
Back To The Epilogue:
Evading Control Flow Guard via Unaligned Targets

Andrea Biondo
University of Padua, Italy

andrea.biondo.1@studenti.unipd.it

Mauro Conti
University of Padua, Italy

conti@math.unipd.it

Daniele Lain
University of Padua, Italy

dlain@math.unipd.it

Abstract—Attackers use memory corruption vulnerabilities
to compromise systems by hijacking control flow towards
attacker-controlled code. Over time, researchers proposed sev-
eral countermeasures, such as Address Space Layout Random-
ization, Write XOR Execute and Control Flow Integrity (CFI).
CFI is one of the most promising solutions, enforcing control
flow to adhere to statically determined valid execution paths.
To trade with the execution and storage overhead, practical CFI
implementations enforce coarser version of CFI. One of the most
widely deployed implementations of CFI is the one proposed by
Microsoft, named Control Flow Guard (CFG). CFG is currently in
place on all Windows operating systems, from Windows 8.1 to
the most recent update of Windows 10 (at the time of writing),
accounting for more than 500 million machines.

In this paper, we show a significant design vulnerability in
Windows CFG and propose a specific attack to exploit it: the
Back to The Epilogue (BATE) attack. We show that with BATE
an attacker can completely evade from CFG and transfer control
to any location, thus obtaining arbitrary code execution. BATE
leverages the tradeoff of CFG between precision, performance,
and backwards compatibility; in particular, the latter one
motivates 16-byte address granularity in some circumstances.
This vulnerability, inherent to the CFG design, allows us to
call portions of code (gadgets) that should not be allowed,
and that we can chain together to escape CFG. These gadgets
are very common: we ran a thorough evaluation of Windows
system libraries, and found many high value targets – exploitable
gadgets in code loaded by almost all the applications on 32-bit
systems and by web browsers on 64-bit. We also demonstrate the
real-world feasibility of our attack by using it to build a remote
code execution exploit against the Microsoft Edge web browser
running on 64-bit Windows 10. Finally, we discuss possible
countermeasures to BATE.

I. INTRODUCTION

Memory corruption vulnerabilities are a prime tool for
attackers [40]. The typical course of an attack to exploit such
vulnerabilities involves hijacking the program’s control flow
to execute arbitrary code in the application’s context. There
exist many different countermeasures to mitigate the impact
of such attacks. One of the most widely implemented tech-
niques is Address Space Layout Randomization (ASLR) [29],

which aims at preventing the attacker from gaining cru-
cial information about the program’s memory structure.
However, researchers showed that ASLR is vulnerable to
application-specific information leaks [35] along with OS-
based [6] and hardware-based [15], [18] side-channels. An-
other popular mitigation is Write XOR Execute (W⊕X), also
called Data Execution Prevention (DEP) [26] in Windows.
W⊕X aims at thwarting code injection and modification
by enforcing that every page of memory may be either
writable or executable, but not both. However, W⊕X can
be bypassed by various code reuse techniques [5], [34],
[36]. Indeed, albeit these mitigations can make exploiting
memory corruption significantly harder, they do not stop
modern multi-stage attacks.

A promising mitigation mechanism is Control Flow In-
tegrity (CFI) [4], which stems from the idea of effectively
restricting the program’s control flow to only valid paths
that the programmer expected. This stops the attacker
from diverting execution to unintended code paths. Ideal
CFI requires precise and time-consuming program analysis,
based on pointer analysis that is undecidable in the general
case [30], and can have significant performance overheads.
For this reason, in the the last decade, researchers mostly
put effort in building CFI implementations that balance
security, performance and practicality [7]. Practical CFI
implementations often adopt an approximation of ideal CFI:
they only enforce a superset of the actual valid execution
paths. Such approximations need careful balancing, as the
tradeoff is usually between security guarantees and cost
(both in terms of memory and computational power).
Indeed, while approximation makes a relaxed version of CFI
affordable for real-world applications and raises the bar for
exploitation, it still leaves enough leeway for attacks that
can leverage this imprecision to subvert control flow [13],
[17], [34], thus obtaining arbitrary code execution. Also,
implementations can themselves be vulnerable to memory
corruption [10]. Practical CFI implementations that are
widely deployed in the real world are, for example, Indirect
Function-Call Checks [43] in LLVM and Clang, Virtual Table
Verification [43] in GCC, and Control Flow Guard (CFG) [23]
in Microsoft Visual C++. Microsoft CFG is one of the most
popular implementations: it was introduced in Windows
8.1 for applications compiled with Microsoft Visual C++.
At the time of writing, it is deployed on at least 500
million computers running Windows 8.1 through the latest
Windows 10 versions, and is considered to be an important
stage of defense against memory corruption attacks.

Network and Distributed Systems Security (NDSS) Symposium 2018 
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23318
www.ndss-symposium.org



In this paper, we show a serious vulnerability caused
by a significant interaction between a design assumption
of Windows CFG and the Windows libraries. CFG assumes
functions that can be target of indirect calls (e.g., through
a virtual table) will be aligned to 16 bytes. That is, the code
of such functions should always start at a 16-byte aligned
boundary in memory. However, the compiler does not
always enforce the correct alignment. When this happens,
the approximated nature of CFG allows us to reach portions
of code (gadgets) that are not intended to be marked as
valid targets. Among these possible gadgets, we define a
particular set of pop-ret (PR) gadgets, and a novel class of
gadgets that we call spiller (S) gadgets. We exploit PR gadgets
to completely evade CFI and employ traditional non CFI-
aware exploit techniques. PR gadgets require a limited form
of stack control, which can be easily obtained on 32-bit
systems via controlled arguments. S gadgets can be used to
regain this ease of control on 64-bit, as exploitation on this
platform is more challenging than on 32-bit. We propose a
novel attack that uses these gadgets to evade CFG: the Back
To The Epilogue (BATE) attack1.

Previous attacks on CFG relied on calling (now dis-
abled) sensitive APIs [9], on stack control [32], [33] or
on application-specific issues [16], [39], [50]. BATE only
requires control of an argument to a corrupted indirect call.
Moreover, we only require PR (and possibly S) gadgets to
be present in a single library loaded in the target process.
We show that this is often the case: we ran a complete
assessment of gadget availability in system libraries. On 32-
bit we found that PR gadgets are widespread: in particular,
we note their presence in C/C++ runtime libraries, which are
often loaded as they an essential part of the environment
compiled C/C++ code runs in. On 64-bit systems, the num-
ber of available gadgets is more limited; however, they are in
libraries that are appealing to attackers, such as the legacy
JavaScript engine and a media codec. We found PR gadgets
in another very popular software: 64-bit Microsoft Office
2016. We found that S gadgets are similarly widespread.

BATE has real-world capabilities. To demonstrate this,
we built a remote code execution exploit against Microsoft
Edge on 64-bit Windows 10 with ASLR, DEP and CFG
mitigations. At a high level, the exploit employs two vulner-
abilities in the Chakra JavaScript engine [22]: an information
leak [2] and a type confusion [3]. The information leak is
used to bypass ASLR, which is a necessary stepping stone
for further exploitation. The type confusion allows us to
corrupt C++ virtual tables and launch the BATE attack.
BATE bypasses CFG and hijacks the program’s control flow
to arbitrary locations. While this is sufficient to prove that
our attack works, we go through with the exploit to show
that code execution is possible. To bypass DEP, we start
with stack pivoting [11]: we redirect the stack pointer to a
fake stack that contains a first-stage ROP chain. This ROP
payload makes a second-stage shellcode executable and
transfers control to it, achieving our goal.

1We responsibly disclosed the BATE attack to Microsoft, who acknowl-
edged it and is working on a countermeasure. As part of a coordinated
disclosure roadmap, we obtained permission to submit this work.

Contributions. The contributions of this paper are the
following:

• We identify a design weakness in Control Flow
Guard, Microsoft’s CFI implementation: the as-
sumption that targets are always 16-byte aligned.
This allows invalid targets to become valid, when
a valid target function is not 16-byte aligned, caus-
ing a portion of code of the previous function to
become a valid target as well.

• We show a practical way of exploiting this vulnera-
bility: the Back To The Epilogue (BATE) attack. BATE
leverages two sets of gadgets: pop-ret (PR) gadgets
that require a limited form of stack control, and
spiller (S) gadgets that help us use PR gadgets on 64-
bit systems. PR gadgets, in particular, can be found
in function epilogues, can be unintended valid tar-
gets thanks to the aforementioned vulnerability, and
can be used to completely bypass CFG.

• We extensively and thoroughly analyze system li-
braries of recent builds of Windows 10, and of a
very popular software: Microsoft Office 2016. We
perform pattern matching and symbolic execution,
and find numerous occurrences of PR and S gadgets
(for example in C/C++ runtime libraries, JavaScript
engines, media codecs, and libraries used by the
Microsoft Office suite). This proves that BATE is a
real threat: its gadgets are contained in libraries that
are commonly loaded by third-party software (such
as web browsers), and therefore likely available to
attackers.

• We further prove the real-world feasibility of this
attack by using our PR and S gadgets in a remote
exploit against Microsoft Edge, on 64-bit Windows
10 with all security features enabled, that allows us
to execute arbitrary code on the victim’s machine.

• We discuss possible countermeasures to protect
CFG from BATE and propose a short-term solution
that stops BATE without redesigning CFG.

Organization. This paper is organized as follows: we first
report related work in Section II. In Section III we give
general background on Control Flow Integrity and describe
the internals and weaknesses of Control Flow Guard. We
discuss our considered threat model in Section IV. We detail
our attack in Section V, and assess its impact in Section VI.
We demonstrate a practical real-world exploit in Section VII.
We discuss our attack and outline possible countermeasures
in Section VIII. Section IX concludes the paper.

II. RELATED WORK

Here, we present related work. First, we cover general
CFI techniques and vulnerabilities, along with some imple-
mentation examples. Then, we discuss specific works on
Control Flow Guard (CFG), Microsoft’s CFI implementation,
and its weaknesses.

A. Control Flow Integrity

Control Flow Integrity (CFI) is a security policy that en-
forces adherence between a program’s statically determined

2



control flow graph and its runtime execution path. It aims at
preventing attackers from diverting execution to paths that
were not intended by the programmer. Forward-edge CFI
protects forward branches, such as indirect calls through
function pointers or virtual tables, which could be hijacked
by an attacker. Backward-edge CFI protects from corruption
of return addresses, for example via a shadow stack [12].
One of the main characterizing factors of a CFI approach is
its granularity. Fine-grained CFI aims at restricting control
flow to the exact program’s control flow graph, keeping a
separate set of allowed destinations for each indirect call
site. However, the pointer analysis required for ideal CFI
is undecidable [30], so a certain level of approximation is
inevitable. Coarse-grained CFI is more relaxed and enforces
a global set of valid targets.

The seminal work on CFI [4] proposes an approach
based on labeling indirect call destinations. Indirect calls are
instrumented to check whether the destination label is the
expected one, to ensure that an edge for that transfer exists
in the control flow graph. While they suggest that more label
classes can make exploitation harder, their implementation
only uses a single class and is therefore coarse-grained.
Backward-edge protection is achieved via a shadow stack,
whose integrity is guaranteed by CFI.

Researchers have proposed multiple different ap-
proaches, with varying granularites and performance char-
acteristics [7]. For example, CCFIR [49] works directly on bi-
naries and achieves coarse-grained, forward- and backward-
edge CFI by forcing all returns and indirect calls to go
through aligned stubs in a springboard section. CCFIR
is more precise than the original CFI, since it separates
backward edges in two equivalence classes. Two open-
source compilers, GCC and LLVM, also offer forward-edge
CFI implementations [43]. GCC’s Virtual-Table Verification
(VTV) protects from virtual table hijacking attacks [31] by
checking that the virtual table belongs to the class hierarchy
for the invocation object. LLVM’s Indirect Function-Call
Checks (IFCC) protects all indirect calls by redirecting them
through jump tables. IFCC can support many levels of
precision. The authors focus on two: all functions allowed
for any call, or grouped by their number of arguments.
Particularly interesting to our paper is MIP [28], another
coarse-grained implementation, as the data structure is
close to Microsoft CFG. It defines a mapping between
memory addresses and bit positions in a bitmap and divides
the code into chunks, only the beginning of which are
valid targets. Bitmap bits corresponding to the beginning
of chunks are set, while others are cleared. Indirect calls
and returns are instrumented to extract the bit for the
target address from the bitmap and check whether it is the
beginning of a chunk.

Based on the observation that points-to analysis always
has some level of approximation, Evans et al. show a tech-
nique to exploit the imprecision of scalable analyses [14].
Coarse-grained CFI implementations suffer from attacks
that leverage their big equivalence classes. While they limit
the scope of code reuse attacks, since most code locations
are not valid targets, they are not immune. Indeed, it is still
possible to build realistic and Turing-complete gadget sets
under CFI policies [13], [17]. A powerful attack is COOP [34]:

it derives gadgets from C++ virtual methods, which are
valid CFI targets, and chains them by exploiting virtual
table hijacking. However, this attack leads to a restricted
gadget set, which makes it more difficult to write payloads.
BATE achieves full instruction pointer control, allowing
an attacker to follow up with simpler exploit techniques.
Additionally, Conti et al. [10] demonstrate weaknesses in
multiple CFI implementations when the attacker is in con-
trol of the stack.

B. Control Flow Guard.

Microsoft Control Flow Guard (CFG) [23] is a forward-
edge, coarse-grained CFI implementation based on a
bitmap, similar to the approach proposed by MIP [28]. CFG
internals are not officially documented, but third parties
reverse-engineered them [27], [41], [46]. We describe how
CFG works in more detail in Section III-B. Instead, we now
report past exploits and bypasses to CFG, grouped by the
weakness they exploited.

Some bypasses rely on finding code that is not protected
by CFG, as CFG allows all branches to modules that are
compiled without CFG support [27]. Thus, code from those
modules can be reused. As more and more modules are
compiled with CFG, this becomes less of a problem.

Another source of vulnerabilities is Just-In-Time (JIT)
compiled code. By default, dynamic allocations of exe-
cutable memory are not protected by CFG, allowing code
reuse attacks such as JIT spraying [38], [47]. To avoid this
problem, the implementation has to take care of prop-
erly altering the bitmap to mark valid targets in dynamic
code. Moreover, JIT compilers have to replicate the CFG
instrumentation in the generated code to protect outgoing
branches. For example, Falcón [16] shows unprotected in-
direct calls from the Flash JIT compiler.

Due to its coarse granularity, CFG does not distinguish
between call sites, and keeps a global set of allowed targets.
An attacker can exploit this by calling valid target functions,
that are however unintended for that particular code path.
For example, certain Windows APIs change the execution
context and can be abused to hijack the control flow [9].
However, the introduction of sensitive APIs [20] has sensi-
bly reduced the number of allowed dangerous APIs, thus
decreasing the attack surface for such bypasses.

CFG also relies on certain assumptions about memory
protection. Checks are performed by calling CFG functions
provided by the operating system via function pointers.
Those pointers are filled in by the kernel and reside in
a read-only memory area, so it should be impossible to
corrupt them. However, some application-level bugs can
be used to make memory writable, allowing an attacker
to overwrite the pointers [50]. BATE is more general as
it does not target a specific bug. Moreover, researchers
found that this area can actually be writable in some
modules [39]. Furthermore, CFG only protects forward-edge
transfers. Since it does not protect the return address on the
stack, an attacker can overwrite it to gain flow control [33].

Finally, Windows stores pointers to exception handling
routines on the stack. Branches to those functions are not

3



protected by CFG, so an attacker can hijack them and
then cause an exception to transfer control to arbitrary
locations [32].

III. BACKGROUND

Before presenting our BATE attack against CFG, we need
to recall some basic concepts. Here, we first introduce the
main concepts of Control Flow Integrity (Section III-A). We
then explain how Control Flow Guard works (Section III-B).

A. Control Flow Integrity

Control Flow Integrity (CFI) [4] is a security policy that
aims at preventing adversaries from redirecting control flow
to arbitrary locations. Many CFI implementations have been
proposed in the literature, with varying degrees of precision
and performance [7]. CFI computes the application’s control
flow graph statically, either from source during compila-
tion or directly from binaries. At runtime, control flow is
monitored to ensure it sticks to the computed graph. This
can be done by performing checks on instructions that
trasfer control, to ensure they have not been corrupted by
an attacker. Control transfers can be divided in forward
(calls and jumps) and backwards (returns), based on the
direction of their edge in the control flow graph. Depending
on what kind of transfers are protected, CFI can be forward-
edge, backward-edge or both. Forward-edge CFI protects
jumps and calls, which can be direct or indirect. Direct
branches embed their destination in the instruction itself.
Assuming that executable memory is not writable, which
can be ensured by W⊕X, those cannot be corrupted by
an attacker. Indirect branches load their destination from
a memory location, for example when calling through a
function pointer. An attacker that can overwrite the code
pointer in memory can redirect the branch. In Figure 1
we show an example of such attack, and how CFI can
prevent it. In this example, Figure 1a shows code without
CFI enforcement, leading to a successful control flow hijack.
Figure 1b, on the other hand, shows CFI enforcement and
detection of the attack.

In more detail, in Figure 1a a memory corruption vul-
nerability is used to overwrite fptr2 and hijack the second
call to evil instead of the intended target func3. Indirect
calls are extremely common in object-oriented code, where
they are used to implement virtual method calls through
virtual tables. Many modern attacks rely on virtual table
corruption, in order to easily divert control flow [31]. To
avoid this, CFI checks indirect branches at runtime to
ensure that the computed graph has an edge for the transfer.
This can be done by statically determining the set of valid
targets for a call, i.e., the points-to set of the function
pointer, and then checking the destination against it at
runtime. Figure 1b shows the same attack as before, this
time with CFI. The only allowed target for fptr1 is func1,
while fptr2 can point to func2 or func3. Indeed, before
the calls, there are CFI checks. A call to evil through
fptr2 violates the CFI policy, so the corruption is detected
and can be handled, typically by killing the process.

Unfortunately, precise and sound points-to analysis is
hard and, in the general case, undecidable [30]. As such,

· · ·
call [fptr1]
· · ·
call [fptr2]
· · ·

func3:
· · ·
ret

func1:
· · ·
ret

evil:
· · ·

Attacker code

fptr2:
&func3
&evil

fptr1:
&func1

Writable data

Memory
corruption

Intended callees

(a) Without CFI.

· · ·
cfi_call [fptr1]
· · ·
cfi_call [fptr2]
· · ·

func2:
· · ·
ret

func1:
· · ·
ret

func3:
· · ·
ret

evil:
· · ·

Attacker code

fptr2:
&func3
&evil

fptr1:
&func1

Writable data

Memory
corruption

fptr1 points-to set

fptr2 points-to set

BCFI
violation

(b) With CFI.

Fig. 1. Example of function pointer hijacking, with and without CFI
techniques in place. If there is no CFI, control flow goes to the pointer
specified by the attacker; if CFI is in place, attacker would be likely pointing
to an invalid target, and CFI successfully prevents malicious redirection.

the set of allowed targets is an approximation of the actual
one. To indicate the level of approximation, CFI policies are
either fine-grained or coarse-grained. While the meaning of
these terms is not standardized in the literature, we use
fine-grained CFI to mean a policy where each call site has
a distinct valid target set, which is as precise as possible. In
other words, only paths that the programmer intended can
be taken. In coarse-grained CFI, there is a single valid target
set, consisting of all the targets of indirect branches in the
entire program. This clearly extends the attack surface, as
an adversary can call unintended functions. For example, if
a coarse-grained CFI was used in Figure 1b, func{1,2,3}
would all be valid targets for both fptr1 and fptr2. There
are also CFI schemes that employ an intermediate number
of equivalence classes: for example, IFCC [43] can group
valid targets by number of arguments.

Backward-edge CFI protects return instructions. When
a call is performed, the address of the next instruction
in the caller is stored on the stack, to be later used as a

4



return address. Attacks such as stack overflows allow an
adversary to overwrite the return address, gaining control
of the execution flow when the callee returns. Statically
determining the set of valid return locations is not very
precise, as a function can be called from many different
places. For this reason, backward-edge CFI implementations
often make use of a shadow stack [12], which resides in a
protected memory area and stores a copy of the real return
address. On returns, the return address fetched from the
real stack can be compared to the one from the shadow
stack and the program can detect whether it was tampered
with.

B. Control Flow Guard

Researchers and companies provided several practical
CFI implementations. One of the prominent ones, because
of widespread diffusion in all Windows operating systems
from 8.1 onwards, is Control Flow Guard (CFG). CFG is a
coarse-grained forward-edge CFI implementation that lever-
ages an instrumentation involving the compiler, the kernel
and the ntdll.dll library [46]. It protects from hijacked
forward branches such as function calls and longjmp
buffers, but does not offer backward-edge CFI, which guards
return addresses. CFG relies on a process-wide bitmap
to perform fast integrity checks, which is similar to the
approach used by MIP [28].

We describe in more detail in the following how CFG
works: we start from code analysis and compiler instrumen-
tation at compile time (Section III-B1), then explain the core
bitmap employed technique (Section III-B2), and finally
detail how runtime integrity checks work (Section III-B3).

1) Compiler instrumentation: When building a module
(executable or library), the compiler analyzes the source
code and generates a valid target table for indirect branches,
that is, the set of all entry points that can be valid indirect
targets. By default, this analysis includes exports to support
dynamic symbol resolution. However, a feature named ex-
port suppression allows the programmer to make specific
exports invalid targets. The valid target table is embedded
into the binary’s read-only data section. The compiler also
sets up two global function pointers in the same section,
for check and dispatch functions. Those pointers will be
later filled in by the kernel when loading the module and
pointed to implementations for CFG checks. Both functions
take an indirect branch target and check whether it is
valid. If this is the case, the check function simply returns,
while the dispatch function jumps to the target. Otherwise,
both terminate the process with a security violation. To
support pre-8.1 Windows, the compiler provides dummy
implementations with which the pointers are initialized, to
be later overridden by the loader. The compiler uses those
functions to implement two modes:

1) check mode, where a call to the check function is
injected before indirect branches;

2) dispatch mode, where indirect calls are replaced by
a call to the dispatch function.

Both modes use the same checking algorithm and are equiv-
alent for our purposes. For 32-bit modules, the compiler can
insert further checks to ensure that the stack pointer does

not change after the indirect call [45], [46]. This mitigates
stack desynchronization attacks based on mismatching call-
ing conventions [17]. Dispatch mode, which is common
on 64-bit [20], is only distinguished by the implementation
performing the target branch instead of the caller.

2) Module loading: When the kernel loads a CFG-aware
module, it fetches the valid target table and encodes this
information into the CFG bitmap, a continuous block of
read-only reserved virtual memory (32MB on 32-bit, 2TB on
64-bit) in the process’ addressing space. Each pair of bits
in the bitmap bijectively maps to a 16-byte aligned address
range of 16 bytes in size, so that every address in user space
maps to one and only one bit pair. Thus, each range can
have one of four states associated with it:

• 00 - no address in this range is a valid target;

• 01 - this range contains an export-suppressed tar-
get;

• 10 - the only valid target is 16-byte aligned (that is,
the first address in the range);

• 11 - all addresses in this range are valid.

The only virtual bitmap pages actually backed by physical
memory are those that are not completely zeroed. Moreover,
since even when countermeasures such as Address Space
Layout Randomization are in place dynamic libraries are
only relocated at their first load, bitmap regions for libraries
used by multiple processes can share their physical backing.
As such, the committed memory footprint is acceptable. If
a module is not CFG-aware, all the bit pairs belonging to
its address space will be set to 11. This allows intermodule
calls from a module that employs CFG to one that does not,
which is essential to preserve backwards compatibility. The
loader also points the check and dispatch function pointers
to implementations within ntdll.

3) Runtime: After loading a module, its bitmap region is
not necessarily static. It can be altered in two ways:

1) by allocating executable memory, whose bitmap
bits will all be set;

2) by changing specific bits through system calls.

A typical case that requires bitmap modification is when
code is generated via a just-in-time compiler. Any change
is local to the process, so modifying a shared bitmap page
will result in a private copy being mapped.

To clarify the CFG mechanism, we show in Figure 2
how call checks happen at runtime (in check mode). In this
example, the fptr function pointer resides in a writable
data section, so it could be vulnerable to corruption. The
compiler has protected an indirect call to it via check mode
by prepending a call to the CFG check function. First, the
system fetches the indirect target from fptr and stores
it into the rcx register, which is where the check function
expects it to be. Then, the check function is called indirectly.
This is safe as long as the check and dispatch pointer are
read-only. The check call will jump into ntdll. Here, the
position of the bit pair (highlighted in the figure) for the
target address into the bitmap is calculated via fast bitwise
operations and the bits are fetched. If the pair resides in an

5



unmapped bitmap page, a memory violation exception will
occur, which is handled by a top-level handler in ntdll.
The handler contains a special case that checks whether the
violation happened within the CFG checking code. If it did,
then the check is resumed as if the page was completely
set to zero, which will lead to a failure since 00 means that
there are no valid targets. The target address is checked
against the bit pair to determine whether it is valid. In the
example the pair is 10, which means the check will pass
only if the target is 16-byte aligned. If the check fails the
process is terminated, otherwise the check function returns
to the caller, which finally issues the original indirect call.
In dispatch mode, the target address would be passed in
the rax register and the call would be issued directly by
ntdll.

check_fptr:
0x55667788

Read-only data

CFG checks
(ntdll)

fptr:
0x11223344

Writable data

Call target

· · ·
mov rcx, [fptr]
call [check_fptr]
call rcx
· · ·

Instrumented code

. . . 10 00 10 00 00

CFG bitmap

11 . . .

Module

Process

Fig. 2. Example of CFG check mode of a function call: first, the check
function in ntdll is called and the bit pair from the bitmap is checked; if
the value from the bitmap allows the call target, the check function returns
and the function is called. Otherwise, a security violation is issued.

IV. THREAT MODEL AND ASSUMPTIONS

Overall, our threat model is even stricter than what is
considered in the CFI seminal work [4]. We assume the
application’s control flow integrity protection is provided
solely by CFG: therefore, other CFI implementations and
other integrity protections, such as VTint [48], are not
in place. Regarding offensive capabilities, our attacker
is less powerful than usual: we assume the attacker has
knowledge of the memory layout and a limited form of
memory corruption, but we do not require arbitrary write
capability. Regarding defensive capabilities by the defender,
differently from the threat model considered in [4], we
consider memory layout randomization to be in place, as it
is nowadays a common countermeasure.

Offensive Capabilities. The attacker has the following ca-
pabilities:

• Memory layout knowledge. The attacker can know
the layout of the program’s addressing space, for
example by reading pointers from memory.

• Indirect call corruption. The attacker can leverage
some memory corruption vulnerability in the pro-
gram to hijack the destination of indirect calls.

• Control near the stack top. The attacker can control
a word near the top of the stack. We show that this
can be achieved by controlling an argument to a

corrupted indirect call, both on 32-bit and 64-bit
systems.

• Adversarial computation. The attacker can perform
runtime calculations, for example by targeting a
scripting language interpreter such as JavaScript.

While the seminal work assumed that the attacker had total
control over memory contents, our attack only requires the
ability to corrupt indirect calls. The stack control require-
ment does not imply further memory corruption needs, as
we gain it via controlled arguments.

Defensive Capabilities. The following defenses are in place:

• W⊕X. By default, every memory mapping is either
writable or executable, but not both. This stops
an attacker from modifying code (because it is
not writable) or injecting code (because it is not
executable).

• Randomization. The memory layout of the program
is randomized, for example via Address Space Lay-
out Randomization (ASLR).

V. BATE: OUR ATTACK TO CFG

In this section we describe our Back To The Epi-
logue (BATE) attack to CFG. We start with an overview of
BATE (Section V-A), followed by a discussion of the specific
weaknesses we exploit (Section V-B). Then, we define pop-
ret gadgets (Section V-C), which are a central part of our
technique, and how we exploit them to gain flow control
on 32-bit systems (Section V-D). We then introduce spiller
gadgets (Section V-E), which work as helpers for pop-ret
gadgets on 64-bit. Finally, we show to combine pop-ret and
spiller gadgets to mount a 64-bit attack (Section V-F).

A. Overview

At the high level, BATE works by exploiting a design
assumption about the alignment of valid CFG targets.
Whenever target functions are not correctly 16-byte aligned,
we are able to jump to code that surrounds the entry point
of these functions. In particular, we jump to code sequences
we call pop-ret (PR) gadgets, that are contained within the
epilogue of a function preceding a valid unaligned target.
Those gadgets modify the stack pointer and allow us to
transfer control to any location, provided that we control a
value reasonably close to the top of the stack.

The described attack can be easily done on 32-bit code
by controlling an argument to an hijacked indirect call. On
64-bit, controlling a value near the stack top is more difficult
than on 32-bit. To make PR gadgets work, we need control
over a zone on the stack known as Register Parameter
Area (RPA). For this reason we introduce spiller (S) gadgets,
which spill attacker-controlled values to this area. We then
combine S and PR gadgets to form an S-PR chain, which
gives us flow control. Since many S gadgets take the spilled
values from arguments, we regain the ease of exploitation
via arguments we had on 32-bit.

6



B. Exploited Weaknesses

We exploit three weaknesses in CFG: presence of un-
aligned targets coupled with design assumptions about
target alignment, lack of backward-edge protection, and that
the bitmap is process-wide.

Unaligned Targets. CFG is able to precisely mark a valid
target only if it is the only target in its address range and it is
16-byte aligned. In that case, the state will be 10. However,
if a target is not aligned, or there are multiple targets in the
same range, then the state will have to be set to 11, which
allows branches to any address in the range. In other words,
we can freely alter the lower 4 bits of a valid unaligned
target and the result will still be a valid target. This enables
us to reach code located near a unaligned function’s entry
point, which leads to interesting code sequences we call PR
gadgets. Note that if multiple targets are in the same range
at least one has to be unaligned, so we will not distinguish
between the two and just refer to unaligned targets. This
design assumption would not impact CFG’s security if the
compiler always aligned targets. However, in practice, we
were able to find unaligned targets in code commonly used
by applications.

Lack of backward-edge CFI. CFG does not check return
addresses. Our technique eventually returns to an attacker-
controlled value, thus successfully escaping from CFG. We
achieve return address control by modifying the stack
pointer before a return instruction. As previously noted,
32-bit CFG can include stack pointer checks. However, we
take control of execution before these checks run, effectively
neutering them.

Process-wide bitmap. Since CFG keeps a single bitmap
for the whole process, a valid target is allowed for any
indirect branch in any module. Thus, we can improve the
feasibility of our attack by extending the search for gadgets
to all loaded modules. This is particularly interesting when
gadgets are in system libraries: all processes that load a
library with our gadgets in it automatically become exposed
to BATE. Since system libraries can potentially be loaded
by a large number of applications, we get a more universal
bypass.

C. PR gadgets

Due to the imprecision around unaligned targets, we can
jump in the neighborhood of a valid unaligned function’s
entry point. We now need to look for sequences of instruc-
tions that perform interesting operations from an attacker’s
point of view. At the low level, a function is typically made
of three parts:

1) Prologue. It spills (i.e., saves) callee-saved registers
to the stack and sets up the stack frame for the
function.

2) Body. It performs the actual work defined by the
programmer at the higher levels.

3) Epilogue. It deallocates the stack frame and re-
stores callee-saved registers.

Since a function’s prologue is placed at its entry point,
and the compiler lays out functions one after the other in
the binary, the epilogue of a function is close to the entry

point of the subsequent function. We show an example of
this situation in Figure 3: func2, at 0x1007, is a valid
CFG target but it is not 16-byte aligned. Therefore, the
entire aligned 16-byte range (0x1000-0x100f, represented
by the shadowed cells in the picture) around func2 is
valid. This code range, between dashed lines in the figure,
includes the epilogue of func1, or at least a part of it.

. . .
Memory addresses

0x0fff

0x1000

0x1001
. . .

0x1007
Unaligned

valid target
. . .

0x100e

0x100f

0x1010
. . .

func1:
· · ·
add rsp, 0x40
pop rdi
pop rbx
ret
func2:
push rsi
sub rsp, 0x20
mov rsi, [rcx+0x8]
· · ·

Code

P80R0

Fig. 3. An unaligned valid target at 0x1007 (func2) makes the whole
0x1000-0x100f range valid. A P80R0 gadget is generated from the
epilogue of func1.

A typical epilogue performs the following operations:

1) Stack frame deallocation. The stack frame was
allocated in the prologue by subtracting its size
from the stack pointer. Deallocation is done by
either adding the stack frame size to the stack
pointer, or by setting the stack pointer to the base
pointer, which keeps track of the stack frame base.
The latter can only be used if the base pointer is
not being treated as a general-purpose registers,
which is a common optimization.

2) Register restoration. The original values for callee-
saved registers were pushed to the stack during the
prologue. The epilogue pops them to restore their
value for the caller.

3) Return. The ret instruction pops the return ad-
dress from the stack and branches to it. There is
also an alternative ret opcode that accepts a 16-
bit immediate operand, which will be added to the
stack pointer after popping the return address.

All operations done by the epilogue, excluding deallocation
if the base pointer is used, increment the stack pointer by
a fixed amount. A pop-ret (PR) gadget is a sequence of
consecutive instructions that increment the stack pointer
and return. Due to the predictability of compiler-generated
epilogues, it is easy to define the exact structure of PR gad-
gets generated from epilogues. Each PR gadget is described
by two parameters, p and r , denoted as Pp Rr , and satisfies
the following properties:

• PR.1 The gadget is a valid target for CFG.

• PR.2 The gadget is composed by the following
sequence of instructions:

7



1) An optional add {e,r}sp, m instruction.
If not present, let m = 0.

2) An optional sequence of n pop instructions,
excluding pop {e,r}sp, since it would
change the stack pointer to a value that is
not necessarily controlled. If not present, let
n = 0.

3) Either a ret instruction, in which case let
r = 0, or a ret r instruction.

• PR.3 p = m +wn ≥ w , where w is the native word
size in bytes (4 on 32-bit, 8 on 64-bit).

In our example in Figure 3 the epilogue of func1, which is
reachable because func2 is an unaligned valid target, gen-
erates a P80R0 gadget (w = 8, m = 64, n = 2). PR gadgets are
relative ROP stack pivots: they increment the stack pointer
by p bytes and return. Optionally, they can increment the
stack pointer by another r bytes before returning, but after
popping the return address.

The main insight behind BATE is that PR.1 is often sat-
isfiable. Since we exploit the imprecision around unaligned
targets, PR gadgets must be in the 16-byte CFG range for
the unaligned target, otherwise they will fail the CFG check.
More precisely, since PR gadgets precede the unaligned tar-
get, our search window is restricted to the lower part of the
range, which extends from the lowest address in the range
(i.e., the unaligned target rounded down to a multiple of
16) to the unaligned target, excluded. Assuming an uniform
distribution for the unaligned targets, this window will on
average be 8 bytes. However, pop and ret instructions
are small (1 or 2 bytes for pop, 1 or 3 bytes for ret),
so useful PR gadgets can be very short and fit into this
space. Moreover, a single epilogue can generate multiple PR
gadgets. For example, the epilogue of func1 in Figure 3 also
contains the subsequences pop/pop/ret and pop/ret,
which are respectively P16R0 and P8R0 gadgets.

Since every instruction in a PR gadget increments the
stack pointer, p grows as we get farther from ret. Big pivots
typically come from having an add instruction, which is
before all pops, and therefore quite far from the return.
However, the distance between the gadget entry point and
ret is limited, because the entry point has to lay within
the lower part of the 16-byte CFG range for the unaligned
valid target in order to pass CFG checks. Assuming the
offsets of unaligned targets within their ranges are uniformly
distributed, we can expect gadgets with big p values to be
rarer than ones with small p. We show that this is indeed
the case in Section VI.

D. Exploiting PR gadgets

To further explain how to use PR gadgets, we refer to
the sample stack we depict in Figure 4. The x86 stack grows
backwards, towards lower memory addresses. We refer to
the lowest address, which the stack pointer points to, as
the top of the stack.

Figure 4a shows the stack layout immediately after a
call instruction for 32-bit calling conventions [24]. Before
the call, the caller pushes the arguments to the stack,
bringing the stack pointer to sp0. The return address is

then pushed to the stack before branching to the call target,
so that the new stack pointer is sp1 = sp0 − w . For our
attack, we corrupt an indirect call and redirect it to a Pp Rr
gadget. The gadget will increase the stack pointer by p bytes
before returning. Let spr = sp1 + p be the stack pointer
when the gadget reaches its ret instruction. By PR.3 we
have that spr ≥ sp0, meaning that the return address will be
fetched from the caller’s stack frame. Return addresses are
not checked by CFG, so by controlling this location one can
make the program branch to an arbitrary destination. Once
execution jumps to the attacker’s target, the stack pointer
will be spr − w + r . As an example, consider Figure 4b,
where an indirect call has been hijacked to a P2w Rr gadget.
The gadget will take its return address from the second
argument to the callee, which is an attacker-controlled value
within our threat model.

Clearly, a PR gadget with a big p value could set the
return address further down the stack frame, for example
in the local variables or in the registers spilled by the
caller, both of which an attacker might be able to control.
However, big pivots are rarer than small ones, so we focus
on controlled arguments as they are closer to the stack
top. We also note that, since PR gadgets pop registers, an
attacker that controls more than just the word at spr can
use them to control registers as a side effect. While we
do not make use of this in our proof-of-concept, it can
aid exploitation since follow-up techniques such as stack
pivoting often require a controlled register.

Difficulties on 64-bit. While this technique works on 32-bit
code, it is not as easy to apply on 64-bit. Figure 4c shows
the stack layout after a call instruction for the Microsoft
64-bit calling convention [25]. The first four arguments are
passed in registers and subsequent ones via the stack. This
immediately reduces the impact of PR gadgets, because
many functions do not take more than four arguments. Also,
a Register Parameter Area (RPA) is inserted at the top of the
caller’s stack frame. The RPA is allocated by the caller for
the callee to spill registers into, and is 4 registers (32 bytes)
in size. Reaching below this zone would require PR gadgets
with p ≥ 40, which are rare. Therefore, we aim at using PR
gadgets that pivot into the RPA, which requires control over
its contents.

E. S gadgets

The RPA is typically used for argument registers, al-
though other registers may be spilled into it. When argu-
ments are spilled, they are in left-to-right order in memory.
While the RPA can be used by the caller for temporary
storage between calls, in most case it is left untouched.
Driving spr into the RPA would access uninitialized stack
data.

While stack data used before initialization can be con-
trolled, for example as shown for the Linux kernel [21], it
requires a complex setup and significant effort. Instead,
we exploit a common compiler optimization to control
the RPA: the replacement of tail calls with tail jumps. A
function ending in a tail call would have that call as the
last instruction in its body, followed by the epilogue and
the return. This is often optimized by first executing the

8



Low
memory

High
memory

St
ac

k
gr

ow
th

...

Return address
sp1

Argument 1
sp0

Argument 2

...

Locals

Spilled registers

Return address

Caller
frame

...

(a) 32-bit stack layout after call.

...

Return address
sp1

Argument 1
sp0

Argument 2
spr

...

Locals

Spilled registers

Return address

Caller
frame

...

(b) 32-bit stack layout after a P2w Rr
gadget.

...

Return address
sp1

sp0

RPA

Argument 5

...

Locals

Spilled registers

Return address

Caller
frame

...

(c) 64-bit stack layout after call.

Fig. 4. On 32-bit, the stack pointer after a call (sp1) is close to the arguments and the caller’s locals, so the stack pointer when a PR gadget returns
(spr ) can be pivoted into attacker-controlled arguments. On 64-bit bit, the register parameter area is uninitialized and distances sp1 from the caller’s
stack frame.

epilogue and then simply jumping to the callee. When
control reaches the callee, the stack pointer points to the
caller’s return address and the callee will build its stack
frame over what was the caller’s stack frame. This reduces
stack depth and avoids an extra return, since the callee will
directly return to the caller’s caller.

Most importantly, the caller likely spilled its arguments,
or in some cases other general purpose registers, to the
RPA. Since the stack frame has been deallocated, the stack
at the tail jump looks again like Figure 4c, but now the
RPA contains initialized data. Let us assume that the tail
call is indirect, but CFG-protected, and that we can hijack
it. This puts us in a position where we can chain a PR
gadget with an initialized RPA near the stack top. To apply
this technique in practice, we find functions with tail call
optimization that are also valid CFG targets, which we name
spiller (S) gadgets. An S gadget is described by a parameter
n, denoted as Sn , and satisfies the following properties:

• S.1 The gadget is a valid target for CFG.

• S.2 The gadget spills n registers to the RPA.

• S.3 The gadget ends with a controlled indirect tail
jump after its epilogue.

• S.4 The gadget has negligible or manageable side
effects.

This is an approximate notation, that does not take into
account which registers are spilled and at what offsets. We
give a more precise description of S gadget semantics in
Section VI. We note that S gadgets can be considered as a
particular subclass of the EP-IJ gadgets defined in [17]. If
the final jump is made through a virtual table, they are also
similar to COOP [34] gadgets. We redirect the final indirect
jump of an S gadget to a PR gadget to build an S-PR chain.

F. Exploiting S-PR chains

Control flow can be hijacked by redirecting an indirect
call for which we control a spilled register to an S-PR chain

with a PR gadget that will pivot spr to the spilled value. We
focus on argument registers (rcx, rdx, r8, r9) because
they are easier to control, but we stress that other registers
may be spilled.

Figure 5 shows a realistic example in a C++ application.
The first code chunk from the top makes an indirect call via
dispatch mode, which takes the target address in the rax
register. This particular example shows a C++ virtual call:
rcx (first argument) is the this pointer, the virtual table
pointer is at offset 0 in the object and the method pointer is
at offset 0x50 in the virtual table. The attacker has corrupted
the virtual table pointer so that rax is loaded with the
address of an S2 gadget. Also, the attacker controls rdx,
which is the second argument, and sets it to the address of
the final target.

· · ·
mov rax, [rcx]
mov rax, [rax+0x50]
call [dispatch_fptr]
· · ·

Caller (controlled rdx)

mov [rsp+0x8], rcx
mov [rsp+0x10], rdx
sub rsp, 0x40
· · ·
mov rax, [rcx]
mov rax, [rax+0x20]
add rsp, 0x40
jmp [dispatch_fptr]

S2 gadget

pop rdi
pop rsi
ret

P16R0 gadget

Attacker
target

Fig. 5. An S-PR chain, that shows how S gadgets are used to setup the
stack for PR gadgets.

In this example, the S gadget starts by spilling the first
two arguments (rcx and rdx) to the RPA, which begins

9



at rsp+8. In particular, the highlighted instruction spills
the attacker-controlled rdx to rsp+16. The gadget then
builds a stack frame (64 bytes), performs some innocuous
operations, and prepares rax for an indirect dispatch-mode
tail call. This is again a virtual call, on the same corrupted
object as before, at a 0x20 offset. Thus, the attacker can
hijack it to a P16R0 gadget. Finally, due to the tail call
optimization, the S gadget deallocates the stack frame and
jumps (via CFG dispatch) to the PR gadget. The stack
pointer is now the same as it was at the beginning of the
S gadget, and the spilled rdx is again at rsp+16. The PR
gadget increments the stack pointer by 16 bytes, bringing
the spilled register to the top of the stack, where ret will
use it as the return address, achieving flow control.

VI. IMPACT AND APPLICABILITY

We systematically assessed the presence of PR and S
gadgets both in system libraries (as they expose to BATE all
applications that load them), and Microsoft Office 2016, a
very popular software and thus high-value target. Results
were obtained from clean installs of 32-bit and 64-bit
Windows 10 Pro Insider Preview, build 16232.1000.

A. Analysis

To find PR gadgets we apply a simple pattern matching
approach, as their structure is predictable. For each file,
we extract the list of valid targets and filter it down to
unaligned targets. Then, we disassemble backwards from
unaligned targets, at every offset within the window of
addresses that share all but the lowest 4 bits. We match
the disassembled chunks against the PR gadget structure
previously illustrated, to determine whether we found a PR
gadget and what its semantics are. This works well because
the layout of epilogues is fixed.

For S gadgets we use a less naive approach, because
they are much more diverse. To simplify exploitation, we
only identify S gadgets made of a single basic block, without
any control flow transfer except the final indirect jump. We
extract the valid targets from the file, then we disassemble
forwards until we reach an instruction that changes control
flow, such as a call, a jump or a return. If this instruction is
an indirect jump to the dispatch pointer, or if it is a call to
the check pointer followed by an indirect jump to a register,
we mark the gadget as a candidate. We then symbolically
execute candidate gadgets to determine whether the stack
frame has been deallocated prior to the indirect branch,
and what was spilled to the RPA.

We use Capstone [1] for disassembly and angr [37] for
symbolic execution.

B. Results

Table I shows libraries that contain unaligned targets
and PR gadgets. We recall that, in a Pp Rr gadget, p indicates
how many bytes are added to the stack pointer before
returning, and r how many are added after returning. As
expected (see discussion in Section V-C), small p values
are more frequent than big ones. We also note that, as a
general trend, p grows at first by steps of 8 bytes (from pop
instructions), then suddenly increases because of adds.

TABLE I. UNALIGNED TARGETS AND PR GADGETS FOUND IN WINDOWS 10
SYSTEM LIBRARIES.

Library Unaligned
targets

Total PR
gadgets

PR gadgets
(deduplicated)

32-bit Windows, 32-bit WoW64 subsystem

AppVEntSubsystems32.dll 1 — —

clusapi.dll 1 — —

d3dim.dll 322 1 P4R0

d3dim700.dll 323 11 P4R{0,8}, P8R{0,8},
P12R8, P16R8, P80R8

msvcr120_clr0400.dll 17 5 P4R{0,4098}, P8R0,
P12R0, P36R0

msvcrt.dll 34 15 P4R{0,4,8}, P8R0,
P12R0, P16R4, P36R0,
P40R0, P44R0, P52R0

MSVP9DEC.dll 40 10 P4R0, P8R0, P12R0,
P16R0, P20R0, P112R0

MSVPXENC.dll 53 11 P4R0, P8R0, P12R0,
P16R0, P20R0, P112R0

ntdll.dll (32-bit only) 1 — —

resutils.dll 1 — —

ucrtbase.dll 6 4 P4R0, P8R0, P12R0,
P36R0

user32.dll 3 — —

wsp_fs.dll 1 — —

wsp_health.dll 1 — —

64-bit Windows

jscript9.dll 9 4 P8R0, P16R0, P24R0,
P32R0

msmpeg2vdec.dll 1 3 P8R0, P16R0, P56R0

MSVPXENC.dll 1 — —

PayloadRestrictions.dll 5 — —

rtmpltfm.dll 6 4 P8R0, P16R0

On 32-bit systems our bypass is widely applicable,
because PR gadgets can be found in C/C++ runtime li-
braries (such as msvcrt.dll), which are loaded by most
applications, along with being dependencies for a large
number of other system DLLs. The same applies to 32-
bit applications on 64-bit systems, which run through the
WoW64 subsystem. On 64-bit the attack surface is smaller.
However, we found two libraries that offer PR gadgets and
are particularly appealing to attackers: jscript9.dll
is the legacy JavaScript engine used by Internet Explorer,
while msmpeg2vdec.dll is a system video codec that
could be loaded by applications that handle media files.
Analyzing the 64-bit Microsoft Office 2016 suite, we found
1410 unaligned targets in 139 executables and libraries,
resulting in 123 non unique PR gadgets. Of those, 101
are P40R0, which are particularly interesting as they reach
beyond the RPSA. We do not report details of these gadgets
because of space issues.

We show an approximate overview of S gadgets on
64-bit Windows in Table II. Both the Internet Explorer
(jscript9.dll) and Edge (Chakra.dll) JavaScript en-
gines contain a fair number of S gadgets. The same holds for
the HTML parsers used by the two browsers (mshtml.dll
for Internet Explorer and edgehtml.dll for Edge). We
also note the presence of S gadgets in real-time codecs
used by Skype and graphics libraries. We highlight that
this is only an approximate overview, as our notation is
not completely precise: we define n as the total number of
spilled 64-bit registers. We do not take into account 32-bit

10



registers, as they are generally not useful. Most importantly,
the Sn notation does not describe exactly which registers
are spilled, whether they are argument registers or not, and
at what position in the RPA they are spilled. We report a
precise description of the S gadgets we found and of the
registers they spill in Appendix A.

TABLE II. S GADGETS FOUND IN WINDOWS 10 64-BIT SYSTEM LIBRARIES.

Library Total S
gadgets

S gadgets (deduplicated)

aadtb.dll 3 S1

Chakra.dll 52 S1, S2, S3

Chakradiag.dll 1 S2

CoreUIComponents.dll 1 S1

d2d1.dll 1 S1

d3d10warp.dll 1 S1

D3DCompiler_47.dll 64 S1, S2, S3, S4

dbghelp.dll 76 S1, S2, S3, S4

edgehtml.dll 76 S1, S2, S3

FlashUtil_ActiveX.dll 2 S1

jscript9.dll 34 S1, S2, S3

jscript9diag.dll 5 S2, S3

mrt_map.dll 3 S4

mshtml.dll 217 S1, S2, S3, S4

msvcp120_clr0400.dll 41 S1, S2, S3, S4

msvcr120_clr0400.dll 12 S1

ortcengine.dll 28 S1, S2, S3, S4

pdm.dll 24 S1, S2, S3, S4

pidgenx.dll 2 S3

rgb9rast.dll 4 S1, S2

rometadata.dll 3 S1, S2, S3

rtmcodecs.dll 12 S1, S2

rtmmvrortc.dll 2 S1

rtmpal.dll 83 S1, S2, S3, S4

rtmpltfm.dll 129 S1, S2, S3, S4

sppc.dll 6 S1, S2, S3

sppcext.dll 1 S2

SystemSettings.Handlers.dll 7 S1

SystemSettingsThresholdAdminFlowUI.dll 12 S1, S2, S4

Windows.Media.Protection.PlayReady.dll 20 S1, S2, S3

Windows.UI.Input.Inking.Analysis.dll 58 S1, S2, S3

WsmSvc.dll 5 S1, S2

In summary, our attack is feasible against most applica-
tions on 32-bit systems and against high-value targets (such
as web browsers and very popular applications) on 64-bit.

An important question related to BATE is the reason
why the compiler does not align some targets. Indeed,
this interplay between misalignment and CFG’s assumption
creates the vulnerability that BATE exploits. To investigate
this, we analyzed an already compiled library: the 64-bit
jscript9.dll, as it is based on ChakraCore, which is
open source. We observed that the compiler ignores some
alignment directives for handwritten assembly routines,
causing the misalignments in jscript9.dll. We specu-
late that it might correspond to a number of reasons, such
as a compiler bug that manifests in borderline cases, or a
bug in Microsoft’s compilation pipeline. However, we could
not replicate misalignment by compiling neither Chakra-
Core nor some custom test code. Moreover, our analysis
is limited to a single library, and the source of unaligned
targets in other libraries may be different.

VII. PROOF OF CONCEPT IMPLEMENTATION OF BATE

To demonstrate BATE, we build a proof-of-concept re-
mote code execution exploit against the Microsoft Edge
web browser running on 64-bit Windows 10 Anniversary
Update. We exploit two known vulnerabilities in the Chakra
JavaScript engine: an information leak [2] and a type
confusion [3]. These vulnerabilities are already used in a
public proof-of-concept exploit [42], on which we draw
inspiration for our implementation. However, the public
exploit overwrites a thread’s stack to hijack control flow, thus
needing arbitrary write on the stack. We remark that BATE
allows us to obtain control and bypass CFG without the
need of arbitrary write, making our technique more general.

The outline of our proof-of-concept exploit is as follows.
We first discover the layout of the program’s memory to
locate our gadgets. We then corrupt a C++ virtual table to
redirect execution into an S2-P16R0 chain and gain flow
control. This step highlights that our technique bypasses
CFG. Finally, to present a working proof-of-concept exploit
(even if we already bypassed CFG), we use stack pivoting
and ROP to bypass DEP and execute arbitrary code. We now
describe the exploit in more detail.

A. Primitives

We build two primitives from the vulnerabilities: the first
one allows us to leak the absolute address of an arbitrary
JavaScript object. The second one provides us with arbitrary
memory read/write. We stress that, differently from the
public exploit, we use the arbitrary write in a very limited
way: we only corrupt heap objects, but not other memory
areas such as the stack. Therefore, we could exploit less
“powerful” vulnerabilities with our attack.

Address leak. The information leak vulnerability allows us to
leak the addresses of the elements of an array. We leverage
this into a primitive that leaks the address of an object,
by constructing an array that contains the object and then
using the information leak to get the address.

Arbitrary read/write. We use the type confusion vulnerabil-
ity to confuse an array and a DataView object. By altering
the array, we can change the data pointer the DataView
works on and perform memory reads and writes from it.

B. Gadget selection

We use a P16R0 gadget from msmpeg2vdec.dll (Fig-
ure 6) and a S2 gadget from chakra.dll (Figure 7). The
latter is already loaded in memory, since it belongs to the
JavaScript engine. It will spill its second argument (rdx)
to rsp+16 and call the function at offset 0x50 in the
virtual table of the object pointed to by the first argument
(rcx). To bring the PR gadget into memory, we embed
an MPEG-2 video in the exploit page, which forces the
msmpeg2vdec.dll codec to be loaded. When chained to
the S gadget, it will return to the second argument of the S
gadget.

C. ASLR bypass

Since we will have to hijack indirect calls to the gadgets,
we need to know their absolute addresses, which are ran-
domized due to ASLR. To derandomize them, we find the

11



1 ; @ msmpeg2vdec+0xb29c
2 pop rdi
3 pop rsi
4 ret

Fig. 6. The P16R0 gadget from msmpeg2vdec.dll used in our proof-
of-concept exploit.

1 ; @ chakra+0x31f0000
2 chakra!ScriptEngine::EnumHeap:
3 mov r11, rsp
4 ; Spill arguments to RPA
5 mov [r11+0x10], rdx
6 mov [r11+0x8], rcx
7 ; Allocate stack frame
8 sub rsp, 0x28
9 ; Prepare call to rcx->__vfptr[10]

10 mov rax, [rcx]
11 mov r8, rdx
12 xor edx, edx
13 mov rax, [rax+0x50]
14 ; Deallocate stack frame
15 add rsp, 0x28
16 ; Perform indirect call via CFG
17 jmp cs:__guard_dispatch_icall_fptr

Fig. 7. The S2 gadget from chakra.dll used in our proof-of-concept
exploit.

base of the containing modules, which then can be offsetted
to address anything inside the module. We use hardcoded
offsets as they are sufficient for this proof-of-concept. A
“weaponized” real-world exploit would dynamically deter-
mine code layout with the read primitive to work on as
many module versions as possible.

chakra.dll. We use the address leak primitive to obtain the
address of a JavaScript object. Then we use the arbitrary
read primitive twice: first to read the virtual table pointer
from the the object, and then to read the address of a func-
tion inside chakra.dll from the virtual table. We know
the offset of this function from the base of chakra.dll,
so subtracting it from the leaked function address yields the
base.

msmpeg2vdec.dll. This module is loaded through various
layers of indirection, so a direct leak is difficult. Since we
derandomized chakra.dll, we know where its import
table is located. We read the address of a function imported
from msvcrt.dll and determine the base of that module.
Then, we read the address of a function from ntdll.dll
from the import table of msvcrt.dll and derandomize
the former library. Since ntdll.dll contains an hash ta-
ble filled with information about loaded modules, including
their base address, we can build a lookup routine on top of
the read primitive and get the base of msmpeg2vdec.dll.

D. Controlling 64-bit arguments

To apply our attack we need to control a 64-bit argu-
ment to an hijacked indirect call. Since Chakra is a C++
application, this would most likely be a virtual call. There
are plenty of virtual methods which accept user-controlled
32-bit arguments, such as indexes for string and array
operations. However, arbitrary 64-bit arguments are not as

easy to come by, particularly because there is no integer
64-bit data type in JavaScript. Many functions accept Var
arguments, which represent a JavaScript object, either as a
pointer to it or as a tagged double, if it is a number [8].
Since we need to set the argument to a pointer to our
target, we cannot express it as a number, as it will be tagged.
To get a controlled Var, we create an array object, which
will contain its elements as an array of Vars. We then use
the write primitive to corrupt one of those elements to the
desired value. Since now the element points to code instead
of a valid JavaScript object, we have to be careful to not
perform operations on it that may crash the engine.

E. Control flow hijacking

We show the general outline of the control
flow hijacking stage in Figure 8. We target the
JavascriptFunction::HasInstance virtual
function by hijacking the virtual table pointer for a
JavascriptFunction object with the write primitive
and pointing it to a fake virtual table. Note that virtual
tables are read-only, which is why we build a fake table
instead of corrupting the real one. We point HasInstance,
at offset 0x200 in the virtual table, to the S gadget. The
function is invoked when the instanceof operator
is used with a function as the left-hand side operand
(step 1). The S gadget (step 2) gets passed a pointer to
the JavascriptFunction instance object as the first
hidden argument, while the right-hand side Var is passed
as the second one. This is convenient since the virtual call
in the S gadget will happen through the same fake virtual
table, so by previously setting the entry at 0x50 to point
to the PR gadget we can chain it to the S gadget (step 3).
We now only need to setup a fake Var that points to our
target and use it as the right-hand side operand to gain
flow control, bypassing CFG.

JavascriptFunction

VTable pointer +0x00
...

Fake SP +0x10
...

&ret +0x50
...

Fake VTable
...

3© &P16R0
p

+0x50
...

2© &S2
p

+0x200
...

5© ROP chain

Setup registers

Call VirtualProtect

Jump to shellcode

1© Invoke instanceof

rsp ← Fake SP
jmp &ret

4© Stack pivot

6© Shellcode
p

Valid CFG targets

Fig. 8. Overview of control flow hijacking and DEP bypass in our proof-
of-concept exploit.

F. DEP bypass

We show an overview of the DEP bypass stage in Figure 8
(steps number 5 and 6 of the exploit). At this point of the
attack, we do not have to worry about CFG anymore and
we can use standard techniques to bypass DEP. We set up

12



two strings on the heap: one contains a first-stage ROP
chain, the other keeps the second-stage shellcode. We use
the address leak primitive to locate those buffers in memory.
We redirect control to the stack pivoting gadget shown in
Figure 9. The object pointed by rcx is again the corrupted
JavascriptFunction, which we have control over. We
use the stack pivoting gagdet to redirect the stack pointer
into the ROP chain (step 4). The value that gets loaded
into rdx is the address of a ret instruction to launch the
chain. The ROP chain uses gadgets from chakra.dll to
call VirtualProtect on the shellcode buffer to mark it
as executable (step 5). Finally, it jumps to the shellcode,
achieving arbitrary code execution (step 6).

1 ; @ ntdll+0xab305
2 mov rdx, [rcx+0x50]
3 mov rbp, [rcx+0x18]
4 mov rsp, [rcx+0x10]
5 jmp rdx

Fig. 9. The stack pivoting gadget from ntdll.dll used in our proof-
of-concept exploit.

VIII. DISCUSSION AND COUNTERMEASURES

We believe BATE is a real threat. Apart from the standard
requirement to be able to disclose the memory layout,
we only require control of an argument to an hijacked,
CFG-protected indirect call. This a realistic assumption: for
example, if the attack is based on virtual table hijacking,
the adversary can hijack any function within a virtual table
with no extra effort, since a fake table has to be already in
place. This allows to freely choose between a large number
of candidate functions: it is likely that one will satisfy the
requirements. On 32-bit systems BATE is easy to carry out
and PR gadgets are widespread, especially in the C/C++
runtime library, effectively making it an almost universal
CFG bypass. 64-bit exploitation presents further challenges,
such as controlling the indirect call at the end of an S
gadget. However, we think BATE is still feasible, as other
attacks against CFI by chaining gadgets via hijacked indirect
branches [17], [34] proved to be feasible in the past and we
demonstrated our attack on real-world code.

A. Countermeasures

We believe that a widely deployable countermeasure
needs to modify CFG as little as possible, and should not
alter its core design. At its core, BATE relies on a CFG’s
design assumption being often violated by compiled code.
Specifically, CFG guarantees single-byte granularity only for
16-byte aligned targets; however, the compiler sometimes
does not properly align functions. There are two ways to
address this issue: (i) by improving CFG’s precision, or (ii)
by avoiding unaligned targets. With the current design, (i)
would require at least a bit for every address, resulting in a
bitmap that occupies 1/8th of the process’ addressing space.
While a similar memory footprint is present in previous
work [28], and most memory would be virtual and not
physically backed, it is still a big price to pay, especially
on 32-bit where the virtual address space is limited. Option
(ii) is simpler and more feasible: the compiler should align

all CFG targets to a 16-byte boundary by inserting appro-
priate padding. As shown in Table I, 64-bit libraries contain
relatively few unaligned targets, so this should not result in
a significant increase in code size. On 32-bit, where there
are many more unaligned targets, padding could take up a
significant amount of space, and possibly have performance
implications (e.g., excessive padding could hinder the ef-
fectiveness of caches). Despite such downsides, we believe
the latter could be the best “immediate” mitigation to what
is essentially a design decision, coming from the delicate
tradeoff between precision and performance required by
CFI techniques.

An additional angle for defense stems from another
assumption BATE makes: lack of backward-edge CFI. A
shadow stack [12] would protect the return address and
stop BATE. Shadowing return addresses was attempted by
Microsoft with the Return Flow Guard mitigation, although
it was ultimately removed because it suffered from a design-
level bypass [44]. A novel and promising hardware-based
implementation of shadow stack is Intel CET [19].

IX. CONCLUSIONS

In this paper, we presented Back To The Epilogue (BATE),
a novel bypass for Microsoft’s Control Flow Guard (CFG).
After describing the internals of CFG and discussing its
weaknesses, we defined two kinds of gadgets, PR and S.
PR gadgets can be found near the beginning of unaligned
functions. Because of how CFG approximates valid call tar-
gets, these gadgets are considered unintended valid targets
as well. We then combined S and PR gadgets to implement
BATE and bypass CFG. Our technique hijacks control flow
to an arbitrary location, thus completely bypassing integrity
checks, and allows to launch more traditional exploitation
methods.

We assessed the availability of our gadgets to understand
the feasibility and impact of BATE: we ran a complete
assessment of Windows 10 system libraries, and found many
occurrences of our gadgets, even in appealing targets (such
as C/C++ runtime libraries, the JavaScript engine, a media
codec, and Microsoft Office). Every application that loads
any library that contains our gadgets is exposed to BATE.
We therefore conclude that BATE is a realistic threat, both
on 32-bit and 64-bit systems. We demonstrated this by using
BATE to build a remote code execution exploit against the
Microsoft Edge browser, a high-value target (because it can
be exploited remotely, as the victim only needs to visit, for
example, a compromised webpage).

BATE is a so-called “mitigation bypass”, because it avoids
a security mechanism, in particular by leveraging a design
tradeoff between security and memory cost. Therefore,
countermeasures are not easy to implement: CFG can
hardly be modified to increase its precision. We proposed
some possible mitigations to Microsoft, together with our
responsible disclosure of BATE. We think the most feasible
countermeasure, in the short term, is to force alignment
of unaligned targets. However, cost of this approach is
unclear, and requires further analysis: padding could take
up a significant amount of space, and break caching opti-
mizations. Other proposed future work is to further analyze

13



Microsoft’s CFG, to understand if there are other types of
exploitable gadgets next to unaligned targets, and to harden
its design by using secondary protection mechanisms that
could detect such unwanted valid targets, and enforce calls
only of intended targets.

ACKNOWLEDGMENT

Mauro Conti is supported by a Marie Curie Fellowship funded

by the European Commission (agreement PCIG11-GA-2012-321980). This

work is also partially supported by the EU TagItSmart! Project (agree-

ment H2020-ICT30-2015-688061), the EU-India REACH Project (agreement

ICI+/2014/342-896), by the project CNR-MOST/Taiwan 2016-17 “Verifiable

Data Structure Streaming", the grant n. 2017-166478 (3696) from Cisco Uni-

versity Research Program Fund and Silicon Valley Community Foundation,

and by the grant "Scalable IoT Management and Key security aspects in

5G systems" from Intel.

REFERENCES

[1] “Capstone.” [Online]. Available: https://www.capstone-engine.org/

[2] “CVE-2016-7200.” [Online]. Available: https://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-7200

[3] “CVE-2016-7201.” [Online]. Available: https://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-7201

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow in-
tegrity principles, implementations, and applications,” ACM TISSEC,
2009.

[5] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in ACM ASIACCS,
2011.

[6] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina:
Memory deduplication as an advanced exploitation vector,” in IEEE
S&P, 2016.

[7] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-flow integrity: Precision, security, and perfor-
mance,” ACM Computing Surveys (CSUR), 2017.

[8] A. Chatra, “Tagged float.” [Online]. Available: https://abchatra.github.
io/TaggedFloat/

[9] Y. Chen, “The birth of a complete IE11 exploit under the new exploit
mitigations,” in SyScan Singapore, 2015.

[10] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,
C. Liebchen, M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the
effectiveness of control-flow integrity under stack attacks,” in ACM
CCS, 2015.

[11] D. Dai Zovi, “Practical return-oriented programming,” in SOURCE
Boston, 2010.

[12] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in ACM ASIACCS, 2015.

[13] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching
the gadgets: On the ineffectiveness of coarse-grained control-flow
integrity protection,” in USENIX Security 14, 2014.

[14] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of
fine-grained control flow integrity,” in ACM CCS, 2015.

[15] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
ASLR: Attacking branch predictors to bypass ASLR,” in IEEE/ACM
MICRO, 2016.

[16] F. Falcón, “Exploiting CVE-2015-0311, part II: Bypassing control
flow guard on Windows 8.1 Update 3,” 2015. [Online]. Avail-
able: https://www.coresecurity.com/blog/exploiting-cve-2015-0311-
part-ii-bypassing-control-flow-guard-on-windows-8-1-update-3

[17] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in IEEE S&P, 2014.

[18] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the line: Practical cache attacks on the MMU,” in NDSS, 2017.

[19] Intel, “Control-flow enforcement technology preview.” [Online].
Available: https://software.intel.com/sites/default/files/managed/4d/
2a/control-flow-enforcement-technology-preview.pdf

[20] H. Li, “Control flow guard improvements in Win-
dows 10 Anniversary Update,” 2016. [Online]. Avail-
able: https://blog.trendmicro.com/trendlabs-security-intelligence/
control-flow-guard-improvements-windows-10-anniversary-update/

[21] K. Lu, M.-T. Walter, D. Pfaff, S. Nürnberger, W. Lee, and M. Backes,
“Unleashing use-before-initialization vulnerabilities in the linux ker-
nel using targeted stack spraying,” in NDSS, 2017.

[22] Microsoft, “ChakraCore.” [Online]. Available: https://github.com/
Microsoft/ChakraCore

[23] ——, “Control Flow Guard.” [Online]. Avail-
able: https://msdn.microsoft.com/en-us/library/windows/desktop/
mt637065(v=vs.85).aspx

[24] ——, “Argument passing and naming conventions,” 2016.
[Online]. Available: https://docs.microsoft.com/en-us/cpp/cpp/
argument-passing-and-naming-conventions

[25] ——, “Overview of x64 calling conventions,” 2016. [Online].
Available: https://docs.microsoft.com/en-us/cpp/build/overview-of-
x64-calling-conventions

[26] ——, “A detailed description of the Data Execution Prevention
(DEP) feature in Windows XP Service Pack 2, Windows XP Tablet
PC Edition 2005, and Windows Server 2003,” 2017. [Online]. Avail-
able: https://support.microsoft.com/en-us/help/875352/a-detailed-
description-of-the-data-execution-prevention-dep-feature-in

[27] MJ0011, “Windows 10 control flow guard internals,” 2014. [Online].
Available: http://www.powerofcommunity.net/poc2014/mj0011.pdf

[28] B. Niu and G. Tan, “Monitor integrity protection with space efficiency
and separate compilation,” in ACM CCS, 2013.

[29] PaX Team, “Address space layout randomization (ASLR),” 2003.
[Online]. Available: http://pax.grsecurity.net/docs/aslr.txt

[30] G. Ramalingam, “The undecidability of aliasing,” ACM TOPLAS,
vol. 16, no. 5, pp. 1467–1471, 1994.

[31] rix, “Smashing C++ vptrs,” Phrack Magazine, vol. 56, no. 8, 2000.
[Online]. Available: http://phrack.org/issues/56/8.html#article

[32] M. Schenk, “Back to basics or bypassing Control
Flow Guard with Structured Exception Handler.” [Online].
Available: https://improsec.com/blog//back-to-basics-or-bypassing-
control-flow-guard-with-structured-exception-handler

[33] ——, “Bypassing Control Flow Guard in Windows 10.”
[Online]. Available: https://improsec.com/blog//bypassing-control-
flow-guard-in-windows-10

[34] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in IEEE S&P,
2015.

[35] F. J. Serna, “The info leak era on software exploitation,” in Black Hat
USA, 2012.

[36] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in ACM CCS, 2007.

[37] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE S&P, 2016.

[38] A. Sintsov, “Jit-spray attacks & advanced shellcode,” in HITBSecConf
Amsterdam, 2010.

[39] K. Sun, Y. Ou, Y. Zhao, X. Song, and X. Li, “Never let your guard
down: Finding unguarded gates to bypass control flow guard with
big data,” in Black Hat Asia, 2017.

[40] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in IEEE S&P, 2013.

[41] J. Tang, “Exploring control flow guard in Windows 10,” 2015. [Online].
Available: https://documents.trendmicro.com/assets/wp/exploring-
control-flow-guard-in-windows10.pdf

[42] Theori, “chakra.dll info leak + type confusion for RCE.” [Online].
Available: https://github.com/theori-io/chakra-2016-11

14

https://www.capstone-engine.org/
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7200
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7200
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7201
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7201
https://abchatra.github.io/TaggedFloat/
https://abchatra.github.io/TaggedFloat/
https://www.coresecurity.com/blog/exploiting-cve-2015-0311-part-ii-bypassing-control-flow-guard-on-windows-8-1-update-3
https://www.coresecurity.com/blog/exploiting-cve-2015-0311-part-ii-bypassing-control-flow-guard-on-windows-8-1-update-3
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://blog.trendmicro.com/trendlabs-security-intelligence/control-flow-guard-improvements-windows-10-anniversary-update/
https://blog.trendmicro.com/trendlabs-security-intelligence/control-flow-guard-improvements-windows-10-anniversary-update/
https://github.com/Microsoft/ChakraCore
https://github.com/Microsoft/ChakraCore
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://docs.microsoft.com/en-us/cpp/cpp/argument-passing-and-naming-conventions
https://docs.microsoft.com/en-us/cpp/cpp/argument-passing-and-naming-conventions
https://docs.microsoft.com/en-us/cpp/build/overview-of-x64-calling-conventions
https://docs.microsoft.com/en-us/cpp/build/overview-of-x64-calling-conventions
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
http://www.powerofcommunity.net/poc2014/mj0011.pdf
http://pax.grsecurity.net/docs/aslr.txt
http://phrack.org/issues/56/8.html#article
https://improsec.com/blog//back-to-basics-or-bypassing-control-flow-guard-with-structured-exception-handler
https://improsec.com/blog//back-to-basics-or-bypassing-control-flow-guard-with-structured-exception-handler
https://improsec.com/blog//bypassing-control-flow-guard-in-windows-10
https://improsec.com/blog//bypassing-control-flow-guard-in-windows-10
https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
https://github.com/theori-io/chakra-2016-11


[43] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in GCC & LLVM,” in USENIX Security 14, 2014.

[44] D. Weston and M. Miller, “Microsoft’s strategy and technology im-
provements toward mitigating arbitrary native code execution,” in
CanSecWest 2017.

[45] R. Wojtczuk, “An interesting detail about control flow guard,”
2015. [Online]. Available: https://blogs.bromium.com/an-interesting-
detail-about-control-flow-guard/

[46] P. Yosifovich, A. Ionescu, and D. A. Solomon, Windows Internals, Part
1: System architecture, processes, threads, memory management, and
more, 7th ed. Microsoft Press, 2017.

[47] Y. Yu, “Bypass DEP and CFG using JIT compiler in Chakra engine.”
[Online]. Available: http://xlab.tencent.com/en/2015/12/09/bypass-
dep-and-cfg-using-jit-compiler-in-chakra-engine/

[48] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “Vtint:
Protecting virtual function tables’ integrity.” in NDSS, 2015.

[49] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-

ization for binary executables,” in IEEE S&P, 2013.
[50] Y. Zhang, “Bypass control flow guard comprehensively,” in Black Hat

USA, 2015.

APPENDIX A
S GADGETS

Table III shows detailed information about S gadgets in
system libraries. Gadgets of a library are visually separated
with a “•”. Each gadget is described as a set of spills,
separated by commas, in the form reg@+off, where reg
is a CPU register and off a stack offset within the RPA.
When the tail jump is reached, the value reg had upon
entry in the S gadget is at rsp+off. As such, chaining a
Poff Rr gadget will hijack the instruction pointer to the entry
value of reg.

TABLE III. DETAIL OF S GADGETS FOUND IN WINDOWS 10 64-BIT SYSTEM LIBRARIES. GADGETS ARE SEPARATED BY “•”

Library Total S gadgets S gadgets (deduplicated)

aadtb.dll 3 rbx@+8

Chakra.dll 52 rcx@+8 • rcx@+8, r8@+24 • rcx@+8, rdx@+16 • rcx@+8, rdx@+16, r8@+24

Chakradiag.dll 1 rcx@+8, rdx@+16

CoreUIComponents.dll 1 rdx@+8

d2d1.dll 1 rdx@+8

d3d10warp.dll 1 rbx@+8

D3DCompiler_47.dll 64 rbx@+8 • rbx@+8, rbp@+16, rsi@+24 • rbx@+8, rbp@+16, rsi@+24, rdi@+32 •
rbx@+8, rsi@+16 • rbx@+8, rsi@+16, rdi@+24

dbghelp.dll 76 rbx@+8 • rbx@+8, rbp@+16, rsi@+24 • rbx@+8, rbp@+16, rsi@+24, rdi@+32 •
rbx@+8, rsi@+16 • rbx@+8, rsi@+16, rdi@+24

edgehtml.dll 76 rcx@+8 • rcx@+8, r8@+24 • rcx@+8, rdx@+16 • rcx@+8, rdx@+16, r8@+24

FlashUtil_ActiveX.dll 2 rbx@+8

jscript9.dll 34 rcx@+8 • rcx@+8, rdx@+16 • rcx@+8, rdx@+16, r8@+24

jscript9diag.dll 5 rcx@+8, r8@+24 • rcx@+8, rdx@+16 • rcx@+8, rdx@+16, r8@+24

mrt_map.dll 3 rbx@+8, rbp@+16, rsi@+24, rdi@+32

mshtml.dll 217 rcx@+8 • rcx@+8, xmm1@+16 • rcx@+8, r8@+24 • rcx@+8, rdx@+16 •
rcx@+8, rdx@+16, r8@+24 • rcx@+8, rdx@+16, r8@+24, r9@+32

msvcp120_clr0400.dll 41 rbx@+8 • rbx@+8, rbp@+16, rsi@+24, rdi@+32 • rbx@+8, rsi@+16 •
rbx@+8, rsi@+16, rdi@+24

msvcr120_clr0400.dll 12 rbx@+8

ortcengine.dll 28 rbx@+8 • rbx@+8, rbp@+16, rsi@+24 • rbx@+8, rbp@+16, rsi@+24, rdi@+32 •
rbx@+8, rsi@+16

pdm.dll 24 rbx@+8 • rbx@+8, rbp@+16, rsi@+24 • rbx@+8, rbp@+16, rsi@+24, rdi@+32 •
rbx@+8, rsi@+16

pidgenx.dll 2 rbx@+8, rbp@+16, rsi@+24

rgb9rast.dll 4 rbx@+8 • rbx@+8, rsi@+16

rometadata.dll 3 rbx@+8 • rbx@+8, rsi@+16 • rbx@+8, rsi@+16, rdi@+24

rtmcodecs.dll 12 rbx@+8 • rbx@+8, rsi@+16

rtmmvrortc.dll 2 rbx@+8

rtmpal.dll 83 rbx@+8 • rbx@+8, rbp@+16, rsi@+24 • rbx@+8, rbp@+16, rsi@+24, rdi@+32 •
rbx@+8, rsi@+16 • rbx@+8, rsi@+16, rdi@+24

rtmpltfm.dll 129 rbx@+8 • rbx@+8, rbp@+16, rsi@+24 • rbx@+8, rbp@+16, rsi@+24, rdi@+32 •
rbx@+8, rsi@+16 • rbx@+8, rsi@+16, rdi@+24

sppc.dll 6 rbx@+8 • rbx@+8, rbp@+16, rsi@+24 • rbx@+8, rsi@+16

sppcext.dll 1 rbx@+8, rsi@+16

SystemSettings.Handlers.dll 7 rbx@+8

SystemSettingsThresholdAdminFlowUI.dll 12 rbx@+8 • rbx@+8, rbp@+16, rsi@+24, rdi@+32 • rbx@+8, rsi@+16

Windows.Media.Protection.PlayReady.dll 20 rbx@+8 • rbx@+8, rbp@+16, rsi@+24 • rbx@+8, rsi@+16

Windows.UI.Input.Inking.Analysis.dll 58 rbx@+8 • rbx@+8, rbp@+16, rsi@+24 • rbx@+8, rsi@+16

WsmSvc.dll 5 r8@+24, r9@+32 • r9@+32

15

https://blogs.bromium.com/an-interesting-detail-about-control-flow-guard/
https://blogs.bromium.com/an-interesting-detail-about-control-flow-guard/
http://xlab.tencent.com/en/2015/12/09/bypass-dep-and-cfg-using-jit-compiler-in-chakra-engine/
http://xlab.tencent.com/en/2015/12/09/bypass-dep-and-cfg-using-jit-compiler-in-chakra-engine/

	Introduction
	Related Work
	Control Flow Integrity
	Control Flow Guard.

	Background
	Control Flow Integrity
	Control Flow Guard
	Compiler instrumentation
	Module loading
	Runtime


	Threat Model and Assumptions
	BATE: our Attack to CFG
	Overview
	Exploited Weaknesses
	PR gadgets
	Exploiting PR gadgets
	S gadgets
	Exploiting S-PR chains

	Impact and Applicability
	Analysis
	Results

	Proof of Concept Implementation of BATE
	Primitives
	Gadget selection
	ASLR bypass
	Controlling 64-bit arguments
	Control flow hijacking
	DEP bypass

	Discussion and countermeasures
	Countermeasures

	Conclusions
	References
	Appendix A: S gadgets

