reducing the memory spaces
of real-time processes, which were entirely open to attackers
previously, without sacrificing the performance constraints. The

12

0
0.5

1
1.5

2
2.5

3

B
a
s
e
li
n
e

A
rd

u
P
il
o
t

m
a
in

_
lo

o
p

s
to

ra
g
e
_
th

re
a
d

u
a
rt

_
th

re
a
d

ti
m

e
r_

th
re

a
d

io
_
th

re
a
d

b
a
tt

_
s
m

b
u
s

e
ts

_
a
ir
s
p
e
e
d

h
m

c
5
8
8
3

l3
g
d
2
0

ll
4
0
ls

ls
m

3
0
3
d

m
b
1
2
x
x

m
e
a
s
_
a
ir
s
p
e
e
d

m
k
b
lc

tr
l

m
p
u
6
0
0
0

m
p
u
9
2
5
0

m
s
5
6
1
1

o
re

o
le

d

p
w

m
_
in

p
u
t

p
x
4
fl
o
w

fm
u

p
x
4
io

rg
b
le

d

a
d
c

to
n
e
_
a
la

rm

tr
o
n
e

u
o
rb

u
a
v
c
a
n

b
l_

u
p
d
a
te

m
ix

e
r

m
o
to

r_
te

s
t

m
td

n
s
h
te

rm

p
e
rf

p
w

m

to
p

u
s
b
_
c
o
n
n
e
c
te

d

v
e
r

s
e
rc

o
n

s
e
rd

is

w
o
rk

_
h
p
th

re
a
d

w
o
rk

_
lp

th
re

a
d

n
s
h

re
b
o
o
t

re
fl
e
c
t

M
K
::

tr
a
m

p
o
li
n
e

P
X
4
F
M

U
::

tr
a
m

p
o
li
n
e

P
X
4
IO

::
tr

a
m

p
o
li
n
e

M
e
m

o
ry

 S
p
a
c
e
 (

M
B
)

Code Global Stack+Heap Device

(a) 8 MPU regions (ARM Cortex-M).

0
0.5

1
1.5

2
2.5

3

B
a
s
e
li
n
e

A
rd

u
P
il
o
t

m
a
in

_
lo

o
p

s
to

ra
g
e
_
th

re
a
d

u
a
rt

_
th

re
a
d

ti
m

e
r_

th
re

a
d

io
_
th

re
a
d

b
a
tt

_
s
m

b
u
s

e
ts

_
a
ir
s
p
e
e
d

h
m

c
5
8
8
3

l3
g
d
2
0

ll
4
0
ls

ls
m

3
0
3
d

m
b
1
2
x
x

m
e
a
s
_
a
ir
s
p
e
e
d

m
k
b
lc

tr
l

m
p
u
6
0
0
0

m
p
u
9
2
5
0

m
s
5
6
1
1

o
re

o
le

d

p
w

m
_
in

p
u
t

p
x
4
fl
o
w

fm
u

p
x
4
io

rg
b
le

d

a
d
c

to
n
e
_
a
la

rm

tr
o
n
e

u
o
rb

u
a
v
c
a
n

b
l_

u
p
d
a
te

m
ix

e
r

m
o
to

r_
te

s
t

m
td

n
s
h
te

rm

p
e
rf

p
w

m

to
p

u
s
b
_
c
o
n
n
e
c
te

d

v
e
r

s
e
rc

o
n

s
e
rd

is

w
o
rk

_
h
p
th

re
a
d

w
o
rk

_
lp

th
re

a
d

n
s
h

re
b
o
o
t

re
fl
e
c
t

M
K
::

tr
a
m

p
o
li
n
e

P
X
4
F
M

U
::

tr
a
m

p
o
li
n
e

P
X
4
IO

::
tr

a
m

p
o
li
n
e

M
e
m

o
ry

 S
p
a
c
e
 (

M
B
)

Code Global Stack+Heap Device

(b) Unlimited number of MPU regions.

Fig. 9. Memory space reduction in 3DR IRIS+, compared with the baseline memory space without MINION.

TABLE IV. SUMMARY OF MEMORY SPACE REDUCTION IN 3DR IRIS+. B: BASELINE MEMORY SPACE OF THE MCS WITHOUT MINION. L: REDUCED
MEMORY SPACE USING 8 MPU REGIONS (ARM CORTEX-M). U : REDUCED MEMORY SPACE USING UNLIMITED NUMBER OF MPU REGIONS.

Type Code Global Stack+Heap Device Total
Size (Bytes) Reduction Size (Bytes) Reduction Size (Bytes) Reduction Size (Bytes) Reduction Size (Bytes) Reduction

B 1,993,588 - 207,128 - 250,612 - 592,148 - 3,043,476 -
L 572,149 71.30% 101,439 51.03% 2,851 98.86% 53,425 90.98% 729,863 76.02%
U 126,803 93.64% 78,157 62.27% 2,851 98.86% 392 99.93% 208,203 93.16%

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100M
em

or
y

S
pa

ce
 R

ed
uc

tio
n

(%
)

Number of MPU regions

Limited MPU Unlimited

8 1216

ARM Cortex M and R

2

Fig. 10. Memory space reduction that MINION provides with an increasing
number of supported MPU regions, compared to the result with unlimited MPU
regions. The results are based on the average memory space of all real-time
processes in Fig. 9.

unique architecture of MINION allows real-time processes to
access code, data, and peripherals with zero overhead for benign
operations while preventing illegal memory accesses across the
memory view boundaries.

Compartmentalization and Isolation. There has been a body
of research that decomposes programs into multiple isolated
components in order to limit attack damage in conventional
systems. Shreds [30] provides programming primitives to isolate
fine-grained program segments from other segments against

adversaries in the same process. SMV [41] is a programming
abstraction that divides the virtual memory space of a process
into multiple domains and enforces per-thread access control
on these domains with least privilege. SOAAP [38] is an
LLVM-based tool that allows developers to reason about various
compartmentalization trade-offs using source-code annotations.
Motivated by these works, MINION brings the concept of
compartmentalization into MCS to identify and enforce the
process boundaries (i.e., memory views) in the physical memory
space where memory blocks of all processes mingle together.

Memory Space Reduction. There is a line of research that
reduces the memory footprint of monolithic OS kernels to
reduce the attack surface. Several researchers have proposed a
kernel reduction approach that automatically generates compile-
time configurations based on expected workloads [44], [50].
DRIP [37] eliminates malicious logic from a trojaned kernel
driver by iteratively trimming away unnecessary code from
the based on off-line profiling. Besides these off-line kernel
reduction works, kRazor [43] is an OS mechanism that restricts
accesses to kernel code from user-level applications based on
run-time profiling of workloads. FACE-CHANGE [36] identifies
the minimized kernel memory for each application based on run-
time profiling and projects the memory while the application is
in production using virtualization techniques. All these works

13

on monolithic kernels have motivated us to apply the principle
of least privilege to real-time MCS, which was previously
absent due to practical hardware and performance constraints.

Remote Attestation of Embedded Devices. There have been
many solutions to improve the security of general embedded
devices through memory isolation. Remote attestation tech-
niques on low-cost embedded systems [24], [34], [35] focus
on verifying the integrity of firmware using a trusted software
or hardware anchor while meeting requirements for the device.
MINION is complementary to these techniques and they can be
leveraged to ensure the integrity of the view switcher against
off-line code injection and modification attempts.

ARM TrustZone. It has recently been announced that
TrustZone [6] will be supported by the new ARMv8 architecture
for microcontrollers [13]. TrustZone provides a hardware
method to divide program execution between trusted and
untrusted execution environments. We believe MINION can be
integrated with TrustZone, because its architecture is general
and the implementation of the view switcher is compact. Our
view switcher could be placed in the trusted environment
in the strongest possible isolation from the RTOS and real-
time processes running in the untrusted environment. Using
techniques similar to [25], the view switcher can interrupt
context switching events across the boundary between the
two environments while keeping both its effectiveness and the
strength of isolation.

VIII. DISCUSSION AND FUTURE WORK

Memory isolation and privilege separation are well-
established security properties in conventional systems. The
goal of MINION is to realize these properties in real-time
MCS as closely as possible without sacrificing the performance
constraints. As a result, MINION significantly reduces the
chance of launching successful attacks through memory space,
which was entirely open to adversaries in the past, while
preserving the usability of these systems.

While achieving its goal, however, MINION does not
provide the strongest notion of memory isolation, compared to
traditional memory isolation in conventional systems, such as
Linux and Windows. Specifically, memory views that MINION
enforces may still contain small open windows that adversaries
can abuse, due to its over-approximation on memory views.
This implies that, if an attacker can abuse such a window, which
is unprotected by MINION, he/she may be able to subvert other
mission critical modules in the real-time MCS. For example,
an attacker capable of identifying shared data between two
processes may exploit the data to subvert one of the processes
after compromising the other.

Such over-approximation issues for real-time MCS stem
from the fundamental challenges in: (1) performing a precise
program analysis and (2) the limited capability of current
hardware protection units. It is well known that performing
a program analysis with both completeness and soundness
guarantees is challenging. From MINION’s context which
performs a points-to static analysis, leveraging the state-of-
the-art static/dynamic analysis techniques in the future would
decrease the over-approximation to close potential security
holes. In addition, as we discussed in §VI-D, the over-
approximation caused by the hardware limitation will hopefully

be improved by supporting more number of MPU regions in
the future microprocessors.

We would like to further emphasize that, without MINION,
the attack surface was completely open to attackers. With
MINION, however, we demonstrated that MINION is able to
prevent realistic attacks while satisfying the time constraints
on a commodity real-time MCS. Furthermore, our evaluation
showed that over 75% of the attack surface is reduced by
MINION even with the hardware limitation and over 90%
without it, compared to the unprotected memory space.

IX. CONCLUSION

It is challenging to balance between the performance and
security requirements of real-time MCS. Due to performance
constraints, standard and state-of-the-art security mechanisms in
the conventional computer systems are not commonly adopted
in these systems. We have presented MINION, a new security
architecture that bridges the security gap by bringing memory
isolation and privilege separation into real-time MCS. By
reducing the memory spaces of real-time processes which were
entirely open to attackers previously, we demonstrated that
MINION can effectively neutralize various malicious attacks
in different attack vectors through memory view enforcement.
Lastly, we showed that the lightweight design of MINION
maintains the responsiveness of real-time MCS at its original
level while significantly reducing the attack surface in the
memory space.

ACKNOWLEDGMENT

We thank our shepherd, Ang Chen and the anonymous
reviewers for their valuable comments and suggestions. This
work was supported, in part, by ONR under Grant N00014-17-
1-2045. Any opinions, findings, and conclusions in this paper
are those of the authors and do not necessarily reflect the views
of the ONR.

REFERENCES

[1] “CVE-2002-1633,” 2002, https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2002-1633.

[2] “CVE-2002-2041,” 2002, https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2002-2041.

[3] “CVE-2005-3928,” 2005, https://cve.mitre.org/cgi-bin/cvename.cgi?
name=2005-3928.

[4] “CVE-2006-0621,” 2006, https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2006-0621.

[5] “Ftrace: Function Tracer,” 2008, https://www.kernel.org/doc/
Documentation/trace/ftrace.txt.

[6] ARM Security Technology - Building a Secure System using TrustZone
Technology. ARM Limited, 2009.

[7] ARMv7-M Architecture Reference Manual. ARM Limited, 2010.
[8] Cortex-M4 Technical Reference Manual. ARM Limited, 2010.
[9] “Cppcheck - A tool for static C/C++ code analysis,” 2010, http:

//cppcheck.sourceforge.net/.
[10] Cortex-R4 and Cortex-R4F Technical Reference Manual. ARM Limited,

2011.
[11] “Express Logic Introduces Memory-Protected Application Modules for

ThreadX RTOS,” 2011, http://www.eetimes.com/document.asp?doc_id=
1316596.

[12] “Hijacking drones with a MAVLink exploit,” 2015, http://diydrones.com/
profiles/blogs/hijacking-quadcopters-with-a-mavlink-exploit.

[13] ARMv8-M Architecture Reference Manual. ARM Limited, 2016.

14

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1633
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1633
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2041
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2041
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2005-3928
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2005-3928
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0621
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0621
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://www.eetimes.com/document.asp?doc_id=1316596
http://www.eetimes.com/document.asp?doc_id=1316596
http://diydrones.com/profiles/blogs/hijacking-quadcopters-with-a-mavlink-exploit
http://diydrones.com/profiles/blogs/hijacking-quadcopters-with-a-mavlink-exploit

[14] “FreeRTOS-MPU,” 2016, http://www.freertos.org/FreeRTOS-MPU-
memory-protection-unit.html.

[15] “Open Source for Drones - PX4 Pro Open Source Autopilot,” 2016,
http://px4.io/.

[16] “3DR IRIS+,” 2017, http://3dr.com/support/articles/207358106/iris/.
[17] “3DR Pixhawk,” 2017, http://3dr.com/support/articles/207358096/3dr_

pixhawk/.
[18] “ArduPilot,” 2017, http://ardupilot.org/.
[19] “ArduPilot: ArduPlane, ArduCopter, ArduRover source,” 2017, https:

//github.com/ArduPilot/ardupilot.
[20] “Mbed OS,” 2017, https://www.mbed.com/en/development/mbed-os/.
[21] “Mbed uVisor,” 2017, https://www.mbed.com/en/technologies/security/

uvisor/.
[22] “NuttX Real-Time Operating System,” 2017, http://nuttx.org/.
[23] “UAVCAN,” 2017, http://uavcan.org/.
[24] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,

A.-R. Sadeghi, and G. Tsudik, “C-FLAT: Control-Flow Attestation for
Embedded Systems Software,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS), Vienna,
Austria, Oct. 2016.

[25] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision Across Worlds: Real-time Kernel Protection
from the ARM TrustZone Secure World,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security
(CCS), Scottsdale, AZ, Nov. 2014.

[26] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
Proceedings of the Annual Conference on USENIX Annual Technical
Conference (ATC), Anaheim, CA, 2005.

[27] E. Bertino, “Data Security and Privacy: Concepts, Approaches, and
Research Directions,” in Proceedings of the 40th IEEE Computer
Society International Conference on Computers, Software & Applications
(COMPSAC), Atlanta, GA, Jun. 2016.

[28] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl,
“TyTAN: Tiny Trust Anchor for Tiny Devices,” in Proceedings of the
52nd Annual Design Automation Conference (DAC), San Francisco, CA,
Jun. 2015.

[29] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-
Data Attacks Are Realistic Threats,” in Proceedings of the 14th USENIX
Security Symposium (Security), Baltimore, MD, Aug. 2005.

[30] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu, “Shreds: Fine-Grained
Execution Units with Private Memory,” in Proceedings of the 2016
IEEE Symposium on Security and Privacy (S&P), San Jose, CA, May
2016.

[31] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer, “Protecting Bare-Metal Embedded Systems
with Privilege Overlays,” in Proceedings of the 38th IEEE Symposium
on Security and Privacy (S&P), San Jose, CA, May 2017.

[32] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart, “Con-
trolling UAVs with Sensor Input Spoofing Attacks,” in Proceedings of
the 10th USENIX Workshop on Offensive Technologies (WOOT), Austin,
TX, Aug. 2016.

[33] E. Deligne, “ARDrone corruption,” Journal in Computer Virology, vol. 8,
no. 1, pp. 15–27, 2012.

[34] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART: Secure
and Minimal Architecture for (Establishing Dynamic) Root of Trust,”
in Proceedings of the 19th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2012.

[35] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “A
Minimalist Approach to Remote Attestation,” in Proceedings of the
Conference on Design, Automation & Test in Europe (DATE), Dresden,
Germany, Mar. 2014.

[36] Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu, “FACE-CHANGE:
Application-Driven Dynamic Kernel View Switching in a Virtual Ma-
chine,” in Proceedings of the 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Atlanta, GA,
Jun. 2014.

[37] Z. Gu, W. N. Sumner, Z. Deng, X. Zhang, and D. Xu, “DRIP: A
Framework for Purifying Trojaned Kernel Drivers,” in Proceedings of

the 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Budapest, Hungary, Jun. 2013.

[38] K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie,
I. Marinos, P. G. Neumann, and A. Richardson, “Clean Application
Compartmentalization with SOAAP,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security (CCS),
Denver, CO, Oct. 2015.

[39] K. Highnam, K. Angstadt, K. Leach, W. Weimer, A. Paulos, and P. Hurley,
“An Uncrewed Aerial Vehicle Attack Scenario and Trustworthy Repair
Architecture,” in The 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshop (DSN-W), Los Alamitos,
CA, Jun. 2016.

[40] M. Hooper, Y. Tian, R. Zhou, B. Cao, A. P. Lauf, L. Watkins, W. H.
Robinson, and W. Alexis, “Securing Commercial WiFi-Based UAVs
From Common Security Attacks,” in Proceedings of 2016 IEEE Military
Communications Conference (MILCOM), Baltimore, MD, Nov. 2016.

[41] T. C.-H. Hsu, K. Hoffman, P. Eugster, and M. Payer, “Enforcing Least
Privilege Memory Views for Multithreaded Applications,” in Proceedings
of the 23rd ACM Conference on Computer and Communications Security
(CCS), Vienna, Austria, Oct. 2016.

[42] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite: A
Security Architecture for Tiny Embedded Devices,” in Proceedings of the
9th European Conference on Computer Systems (EuroSys), Amsterdam,
The Netherlands, Apr. 2014.

[43] A. Kurmus, S. Dechand, and R. Kapitza, “Quantifiable Run-Time Kernel
Attack Surface Reduction,” in Proceedings of the 11th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), Egham, UK, Jul. 2014.

[44] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg,
A. Ruprecht, W. Schröder-Preikschat, D. Lohmann, and R. Kapitza,
“Attack Surface Metrics and Automated Compile-Time OS Kernel
Tailoring,” in Proceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2013.

[45] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization (CGO), Palo Alto,
CA, Mar. 2004.

[46] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Chicago, IL, Jun. 2005.

[47] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation,” in Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), San Diego, CA, Jun. 2007.

[48] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus: Low-
cost Trustworthy Extensible Networked Devices with a Zero-software
Trusted Computing Base,” in Proceedings of the 22nd USENIX Security
Symposium (Security), Washington, DC, Aug. 2013.

[49] S. Pastrana, J. Tapiador, G. Suarez-Tangil, and P. Peris-L´opez,
“AVRAND: A Software-Based Defense Against Code Reuse Attacks
for AVR Embedded Devices,” in Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), San Sebastián, Spain, Jul. 2016.

[50] A. Ruprecht, B. Heinloth, and D. Lohmann, “Automatic Feature Selection
in Large-scale System-software Product Lines,” in Proceedings of the
2014 International Conference on Generative Programming: Concepts
and Experiences (GPCE), Västerås, Sweden, Sep. 2014.

[51] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors,”
in Proceedings of the 24th USENIX Security Symposium (Security),
Washington, DC, Aug. 2015.

[52] R. Strackx, F. Piessens, and B. Preneel, “Efficient Isolation of Trusted
Subsystems in Embedded Systems,” in Proceedings of the 6th Inter-
national ICST Conference on Security and Privacy in Communication
Networks (SecureComm), Singapore, Sep. 2010.

[53] Y. Sui and J. Xue, “SVF: Interprocedural Static Value-flow Analysis
in LLVM,” in Proceedings of the 25th International Conference on
Compiler Construction (CC), Barcelona, Spain, Mar. 2016.

15

http://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
http://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
http://px4.io/
http://3dr.com/support/articles/207358106/iris/
http://3dr.com/support/articles/207358096/3dr_pixhawk/
http://3dr.com/support/articles/207358096/3dr_pixhawk/
http://ardupilot.org/
https://github.com/ArduPilot/ardupilot
https://github.com/ArduPilot/ardupilot
https://www.mbed.com/en/development/mbed-os/
https://www.mbed.com/en/technologies/security/uvisor/
https://www.mbed.com/en/technologies/security/uvisor/
http://nuttx.org/
http://uavcan.org/

	Introduction
	Background and Motivation
	ARM Cortex-M and Cortex-R
	Memory Protection Unit
	Motivation of Minion

	Threat Model and Assumptions
	Design of Minion
	Firmware Analysis
	Code Reachability Analysis
	Data Accessibility Analysis
	Device Accessibility Analysis

	Memory View Tailoring
	Memory View Creation
	Memory View Clustering

	Memory View Enforcement
	Stack and Heap Allocation

	Implementation
	Evaluation
	Performance Impact
	Real-Time Benchmarks
	Micro-Benchmarks

	Security Experiments
	Memory Corruption Bugs
	Attack Cases

	Memory Space Reduction
	Hardware Support

	Related Work
	Discussion and Future Work
	Conclusion
	References

