
Finding Clues for Your Secrets: Semantics-Driven,
Learning-Based Privacy Discovery in Mobile Apps

Yuhong Nan∗, Zhemin Yang∗‡, Xiaofeng Wang†, Yuan Zhang∗, Donglai Zhu∗ and Min Yang∗§
∗School of Computer Science, Fudan University

‡Shanghai Insitute of Intelligent Electronics & Systems
§Shanghai Institute for Advanced Communication and Data Science

Shanghai Key Laboratory of Data Science
†Indiana University Bloomington

{nanyuhong, yangzhemin, yuanxzhang, zhudl, m yang}@fudan.edu.cn, xw7@indiana.edu

Abstract—A long-standing challenge in analyzing information
leaks within mobile apps is to automatically identify the code
operating on sensitive data. With all existing solutions relying
on System APIs (e.g., IMEI, GPS location) or features of user
interfaces (UI), the content from app servers, like user’s Facebook
profile, payment history, fall through the crack. Finding such
content is important given the fact that most apps today are web
applications, whose critical data are often on the server side. In
the meantime, operations on the data within mobile apps are often
hard to capture, since all server-side information is delivered to
the app in the same way, sensitive or not.

A unique observation of our research is that in modern apps,
a program is essentially a semantics-rich documentation carrying
meaningful program elements such as method names, variables
and constants that reveal the sensitive data involved, even when
the program is under moderate obfuscation. Leveraging this
observation, we develop a novel semantics-driven solution for
automatic discovery of sensitive user data, including those from
the server side. Our approach utilizes natural language processing
(NLP) to automatically locate the program elements (variables,
methods, etc.) of interest, and then performs a learning-based
program structure analysis to accurately identify those indeed
carrying sensitive content. Using this new technique, we analyzed
445,668 popular apps, an unprecedented scale for this type
of research. Our work brings to light the pervasiveness of
information leaks, and the channels through which the leaks
happen, including unintentional over-sharing across libraries and
aggressive data acquisition behaviors. Further we found that
many high-profile apps and libraries are involved in such leaks.
Our findings contribute to a better understanding of the privacy
risk in mobile apps and also highlight the importance of data
protection in today’s software composition.

I. INTRODUCTION

Mobile apps today are more composed than written, of-
ten built on top of existing web services (e.g., analytics or
single-sign-on SDK). Such functionality composition, how-
ever, comes with significant privacy implications: private user

information given to an app could be further shared to other
parties through their components integrated within the app
(e.g., libraries), in the absence of the user’s consent. Indeed,
prior research reveals that third-party services like ad libraries
and analytics aggressively collect sensitive device information
(e.g, IMEI, phone number, and GPS location data) [22], [37],
[40]. Less noticeable here is the disclosure of the private user
data an app downloads from its cloud or uploads from its local
file, which could become completely oblivious to the user.

As an example, Figure 1 illustrates how The-Paper [14],
one of the most popular Chinese news apps, works. The app
integrates a third-party library ShareSDK [12] for sharing
news posts to Weibo, a popular Chinese social-media platform,
through its APIs. A problem we found is that the library
actually acquires the user’s access token, without a proper
authorization, from Weibo and further utilizes it to gather
the user’s personal information (like one’s detail profiles, her
social activities, etc.) from the Weibo cloud. Unlike access to
on-device data, which requires permissions from the user, or
manually entering secrets (e.g., password) into the app’s UI,
collecting such server-side information is completely unaware
to the user, since there is no user involvements (e.g., permission
granting) at all before the information is exposed to ShareSDK
and delivered to the untrusted party.

Such information disclosure is serious and can also be
pervasive, given the fact that most mobile apps are essentially
web applications, keeping most of their sensitive user data on
the server side. An in-depth study to understand the scope and
magnitude of the problem at a large scale, however, has never
been done before, due to the technical challenge in automatic
identification of such data sources inside the app code.

Fig. 1. User’s sensitive data in Weibo server leaks to another service without
her consent

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23092
www.ndss-symposium.org

Leakage analysis: challenges. More specifically, to find infor-
mation leaks in an app, first one needs to locate the sources of
sensitive data within the app code. Typically, these sources are
discovered from the program based upon a set of System APIs
that handle private on-device data, such as IMEI, phone num-
ber, GPS locations, etc. However, as mentioned earlier, private
information comes from various sources, which can hardly be
covered by these manually labeled System APIs. An example
is user interfaces (UIs), whose inputs can be sensitive (e.g.,
password, home address) or public (e.g., comments) from the
same API (e.g., editText.getText()). They are classified in the
prior research [25], [32] using the semantics of their context,
particularly tags of GUI items (such as the string “Password”
right in front of a password entry). More complicated here is
the user information managed by the app, which can be stored
in local files or the app’s server-side database. Loading such
information into the app goes through generic APIs without
any tags (file access, network communication), thereby giving
little clue about the importance of the data transferred. As a
result, disclosure of such information to unauthorized parties
cannot be easily discovered.

1 # Getting location data in somewhere
2 Location location =

LocationManager.getLastKnownLocation();
3 this.locationStr =
4 "latitude"+ location.getLatitude() + "\n"
5 + "longitude" + location.getLongitude();
6
7 # Gathering user profile in somewhere else and

send to server
8 # Method getUserBasicInfo()
9 Json fBUserJson = getDataFromFacebook();

10 ...
11 HashMap basicInfo = new HashMap<String, String>();
12 basicInfo.put("first_name",

fBUserJson.get("First_name"));
13 basicInfo.put("last_name",

fBUserJson.get("Last_name"));
14 basicInfo.put("last_location", this.locationStr);
15 ...
16 return basicInfo;

Fig. 2. Motivating example. Code snips from app SnapTee in Google-Play

A key observation in our research is that most apps today
contain a large amount of semantic information for supporting
their development and maintenance. As an example, we can
see from the code snippet of a real-world app SnapTee [13] in
Figure 2 that variables, functions, methods and other program
elements are all given meaningful names, and plain-text con-
tent (strings in double quotation marks) is included in the code
to explain other related content such as the value of a specific
key. Further, these program elements tend to be organized in
distinctive ways within the app, supporting unique operations
on sensitive user data: for example, formating the information
as key-value pairs and storing them in a HashMap (line 12-
16 in Figure 2). Essentially, the whole program here can be
viewed as a semantics-rich dataset, from which sensitive user
content can be discovered with proper data analysis techniques.
Such semantic information could also help information-flow
tracking (which often cannot be done both efficiently and
accurately), through connecting program locations to related
semantics (e.g., directly confirming the presence of location

data at line 14 from the constant “last location”, instead of
tracking the data flow from the geolocation API at line 4).

Semantic clue discovery. Based upon the observation, we
developed a new technique that automatically mines app code
to recover semantic “clues” indicating the presence of sensitive
information, which enables an effective leakage analysis across
a large number of popular apps (Section V). Our technique,
called ClueFinder, first utilizes a set of keywords, prefixes and
unique acronyms representing various types of sensitive user
information to identify the program elements (methods, vari-
ables, constants, etc.) that might involve sensitive content (e.g.,
getUserPwd, home addr, “Last name”). These elements are
then inspected through Natural Language Processing (NLP),
to remove those not representing any sensitive content. Often-
times, variables, constants and method names carrying privacy-
related terms end up being unrelated to sensitive information.
For example, the method getStreetViewActivity includes the
address-related keyword “street” but clearly does not involve
private data. Another example is the constant “invalid input
for home directory”, which has nothing to do with the user’s
home. To identify these false positive instances, ClueFinder
performs a grammatical analysis, finding the matched terms
or prefixes or acronyms not serving as the “theme” of their
semantic context: for example, the word “street” here only
plays the role of describing “activity”, which is the true subject
of the whole term (the activity name). On the other hand, when
a keyword acting as a noun in its element and also as a subject
of a verb (e.g., “getEmail”), it looks more like a clue for the
presence of operations on sensitive user data.

Learning-Based identification. Such semantics analysis
alone, however, can still be insufficient to avoid false positives,
that is, mistakenly reporting a non-sensitive program element
as involving sensitive content: e.g., sending a message with a
constant-string setMessage(“are you sure to delete account?”)
or throwing an exception like formatInvalidExp(“username”,
Exception e). To address this issue, ClueFinder further evalu-
ates the program structures related to those identified elements,
looking for the operations most likely to happen on sensi-
tive user data. More specifically, it runs a machine-learning
approach to classify the program statements containing such
elements, based upon a set of key program structural features
(Section III-C). For example, in Figure 2, line 14, we expect
that within a method invocation statement basicInfo.put(), an
identified constant text string involving sensitive keywords
(“location”) appears together with a variable parameter of a
data type (String for the variable “locationStr”), which likely
indicates the presence of a key-value pair. Note that this feature
helps exclude the operation that simply displays the text with
keywords (e.g., “account”), as in the aforementioned example
“are you sure to delete account?”. Altogether we identified 5
features and trained an SVM model based upon the features to
discover sensitive-data related operations from Android code,
thus to identify the actual private content in mobile apps.

The design of ClueFinder enables efficient discovery of
sensitive data sources, covering not only those labeled by
System APIs, but also server-side private data (e.g., user
profiles) and other content controlled by individual apps. Even
in the presence of moderate obfuscation (e.g., produced by Pro-
Guard [9]), our semantics-based approach still works, thanks to

2

the program features that needs to be preserved during obfus-
cation to avoid disrupting an app’s normal execution (e.g., API
names, parameters, constants, even some data operations, see
Section IV-B). Although ClueFinder is primarily designed to
find hidden data sources, we show that the semantic knowledge
recovered by our approach also supports a more efficient data-
flow tracking (see Section III-C), which enables a large-scale
leakage analysis.

We implemented ClueFinder and evaluated its effectiveness
in our research (Section IV). The experimental results show
that ClueFinder accurately discovers sensitive data sources in
app code (with a precision of 91.5%), significantly outperform-
ing all prior approaches [35], [25], [32], [26], in terms of both
coverage and precision.

Measurement and findings. Armed with more sensitive data
sources discovered by ClueFinder, we were able to evaluate
information leaks in 445,668 apps downloaded from 2 different
app markets, gaining new insights into the way private user
information (especially for those app-specific sensitive data)
is accessed by third-party libraries. Across all these apps,
our study shows that at least 118,296 (26.5%) disclose their
customers’ information to 3,502 libraries, which constitutes
a privacy risk much more significant than reported by all
prior studies. More specifically, we found that personal content
has been extensively disseminated, including one’s profile,
installed app list, her social networking activities (e.g. profiles
on Facebook and personal posts) and others. Particularly,
among 13,500 most popular apps downloaded from Google-
Play in 2015, 39.9% of them were found to expose user’s
information to 709 distinct third-party libraries, with each app
on average sharing more than 7.6 private data items (e.g.,
address, profile, etc.) with at least 2 third-party libraries. Many
of the libraries were found to indeed send collected user data
out to the Internet, and only a few of them could be confirmed
to only use such information on device (See Section V-B).

Also, such an information exposure risk (that is, using
third-party libraries to process sensitive user data, which often
leads to an unauthorized leak of the data to a third-party,
as further showed in our adversary model) occurs when the
app developer over-shares data for functionality enrichment
or the third-party library aggressively gathers data through its
hosting app. Among the top 100 libraries with the risk, 65% of
them are non-ad libraries, such as Analytics, Social-Network
utilities, etc., with hundreds of millions of installs through
popular apps. A prominent example is Tinder (case study in
Section V-C), a popular dating app that exposes its user’s
profiles and account name on Instagram, together with her
instant locations to the library Appboy [6]. Also high-profile
libraries like ShareSDK are given or actively acquire private
information (e.g., user’s social network profiles) unrelated
to their missions (Section V-C). Not only do these findings
confirm the long-standing suspicion that user information has
been inappropriately disseminated through apps, but they also
underline the scale and the breadth of such risks, which have
never been fully understood before.

Contributions. The contribution of this paper are summarized
as follows:

• New technique for sensitive data source discovery. We

designed and implemented an innovative, semantics-driven
technique for automatically recovering sensitive user data
from app code, a critical step for leakage analysis. Our ap-
proach leverages semantic information of program elements,
together with the unique program structures of their context,
to accurately and also efficiently identify the presence of
sensitive operations, which takes a step towards solving this
long-standing challenge in app leakage analysis.
• Large-scale exposure risk analysis and new findings. Using

our new technique, we investigated the potential information
exposure to third-party libraries over 445,668 popular apps,
a scale never achieved before in comparable studies. Our
research brings to light the gravity of the problem, which
has never been fully understood, and the channels through
which such exposures happen, including over-sharing by app
developers and aggressive data acquisition by third-party
libraries. Further many high-profile apps and libraries were
found to be involved in the information leaks. These findings
help better understand this privacy risk and highlight the im-
portance of data protection in today’s software composition.

Roadmap. The rest of the paper is organized as follows:
Section II presents the background of our research and assump-
tions we made; Section III elaborates the design of ClueFinder;
Section IV presents the implementation and evaluation of
ClueFinder and the supports it provides for a scalable leakage
analysis; Section V describes our large-scale leakage study
over 445,668 apps and our findings; Section VI discusses
the limitations of our research and potential future research;
Section VII surveys the related prior work and Section VIII
concludes the paper.

II. BACKGROUND

In this section, we lay out the background for our study,
including privacy leakage analysis, the NLP preliminaries used
in our research, and the assumptions we made.

App leakage analysis. Mobile users’ privacy has long been
known to be under the threats from the apps running on
their devices. Information can be leaked both intentionally
(often by malicious or gray app components) [42] or inadver-
tently (e.g., by leveraging the vulnerabilities in apps/mobile
framewoks) [28]. Particularly when it comes to third-party
libraries, what has been found is that many advertising (ad)
libraries aggressively collect user data [30], [38] through dif-
ferent channels (un-protected APIs, privilege-escalation etc.),
disclosing sensitive attributes like age, marriage status and
work information to ad networks or advertisers. These findings,
however, have been made on a small set of apps, due to the
limitation to manually label and analyze privacy data sources
and the data involved.

As mentioned earlier, automatic leakage analysis tech-
niques have been widely studied, mainly through tracking
“tainted” data flows across app code, from sources (e.g.,
the APIs for collecting GPS locations) to sinks (typically
the APIs for network communication) [16], [23]. A well-
known challenge for such analysis is identification of sensitive
data sources, which mainly relies on the Android APIs with
known sensitive returns, such as getLastKnownLocation() for
locations, getLine1Number() for phone number, AccountMan-
ager.getAccounts() for account information, and others. Other

3

sources often need to be labeled manually. To facilitate data-
source identification, tools like SUSI [35] can automatically
recover from app code a large number of System APIs likely
to import data. Less clear, however, is whether these APIs
return sensitive information and therefore should be labeled
as data sources. To capture such sensitive inputs, semantics of
the imported content and the context of the related operations
need to be studied. The idea has been used to find the sources
on user interfaces, based upon the text content associated
with sensitive user inputs such as “enter user name” and
“password” [32], [25]. Even more challenging here is the
labeling of the private data downloaded from the app’s server
or uploaded from its local repository. For example, when the
user logs into her account, little context information is given
during the importation of account data.

Natural language processing. ClueFinder leverages a set
of NLP techniques to discover sensitive program elements
and control false positives. Following we describe the key
techniques used in our approach:

Stemming. Stemming is a process that reduces inflected (or
sometimes derived) words to their stem, base or root forms:
for example, converting “changes”, “changing” all to the single
common root “change”. In our case, stemming helps us to find
more semantic clues, particularly the program elements with
prefixes and acronyms in their names: for example, the stem
“addr” derived from “address” can match the variables names
like “user addr”.

Parts-Of-Speech(POS) tagging. POS tagging is a procedure
to mark words as a particular part of a speech, based upon
their meanings and context (relations with other words in
a sentence, such as nouns and verbs). State-of-the-art POS
tagging technique can already achieve over 90% accuracy [29].
Here we use POS tagging to determine whether a privacy-
related keyword is actually a noun in the term or the sentence.
For example, “address” in “address this problem” is a verb,
just describing the action happening to another word, so it is
not likely to represent a physical home address.

Dependency relation parsing. Dependency relation parsing
analyzes a sentence, identifies the grammatic relations between
different words and represents the structure of a sentence,
based upon such pairwise relations, as a dependency tree.
For example In the sentence “Bell, based in Los Angeles,
distributes electronics”, the relation between “Bell” and “dis-
tributes” is described as nominal subject, where “Los” and
“Angeles” represents a compound relation. In our research,
such a dependency relation helps us to determine whether
a specific privacy-related keyword is the dominator of its
sentence, which is most likely to be the theme of the sentence.

Assumptions. The purpose of ClueFinder is to detect sensitive
data sources from legitimate app code, covering those missed
by all prior studies, particularly program elements related to
the private user data imported from app servers. We do not
consider deeply obfuscated programs that remove all semantic
information from their program elements. Actually, Our study
(see Section IV-B) shows that app developers tend not to
obfuscate data-related code within their apps and the third-
party libraries they integrate to avoid disrupting the apps’
normal executions (e.g., causing a crash). As a result, we found

that even moderately obfuscated code (e.g., through ProGuard)
preserves a lot of semantic information: e.g., among all such
apps discovered in our research, we found that over 50%
of the method names are not obfuscated (Section IV-B) and
over 98% of the apps still contain readable constant strings.
Note that what we are interested in is unauthorized disclosure
of sensitive data within an app to a third-party library, and
therefore malicious apps covertly sending user data to the
adversary are outside the scope of our study.

Further in our measurement study (Section V), we consider
acquisition of sensitive user data by an untrusted third-party
library to be an exposure risk. Even though this exposure
does not necessarily mean that the data will be leaked to an
unauthorized party, often the possibility of the leaks cannot
be eliminated due to the complexity of data-flow analysis on
these libraries.

III. CLUEFINDER DESIGN

As mentioned earlier, although app code is semantics-rich,
recovering truly sensitive data sources from the code is by
no means trivial. Particularly, direct search for keywords does
not work well, which misses many potentially sensitive tokens
(e.g., prefixes, acronyms) in the identifiers of various program
elements (variable, method, function, etc.). Also importantly,
the presence of a single specific token does not necessarily
indicates the operations on sensitive user data. In some cases,
even when the token semantically looks perfectly relevant, for
example the method getPhoneNumberPrefix, the corresponding
program element may not touch sensitive data at all: in the
example, the function does nothing but a format check on
phone numbers. Thus, a precise semantic analysis is required to
determine whether a token refers to a privacy-related activity.
Further, the program elements carrying sensitive tokens may
not carry private content (e.g., a constant string) themselves.
They need to be linked to the true sources of private data
through program analysis.

In this section, we show how the design of ClueFinder
addresses these challenges and how the technique fares on real
app code.

A. Design Overview

The idea behind ClueFinder is to quickly screen across a
program to locate privacy-related tokens within program ele-
ments and then semantically evaluate the elements to drop false
positives. Finally, a program structure analysis is performed to
determine whether indeed each of these elements is involved
in a sensitive data operation through a method invocation.
Following we describe the architecture of this design and
utilize an example to explain how it works.

Architecture. Figure 3 illustrates the individual components
of ClueFinder and their relations. Our design includes a
Semantics Locator, a Semantic Checker, a Structure Analyzer
and a Leakage Tracker. Given an Android app, Semantics
Locator first dissembles its code and identifies the program
elements carrying sensitive tokens. These putative sensitive
elements (string constants, variables, and method names) are
then inspected by Checker, which uses NLP techniques to
determine whether identified tokens are indeed the main sub-
ject of each element or its identifier’s content (Section III-B).

4

Fig. 3. Design of ClueFinder

Those meeting the standard further go through a program
structural analysis, in which Analyzer classifies each function
invocation statement involving an element as either sensitive
or not. The reported sensitive ones are handled over to Tracker
that incorporates the semantic information inside the app code
into a data-flow and reachable analysis to trace the propagation
of sensitive information.

Example. The example in Figure 4 shows the code snippet
from SnapTee, through which one can design and purchase
personalized T-shirts. Note that here we re-organize part of
the app code for ease of illustration, while maintaining all
semantics in the original (decompiled) app code. As we can
see from line 25 to 29, the app first acquires a user’s Facebook
profile (line 26) and then sends a sharing post (line 28) to the
user’s Facebook account. After that, however, both the profile
and the Facebook post are handed over to a third-party library
function trackShareEvent (line 30).

To analyze the snippet, the Locater leverages a set of
keywords representing 4 categories of sensitive data as iden-
tified by Google Privacy Policies [3] and prior research [39],
[22], [32], together with their derived prefixes and acronyms
through stemming to capture elements like “home addr” (line
6), getUserFbProfile (line 26), “I’m designing my own tees
on my phone!” (line 18), which all carry sensitive tokens
“home address”, “profile” and “phone” respectively. The
Checker then looks into these elements, picking out the ones
like getUserFbProfile, given the observation that the token it
involves (“Profile”) plays the role of a subject described by
verb “get”. Also, for the long sentence in line 18, the Checker
finds that “phone” actually not serves the theme (“design
tees”) by the dependency relation parsing, and thus filters out
this element as there is no indication it carrying private data.
To further determine whether other elements left are indeed
sensitive, their corresponding function invocation statements
(e.g., line 5, 6, 8, 26) are inspected by Structure Analyzer,
based upon their features: for example, statement in line 26 is
a true positive since it returns a Json typed object, which could
contain sensitive data, while the statement in line 5 is a false
positive, since it only returns a boolean value to check whether
the Json object contains a key with a name “home addr”.

All identified statements are used as sources for a data-
flow and reachable analysis performed by the Tracker. Such
semantics-driven approach helps reduce the complexity of
tracking propagation of sensitive data. For example, confirm a
user profile leakage (a coarse-grained private data) from Line

1 ## In co.snaptee.android.utils.FacebookFunctions
2 Json getUserFbProfile(HashMap userBasicInfo) {
3 JsonObject userJson = UserBasicInfo.toJson();
4 ## Gather other user information
5 If(userJson .contains("home_addr")){
6 jsonObject.put("home_addr", this.homeAddr);
7 }
8 this.uri = jsonObject.get("userProfile_uri");
9 if(this.uri == null) {

10 throwNullPointerException("Profile URI is
null", exception);

11 }
12 return jsonObject;
13 }
14

15 Builder shareToFacebook(String shareContent)
16 {
17 Builder builder = new Builder();
18 builder.setContentTitle("I’m designing my own

tees on my phone!");
19 builder.setContentUrl(

Uri.parse("https://snaptee.co/getapp"));
20 builder.setShareContent(shareContent);
21 Log.d("FacebookFunctions", "Try to invite FB");
22 return builder;
23 }
24

25 ## Getting user profile on Facebook
26 currentUser = getUserFbProfile();
27 ## Trigger sharing activity
28 shareToFacebook(shareContent);
29 ## Tracking user activity by invoking API from

third-party library
30 trackShareEvent(currentUser,

builder.shareContent);

Fig. 4. Overview code example

26, without analysing the actual code in this method (Line 2-
13). The process ends when the related data is found to be
accessed by a desired sink (e.g., a third-party library in line
30).

B. Semantic Clue Locating

Semantics Locator. To identify privacy-related data through
the semantics of program elements, we first need to determine
the set of data considered to be sensitive and keywords
associated with them. Such information was gathered from
multiple sources in our research. Particularly, we utilized 35
data items identified by Google Privacy Policies to be private
content [3], together with additional 17 items reported by

5

prior privacy-related research [39], [22], [32]. For example,
Financial Times (FT) [39] provides a calculator for evaluating
the price of one’s private data.

These items are organized by ClueFinder into 4 categories,
including user identifiers, user attributes, location data and
account information. In total, 121 keywords or keyword pairs
are identified (see examples in Table I). Further, we use
Word2Vec [31] to find more synonyms of these sensitive items.
Also, the keyword set is extended using stemming (to find
out their prefixes), with more similar texts extracted from
10,000 popular Google-Play apps (e.g., “addr”). This allows
ClueFinder to capture as much sensitive semantics as possible
from app code.

TABLE I. KNOWLEDGE BASE FOR PRIVACY-RELATED SEMANTICS

Category Sample Keywords

User Attributes
first name, last name, gender,
birth date, nick name, education,
app list, device os, credit card, etc.

User Identifiers user id, account number, access token,
sina id, facebook id, twitter id, etc.

Location latitude, longitude, lat, lng, user address,
zip code, city, street, etc.

Account account name, user name, phone number,
mobile no, password, passwd, pwd etc.

For all elements in decompiled app code, ClueFinder uses
word-splitting to break their names into tokens, using common
delimiters (e.g., user addr) and capitalized letters (e.g., ge-
tUserFbProfile). Then, it performs best-effort matching using
its knowledge base (4 data categories and their representing
tokens), searching for the tokens (keywords, prefixes and
abbreviations) inside the identifiers of program elements. As
a result, the elements involving privacy-related tokens are
labeled for a more in-depth semantic analysis.

Semantics Locator finds out the elements with sensitive
tokens in their names. This, however, does not necessarily
mean that these elements are indeed privacy-related. As an
example, in Table II, Index 1, the method getStreetViewActivity
contains the sensitive keyword “street” but is actually unrelated
to the user’s location data. To remove such false positives,
our approach runs Semantic Checker to further analyze the
semantics of these elements.

Semantic Checker. Semantic Checker runs POS tagging and
dependency relation parsing to get more in-depth semantic
information from labeled elements. What we want to un-
derstand is whether a sensitive token actually serves as the
“theme” of labeled content (element names or the content
of a constant), which is more likely to indicate the presence
of sensitive information, compared with the situation that the
tokens are only used to describe other less nonsensitive terms
(e.g., “street” in getStreetViewActivity). For this purpose, the
Checker tries to determine whether the token is a noun and
also characterized by the following dependency relations with
its context terms in a phrase or a sentence:

• Direct-object relation (Dobj): The direct object of a verb
phrase is the noun phrase that is the (accusative) object of
the verb: e.g., getAddressFromServer in Table II, Index 4.
Here, the identified sensitive token with a noun POS tagger

(“Address”) has the Dobj relation with (“get”), indicating
that this term is related to an access to location information.
Other examples (1, 2, 3) are also presented in Table II.
• Nominal subject (Nsubj): A nominal subject is a noun

phrase that is the syntactic subject of a clause. This is
a relation the Checker looks for in the absence of Dobj
between an identified sensitive token and its context. For
example, “business phone number selected”, in which the
sensitive token “phone number” is the topic of the sentence,
indicating the presence of the information in its related
program location. Example for such case is also presented
in Table II, Index 5.
• Negation modifier (Neg): The negation modifier is the

relation between a negation word and the word it modifies.
In our case, if the sensitive token found in the element
appears with a Neg modifier, likely the element does not
relate to sensitive content. E.g., “Do not input your password
here”.
• Other relations: When the sensitive token labeled actually

has a dependent (Dep) or compound (Compound) or open-
clausal complement (Xcomp) relation or other relations with
its context (other words in the same element name or
constant string), we found that the token becomes less of
an indicator for the presence of private content, since the
token in this case is no longer the theme of its context (the
target of an access or the topic of a sentence). Examples for
such relations are presented in Table II, Index 1, 2, 3, 6.

Using the relations above, Semantic Checker filters out the
program elements involving sensitive tokens but less likely
to be actually related to privacy content. These elements are
then inspected by Structure Analyzer to further reduce false
positives. In our implementation, the Checker was built upon
Stanford Parser [29], a standard NLP tool for POS tagging and
dependency relation parsing.

C. Sensitive Data Discovery and Tracking

Structure Analyzer. Even when a sensitive token plays a
central role in the name of a variable or a method, or the
content of a constant string, such program element may not
necessarily relate to private content. For example, the statement
in line 5 of Figure 4 talks about home address; however, the
operation here is just checking whether the data object contains
a key “home addr”. Another example is line 10 “Profile URI
is null”, which actually is an output to explain an exception.
So, to identify truly sensitive operations, not only do we need
to check the semantics of the program elements’ identifiers
and constant content, but it is also important to look into
the semantics of actual program operations specified by the
statements involving these elements.

Serving this purpose is Structure Analyzer, which utilizes
a set of program structural features to determine whether a
sensitive-token related statement indeed touches private user
content. In our research, we focus on method invocation
statements, since sensitive user data are accessed by third-
party libraries typically through method calls. To find such
statements, the Analyzer first locates all method invocations
(e.g., line 5, 6, 8, 10 in Figure 4) directly or indirectly related
to a labeled program element (which involves sensitive tokens),
and then extracts features from these statements to capture
those accessed sensitive data. Specifically, when a method

6

TABLE II. EXAMPLES FOR SEMANTIC CHECKER

Index Element Description

1 getStreetViewActivity As a negative example, “street” only holds a Compound relation with “Activity”,
the Dobj relation here is between “get” and “activity”.

2 getLocationUpdate- As a negative example, “Location” only holds a Compound relation with “Interval”,
TimeIntervalInMillis the Dobj relation here is between “get” and “Interval”

3 “I’m designing my own As a negative example, “Phone” only holds a Nmod:poss relation with “my”, and a
tees on my phone” Nmod:on relation with “design”. The Dobj relation here is between “design” and “tee”.

4 getAddressFromServer As a positive example, “address” here is with POS tagging “NN”, and holds a Dobj
relation with verb “get”.

5
“Username must be As a positive example, although there’s not Nsubj relation in the sentence, “Username”
in valid format” holds a Dobj relation with “Format”.

6 new friend num As a negative example, “Friend” only holds a Compound relation with “num”.

name is labeled, all statements that trigger the method are
considered to be potential sources of private information. For
labeled variables and constant strings, the Analyzer performs
a data-flow analysis on them to identify all the invocations
that take the elements or their derivatives as parameters. All
such statements are then inspected for their program structural
features.

Our key observation is that when labeled elements are
involved in data read or write operations, almost always the
operations are related to sensitive information, with the source
of the information being the element when it is a variable,
another variable in the same method call when the element
is a constant, or the return value of the call when it is a
method. Leveraging this observation, our approach analyzes
how these elements are used in an invocation statement to seek
evidence that such sensitive data operations indeed take place.
Such evidence could be as simple as the presence of keywords
such as “get”, “put” in a method name (e.g., getUserFbProfile
in Figure 4). It can also be the return of a data-typed object
from a method call: e.g., getUserFbProfile returns a Json object
(line 12 in Figure 4). Another example is the pattern of using
different types of data together: e.g., a constant string (key)
often appears in front of a string variable (value) in a method
invocation; an example is line 6 of Figure 4. These features
are summarized as follows:

• Method name. As mentioned earlier, a feature used in our
research is whether a method name in a labeled statement
contains a specific token representing data operations, such
as get/set/put/add/insert/delete/remove/read/write/save.

• Parameter type. We also look at the primitive data-types
of the parameters in a method invocation, which indicates
the presence of data operations. Examples include String,
HashMap, Json, etc.

• Return type. The return type of a method call also provides
evidence for the presence of data operations: e.g., a data read
brings back a result in String, HashMap, Json, etc.

• Base value type. Many data operations happen through
specific Java class libraries. Therefore, for those statements
which contain a base value (e.g., hashMap in method
hashMap.put(key, value)), the class type of the base value
can also help differentiate data access from other operations.
For example, in Figure 4 line 6, the Json class for jsonObject
is used to process data while in line 21, the android.util.Log

class for base value Log does not relate to data use.
• Constant-variable pattern. Also useful to identification of

sensitive data operations are the patterns of constant-variable
parameter combinations in method calls. For example, the
first parameter of hashMap.put(“user”, $u) is a constant
and the second is a variable, which is a standard key-value
combination for a data-processing method call. In another
example hashMap.put(“user”, “default”), its parameters are
all String-Constant, and thus the call does not indicate the
existence of data access.

On top of such features, Structure Analyzer runs a Support-
Vector Machine (SVM) classifier to determine whether a given
statement indeed involves private data. The classifier was
trained using 4,326 statements randomly selected and manually
labeled from 100 apps, as elaborated in Section IV.

Leakage Tracker. The statements together with privacy-
related semantics recovered by ClueFinder are treated as the
actual “sensitive” sources for detecting information leaks.
Specifically, Leakage Tracker extracts data-typed objects
within the statements from their parameters or return values,
and then performs a data-flow based taint analysis on these
objects. The purpose of this analysis is to find out whether
sensitive data flows get into the sinks that indicate leaks
of the information to unauthorized third parties. Ideally, one
may expect that such a sink is an API used by an untrusted
library to send tainted data out to the Internet, as did in
prior research [37]. In practice, however, tracking tainted flows
across library code is often too heavyweight and less precise,
particularly for a static analysis important for evaluating a large
number of apps. Therefore, in our research, we instead looked
for the presence of an exposure risk, when the tainted data
flow into an untrusted library, since in this case, the data is
no longer safe and its content could be disclosed to the third-
parties through various channels hard to capture by the existing
technologies (i.e., cover channels).

What is unique for ClueFinder is its utilization of semantics
to enhance the taint analysis, which enables more efficient
detection of the exposure risk. For example in Figure 2, even
without analyzing the code from Line 2 to 5, the seman-
tics of the method invocation at Line 14 (e.g., the constant
“last location” involved) immediately reveals the involvement
of sensitive content in the function’s return value (basicInfo).

7

In this way, we can quickly determine whether private data
are under the exposure risk, avoiding more expensive data-
flow analysis.

IV. EVALUATION OF CLUEFINDER

In this section, we first describe our experimental settings
for evaluating ClueFinder, and then report its effectiveness
and performance. Also, we compared our approach with prior
work, which demonstrates that ClueFinder outperforms the
prior approaches in terms of sensitive data discovery.

A. Experiment Setting

We implemented ClueFinder in Java (1,604 LOCs) and
Python (609 LOCs). Our implementation extends the Flow-
Droid framework for analyzing decompiled packages in the
Jimple format (an intermediate expression for analyzing DEX
code). Note that since FlowDroid renames all local variables
(like “$r1”, “$r2”) when decompiling app code, current im-
plementation of ClueFinder only utilizes global variables like
static fields. ClueFinder also utilizes the Java implementation
of Stanford Parser [29] for its NLP analysis. Its Structure
Analyzer component extracts the features from the Jimple
statements and runs the Python implementation of SVM from
Scikit-Learn [11] to train the classifier. All our experiments
were conducted on a 32-core server, with a Linux 2.6.32 kernel
and 64GB memory.

Training data. The classifier was trained using a labeled set of
4,326 statements (half positive and half negative) which were
manually labelled by two Android experts from 100 popular
apps. Specifically, in this manual-labelling process, we first
randomly selected 100 apps from Google-Play (crawled in
August, 2016) based on the top-popular list during that period.
Then, we automatically extracted all statements involving pri-
vacy tokens from these apps by Semantics Locater and Checker
(See Section III-B), and let each of the expert to identify if
the given statements contain private data or not. To create a
more precise training set, each statement was labelled as either
positive or negative only when both of the two experts give the
same result. In total, we collected 7,354 labelled statements,
including 5,191 positive samples and 2,163 negative ones.
Since SVM classifier usually gets better results under balanced
training set [21], we used all negative statements, together with
the same amount of positive statements by random selection
from labelled data as our training set. As a result, the total
amount of our training set is 4,326.

B. Effectiveness

In our experiment, we first ran a ten-fold cross validation
on our labeled set (with 4,326 labeled statements in 100 apps).
ClueFinder achieved a precision of 92.7%, a recall of 97.2%
and a F1-Score of 94.8%. Since our training set is randomly
picked, the effectiveness of the classifier should carry over
the entire app code with high probability. Also, we employed
another manual validating process, by running ClueFinder over
another 100 randomly selected apps crawled at the same time
as an unknown set. Our manual validation showed that 320 out
of 3,775 statements are false positives, which gives a precision
of 91.5%. We did not get the recall in this manual validation
due to the lack of ground truth (it is rarely possible to manually

go through all code in the dataset to identify which of them
are indeed sensitive sources).

The total analysis time for the 100 unknown set were 97
minutes (less than 1 minute per app). Such a performance level
enables ClueFinder to process a large number of apps, as we
did in our research (Section V).

False positives and false negatives. Most false positives
reported were caused by rare cases that were not covered
by our labeled set: as an example, in Figure 5, the constant
parameter for the method saveEvent includes the sensitive term
“access token”, which however turns out to have nothing to do
with the variable r1, an object with an “Event” type. Also, in
some cases, even the program structure does not offer sufficient
information for determining whether a statement involves
sensitive information. For example, in line 2 of Figure 5, the
method saveAppKeyAndAppSecret contains sensitive tokens
like “Key” and “Secret”; however, such private data only
appears within the method and the invocation statement is
actually nonsensitive.

When it comes to false negatives, again many problems
were introduced by the outliers. For example, the statement at
line 4 of Figure 5 returns an integer value to encode the gender
information (1 for male and -1 for female), which does not
meet the expectation that the gender data is supposed to have
a string type. Another source of the problem is the incomplete
knowledge base: some sensitive terms, such as “lon”, “father’s
name” and “mother’s name”, are not considered keywords for
sensitive content; as a result, what ClueFinder discovers is only
a subset of truly sensitive data items.

1 void saveEvent("init", "put access token to
extras", $r1);

2 Umeng.UMTencentSsoHandler: void
saveAppKeyAndAppSecret();

3 Java.Util.HashMap<Object,Object>.put("username",
$r1);

4 Integer gender = getUserGender(user);

Fig. 5. False positive and false negative samples

Code obfuscation. As mentioned earlier, ClueFinder is not
designed to analyze deeply obfuscated code with all its se-
mantic information removed. This, however, does not mean
that our approach cannot tolerate any obfuscation and can
be easily defeated by the tools like ProGuard [9]. Actually
we found that a significant amount of semantics is preserved
in moderately obfuscated code, e.g., that protected by Pro-
Guard, and therefore can still be analyzed using ClueFinder.
For example, Figure 6 shows a code snippet obfuscated by
ProGuard. As we can see here, strings (e.g., “ReportLocation”
in line 1), parameter types (e.g.,“String” and “Object” appeared
together in line 2) and API calls (e.g., JSONObject.put() in
line 4) all carry meaningful content, which can be leveraged
as features by ClueFinder’s classifier to determine the presence
of sensitive data sources1. In our research from the aforemen-
tioned unknown set with 100 randomly selected apps, we found

1Note that even though BidText could also utilize constant strings, it does
not work on other code features and therefore will be less effective in analyzing
such code, as we further elaborated in the comparison with ClueFinder

8

that 11.3% (426/3,775) of the statements in these apps were
obfuscated. Nevertheless, sensitive data sources and exposure
risks within these apps were all identified by our approach,
since our classifier leverages a whole set of features that cannot
be easily obfuscated, such as system-level parameter objects
and return values like String, Json, etc.

1 $r0.com.*.sdk.ei: void
a(String,Object)>("ReportLocation", $r3)

2 $r1 = staticinvoke <com.*.SharedPref: String
b(Context,String,String)>($r0, "Gender", $r1)

3 $r4 = virtualinvoke $r3.<com.*.bean.ay: String
c(String)>("user_password")

4 $r7.<JSONObject: JSONObject
put(String,Object)>("cust_gender", $r2)

Fig. 6. Samples of partially obfuscated statements (in Jimple format)
identified by ClueFinder

Such semantic information is preserved due to a few
practical constraints in code obfuscation. Specifically, system-
level methods, as discovered by SUSI, cannot be easily obfus-
cated and their meaningful names and parameters therefore
are retained by the tools like ProGuard. As an example,
98% of constant strings in our unknown set are human-
readable. Also, we found that app developers tend to avoid
obfuscating data-related modules (e.g., those containing GSON
objects) and third-party SDKs, since improper changes to these
program elements could easily introduce errors to program
execution or even cause a crash. As an example, GSON utilizes
reflection at runtime to dynamically map JSON objects to
classes, constructing properties based upon matching strings
discovered from the objects with keywords; this approach no
longer works when the string such as “model.name” is replaced
with “a.b” by ProGuard. Further, third-party frameworks (e.g.,
Inmobi [4]) and SDK interfaces are rarely obfuscated, to make
sure that the developers can easily incorporate them into her
app code.

C. Comparing with Prior Approaches

API-based labeling. As mentioned earlier (Section II), prior
work SUSI [35] can automatically discover hundreds of
sources from various Android System APIs. However, it often
cannot determine whether a source is indeed sensitive. For
example, json.get(“password”) becomes related to sensitive
content only because its parameter reveals that the method
returns password.

ClueFinder is designed to identify such sensitive sources
from their context. In our research, we randomly selected 15
popular APIs and extracted 10,116 statements involving them
from 100 randomly chosen apps. Among all these statements,
ClueFinder detected 2,266 sensitive data sources. As a result,
over 77.6% (7,850) of statements which SUSI found turning
out to be false positives (not sensitive). Given the effectiveness
of ClueFinder that already discussed before (with 92.7% pre-
cision and 97.2% recall), the comparison result indicates that
our approach is much more effective in finding truly sensitive
data sources compared with SUSI.

UI-based labeling. Prior approaches like UIPicker [32] and
SUPOR [25] can identify sensitive data from an app’s UI

elements (e.g. an input field). However, these elements are
only a subset of private data sources in an app. In contrast,
ClueFinder is capable of finding all sensitive sources, including
not only UI elements but also imports of private data from
servers. In our study, from the aforementioned unknown set
with 100 randomly selected apps, we manually identified 892
unique UI elements related to private inputs (e.g., username
and password in UI). These elements are all the prior ap-
proaches could find. Then, we ran ClueFinder over the 100
apps which reported 2,388 unique sensitive data sources. Our
further manual validation over these sources showed that in
most cases, ClueFinder identifies all the UI sources. What’s
more, it identifies 2 times more non-UI sources missed by
approaches like UIPicker and SUPOR in total.

Semantics-based taint tracking. Similar to ClueFinder, Bid-
Text also searches constant strings inside programs for sen-
sitive keywords. However, BidText is more focused on its
unique bi-directional taint analysis than semantics-based sen-
sitive source discovery. It does not work on variable, method
names, prefixes and abbreviations of keywords, nor does it
evaluate grammatical dependencies among semantics tokens
except the negative relation. In our research, by setting up
these two approaches with basically the same settings for
data-flow analysis (we implemented an intra-process, flow-
sensitive analysis with sinks to HTTP network), we compared
our implementation of ClueFinder with the released version of
BidText [2], in terms of precision, coverage and performance
in discovering sensitive sources.

As Table III shows, among the 100 popular apps in the
unknown set, ClueFinder reported 50 (44.6%) more sensitive
sources than BidText (162 true positives vs. 112), resulting
in a much higher coverage than BidText. This is mainly
due to ClueFinder’s in-depth NLP analysis for understanding
code semantics, as well as the utilization of code structure
for locating private data. For example, ClueFinder found 32
sensitive sources using semantic information from method
names, which BidText could not handle. Also, ClueFinder has
a more detailed knowledge base (characterized by not only
keywords but also meaningful prefixes and abbrievations), and
its semantic locating mechanism (in Section III-B) enables
it to capture more privacy-related semantics: e.g. “addr” for
“address”. BidText utilizes only a fixed keyword set, and
matches these keywords from app code by human-defined reg-
ex expressions.

Also, ClueFinder reduces the false positive rate compared
with BidText (8.5% vs. 14.5%), because our approach utilizes
more grammatical relations and program structures to control
false positives, while BidText only drops the labled strings
involving negative description. Other strings, such as 1, 2, 3 in
Table II, will be falsely reported. Further, since BidText only
evaluates constant strings and most of them do not contain
complicated expressions, our approach only lowers down the
false positive rate by 6% compared with the prior approach. It
is important to note that the major strength of ClueFinder is it
expands the types of sensitive sources that can be discovered.
In this perspective, the advantage of our approach is significant,
detecting 44.6% more true positives.

Finally, ClueFinder outperforms BidText in performance
(1.86 times faster), due to its lightweight semantics-based

9

leakage analysis, which largely avoids the expensive data-flow
analysis. In the meantime, we acknowledge that BidText’s
unique bi-directional dataflow technique could help it more
accurately track some information leaks ClueFinder misses,
given that the focus of our approach is just sensitive source
discovery.

TABLE III. COMPARISON WITH BIDTEXT

BidText ClueFinder

Detected sensitive data 131 177
Num. of false positives 19 15

Avg. Analysis Time (Sec) 97 55
Precision 83.5% 91.5%

V. LARGE-SCALE LEAKAGE STUDY

In this section, we report our measurement study over
445,668 real-world apps, which analyzed their privacy leak-
age to third-party libraries. Note that although ClueFinder is
capable of detecting all kinds of private data within an given
app code, here we just focus on the findings related to the
sources missed by the prior research, since more conventional
sources, such as API-based imports of IMEI, IMSI and GPS
locations, have already been studied before [22], [37], [40].
Our research brings to light the pervasiveness of the exposure
risk (disclosing sensitive user data to third-party libraries) and
interesting cases never reported before.

A. Measurement Settings

Exposure risk. As mentioned earlier (Section I), in our
measurement study, we looked for the exposure risk, that is,
leaks of sensitive user data to third-party libraries. We focus
on this risk instead of the library’s export of sensitive data
to the Internet because the latter is more difficult to detect
through a static analysis (necessary for evaluating a large
number of apps), in terms of performance and accuracy. Also,
once an untrusted library obtains private data, it often can
manage to send the data out through cover channels without
getting caught. Therefore, in our study, we just conservatively
considered that information leaks could happen whenever the
untrusted library gets access to the sensitive data.

App gathering. As Table IV shows, our datasets are crawled
from 2 different Android markets: the official Google-Play
market and a third-party market (Tencent App Store). Each app
in these datasets has a unique MD5-Hash to make sure there’s
no overlapping between different datasets. Among them, apps
in the Play-15 dataset were selected according to the top app
list provided by the Google-Play website, and those in the other
3 datasets were randomly crawled from their markets. In this
way, we can better understand how data leaks to third-party
libraries happen in both popular and ordinary apps.

Implementation for Leakage Tracker.

Specifically, serving the purpose of detecting privacy leak-
age to third-party libraries, Leakage Tracker in ClueFinder
(Section III-C) went through all the invocation statements
reported by its previous module Semantic Checker, and con-
ducted a inter-procedure data-flow analysis over the identified
data objects. Meanwhile, it picked out those statements either

inside a third-party library or calling the library’s methods.
As an example in Figure 2, if the method contain HashMap
object “basicInfo” flows to an API of a third-party library,
immediately we conclude that the user’s location data are
exposed to the library by this statement.

To this end, we checked whether the package or class
name of the identified statement is different from that of
the app, using its first two prefixes, e.g. com.facebook for
com.facebook.message, which indicates that the statement is
either inside a third-party library’s code or involves the li-
brary’s method. Although this treatment is a bit coarse (e.g.,
which cannot distinguish the ad library com.facebook.ads from
the analytic one com.facebook.analytic), it is still informative
for us to determine whether private data have been accessed
by a third-party library or by the app itself. Further we verified
that such a statement is not dead code through a standard
reachability analysis: that is, building call-graphs from the
app’s entry points to confirm that indeed the target method
invocation can be reached. Note that this treatment can miss
some information leaks, however, it is sufficiently accurate for
detecting most leaks to third-party libraries because most of
such invocations could be the interfaces between a library and
its hosting app, and also lightweight, which is important for a
large-scale study.

We utilized the experimental setting described in Sec-
tion IV for the measurement study. During the experiments,
each dataset was processed by 8 concurrently-running pro-
cesses, with a 20-minute timeout set for each app. Overall,
our 32-core server took 710 hours to go through all 445,668
apps, with 45.88 seconds each on average. Among all these
apps, 32,533 (7.3%) could not be successfully analyzed within
the timeout window.

B. Measurement Results

Landscape. As can be seen from Table IV, among all 445,668
apps, ClueFinder totally discovered 118,296 (26.5%) leaking
private user data to 3,502 third-party libraries2. On average,
each app exposes 8.07 data items (e.g., an identifiers, full
name, location, etc.) to 1.97 libraries. This indicates that such
information exposure is indeed pervasive (over 26.5% of all
the apps analyzed). For example, when the user logs into an
app with her Facebook account, her Facebook profile could
be sent to an ad library for marketing, and to an analytical
library to track her online activities. Also, for all discovered
3,502 libraries accessing user’s private data, averagely each
of them collects 2.45 data items, including not only different
identifiers such as Facebook id, but also other information like
her various attributes, for the purpose like targeted advertising.

Particularly, the Play-15 dataset, with selected 13,500 most
popular Google-Play apps, was found to have 39.9% of its apps
leaking out user data. As illustrated in Table V, such data are

2To avoid including outliers (e.g., an obfuscated package name) as a
third-party library, we first exclude those extremely short package names
(e.g., com.a.ab) which obviously to be obfuscated. Meanwhile, we define a
threshold=10 to decide whether a package name surely presents a third-party
library. The threshold is the number of total appearances of a package name
in our whole dataset. Also, we exclude common social network libraries (e.g.,
Facebook, Twitter, Weibo, etc.) since most of private data in such libraries are
originated from themselves.

10

TABLE IV. OVERALL LEAKAGE STATISTICS

DataSet Affected Apps Affected Libs

Collect Time Total Apps # Apps % Apps Avg.Items/App Avg.Libs/App # Libs Avg.Items/Lib

Play-2015 Nov.15 - Dec.15 13,500 5,385 39.9% 7.6 2.83 709 2.45
Play-2016 Jul.16 - Aug.16 71,686 16,310 22.8% 5.26 1.32 1,011 2.36

Tencent-2015 Feb.15 - Apr.15 169,051 44,392 26.3% 7.55 1.64 2,315 2.43
Tencent-2016 Jun.16 - Jul.16 191,431 52,209 27.3% 9.53 2.1 3,097 2.33

Total Nov.15 - Aug.16 445,668 118,296 26.5% 8.07 1.97 3,502 2.39

uniformly distributed across several categories (user attributes,
user identifiers, account information and location data), with
each app exposing 7.6 data items to 2.83 third-party libraries
on average. Compared with randomly selected apps in Play-
16, these top apps apparently expose more information. This
indicates that popular apps extensively disclose all kinds of pri-
vate user information to multiple libraries within a single app.
Further, by manually looking into the code of 100 randomly
selected apps identified by ClueFinder, we found over half of
the flagged method invocations (53.1%) are related to HTTP
connections (e.g., an HTTP post where its parameters contain
privacy-related contents). Also, our runtime verification by
intercepting the network traffic of these apps confirmed that 59
out of 100 apps are indeed leaked private data to the servers
of different third-party libraries. Note that the actual leakage
scale should be higher than what we observed. We didn’t see
the traffic for the other 41 apps since most of them require
further manual steps, e.g., logging in or even pre-registering an
account. Additionally, since some libraries encode or encrypt
their traffic, the leakage cannot be directly confirmed even
when the app was well-explored.

TABLE V. LEAKAGE RESULTS BY PRIVACY CATEGORY IN PLAY-15
DATASET

Category Apps (%) Avg.Items Libs Avg.Libs/App

User Attributes 4,928 (36.5%) 4.19 401 2.38
Account 2,444 (18.1%) 2.47 210 1.81

User Identifiers 5,157 (38.2%) 3.43 659 1.69
Location Data 4,307 (31.9%) 2.77 379 1.84

Total 5,385 (39.9%) 7.60 709 2.83

Further, by comparing Play-16 with Tencent-16 in Ta-
ble IV, we observed that individual apps on the un-official
market (Tencent) tend to integrate more third-party libraries
(1.32 vs. 2.1). Since the security vetting process in app-market
like Tencent usually not be as strict as Google, apps in such un-
official stores tend to be more aggressive in collecting private
data. Another observation is that although the amount of third-
party libraries has a reasonable increment, by comparing from
same dataset crawled in different periods (Tencent-15 and
Tencent-16, column 7-9 in Table IV), the overall apps in the
market tend to have almost identical leakage scale (see column
9). This indicates such privacy leaks to third-party libraries
is a long-standing problem without noticed, due to the lack
effective discover tools like ClueFinder.

Library distribution and leakage patterns. ClueFinder dis-
covered that 3,502 libraries access private user data. To under-
stand what these libraries are and how they collect sensitive
information, we took a close look at the top 100 most popular

TABLE VI. DISTRIBUTION OF TOP 100 THIRD-PARTY LIBRARIES
FROM PLAY-15 DATASET.

Library Category % Libs % Apps

Ads 35% 80.7%
Analytics 27% 68.9%

App Dev Framework 26% 36.9%
Utils 21% 16.4%

Social Network 14% 6.2%
Game Framework 11% 9.6%

libraries from our datasets. Table VI summarizes our findings3,
where column 2 shows the percentage of libraries in different
category, and column 3 shows the percentage of apps contain
one of such libraries from all apps involved in privacy leakage.
As we see here, most of those gathering user data turn out to be
ad and analytical libraries (e.g., Inmobi, AppBrain, etc.). These
libraries do not enrich their hosting apps’ functionalities but
constitute the major source of information leaks.

From the ways these libraries interact with their hosting
apps, we can see that they are either given private information
by the apps through API calls or actively harvest information
(such as transferred location data, installed app list on device
and timestamps for specific events) from the apps, without
the app developer’s awareness. ClueFinder differentiates these
two scenarios by looking at where the identified sensitive state-
ments are located: if the statement is inside the hosting app’s
code, clearly the app’s developer intends to pass information to
a library, often for enriching the app’s functionalities or com-
municating with advertisers; Otherwise, when the statement is
found in the library code, apparently the library collects user
data without proper authorization. For example, the library
starts a service in background when app invokes one of its
public interface. We show the breakdown of these patterns in
Figure 7. Also, we present our findings about these cases in
Case Study (Section V-C).

Leaked content. Table VII presents prominent examples for
the data items exposed to the third-party, as discovered by
ClueFinder. It does not come as a surprise that several kinds
of identifiers are disclosed (e.g., facebook id), often together,
since they are often used in combination to track a user, even
when she re-installs the app or changes her device. Regarding
user profiles like gender and nick name, most of them are
from social networks like Facebook. Due to the extensive use
of mobile single-sign-on, once the user authenticates an app
with her social network account, an authorization of profile
access on social network has also been granted to the app.

3One library can have multiple functionalities in different categories, as we
can see from the table.

11

Fig. 7. Distribution of leakage patterns in detected libraries

As a result, some of such data are open to other third-party
libraries the app integrates. We present a case study about such
a leakage in Section V-C.

Exposure of user locations is another major source
of leaks captured by ClueFinder. Unlike prior findings
that location data are read directly through System APIs
(e.g.,getLastKnownLocation [42]), interestingly most such
leaks reported by ClueFinder are caused by retrieving location-
related data from other, less sensitive sources, such as an
app’s persistent storage (e.g., SharedPreference, local database,
etc.). This new location acquisition strategy could attribute
to the enhancement of privacy protection on today’s Android
devices. Increasingly, iOS-style runtime access control has
been adopted and even more fine-grained control [10], such
as asking for the user consent for every location access. As a
result, third-party libraries tend to avoid frequently invoking
the sensitive System APIs, even when the app indeeds has
the location permission, and instead reuse the location data
collected when the app has a legitimate reason to do so,
e.g., when the app is just launched to the foreground. Also
we observed that some libraries even try to gather other
location-related information that does not need a location-
related permission to access. Examples include the BSSIDs
of Wi-Fi hotspots, which can be used to infer locations, as
reported by the prior research [41].

It is also worth noting that 12.0% of flagged third-party
libraries gather the information about installed apps on a
device. The list of installed apps can be used for different
purposes. For example, Ironsec [5] claims on its website,
“Using this platform, we’re able to accurately predict what
app a person will want to install next”. As another example, on
the website of MoPub [8], it states “User targeting allows you
to target users that have or don’t have specific applications”.
Besides, We found that some libraries, such as co.inset.sdk [1]
and ShareSDK [12], even persistently monitor app installation,
collecting package names and other data such as locations,
app-usage time etc. As reported by the prior studies [37], [18],
[22], linking installed apps to public auxiliary information can
lead to violation of user privacy: for example, the presence of
a gay dating app exposes the user’s sex orientation.

C. Case Study

Here we present some high-impact cases discovered in our
research with runtime verification by intercepting their network
traffic. As showed in Table VIII, these cases involve high-
profile apps as well as popular libraries.

Case 1: Deliberate harvesting. The-Paper is a popular app

TABLE VII. SELECTED PROMINENT LEAKAGE SAMPLES

Item % in Detected Apps % in Detected Libs

location 86.6% 90.5%
facebook id 26.7% 32.5%
gender 22.5% 32.6%
app list 15.9% 12.0%
nick name 13.1% 10.9%
oauth token 10.4% 12.3%
date-of-birth 4.2% 3.1%

TABLE VIII. APP & LIBRARY USED IN CASE STUDY

App Name Num.of Installs Library Num.of.Apps

The-Paper 16 million ShareSDK 13,468
Tinder 50-100 million AppBoy 419

SnapTee 10-50 million MixPanel 7,284

focusing on Chinese political news with 16 million down-
loads [14]. Like many other news apps, it allows its users to
share news they read with any social networks (e.g. Weibo) or
friends using these networks. Inside the app, this function is
actually provided by ShareSDK, which acts as a syndicator that
integrates multiple social networks. The library is supposed to
serve as a “proxy”, accepting the user’s sharing request and
forwarding the content to the intended social network platform
(e.g., Weibo). However, ClueFinder found that this library
also accesses detailed user profile data, which obviously goes
beyond the library’s stated functionality. Our manual review of
the app code further shows that ShareSDK actually deliberately
collects much more private data than necessary. By utilizing
the authorized permission for Sharing, ShareSDK also gains
the ability to read other data about the user on its social
network. As a result, it collects all user profile information like
true name, gender, verify status, even education background
information. Also, it records such data and send them to its
own server. We list part of the sensitive information ShareSDK
collects in Table IX.

TABLE IX. PRIVATE DATA WHICH COULD BE COLLECTED BY
SHARESDK

App Info
top-task app list, app start timestamp,
app end timestamp, new install app,
new uninstall app info, etc.

Social Network Info

Weibo
weibo id, nickname, true name, verified reason,
gender, sns url, resume, friendlist, shared posts,
latitude, longitude, liked posts, etc.

Facebook

facebook id, nickname, gender, birthday, sns-url,
friend list (including accessible friend info),
verify status, education (school name, type, year),
work (company, employer, start & end date), etc.

Others
tumblr, dropbox, pinterest, line, tencent qq,
tencent qzone, wechat (friend list), twitter,
net-ease microblog, evernote, google+, etc.

Our further investigation shows that ShareSDK is widely
integrated by most popular Chinese apps, each with more
than millions or even billions of downloads. However, the
library’s privacy harvesting behaviors have never been reported

12

and therefore are totally oblivious to the app users. Using
such profile data, this SDK can track a user and identify
her personal characters from different vectors (e.g., what she
“liked” on Weibo, what posts she marked as favourite), as
well as her own social connections (e,g., friend list, followers,
working company, etc.). Also, since the library records the
user’s operations on its hosting apps (what she shared to social
network) and therefore knows a lot about her, for example, her
political stands.

Case 2: App data over-sharing. Tinder is a famous dating
app, with around 50-100 millions of downloads on the Google-
Play store [15]. The app integrates AppBoy [6] to collect
statistics information about its users. Each time a user takes
a certain action within the app, Tinder synchronizes its action
record to AppBoy, together with many sensitive data about
the user. As illustrated below, when a user refreshes a win-
dow to display other nearby users, Tinder sends her precise
location, bio information, dating targets, as well as her name
on Instagram to AppBoy. All such information disclosures are
unknown to the user, as showed below.

{"package_name":"com.tinder",
"extras":{"device":{"push_token":"..."},
"user":{"Seeking Distance":50, "gender":"f",
"Account Creation

Date":"2017-05-1*T16:56:32.163Z",
"Seeking Gender":1, "Has Work Info":true,

"Has Education Info":true,
"Instagram":"Susan_***", "Has Bio":true,
"Number of Profile Photos":15},
"sessions":[{"guid":"...",

"start_time":1.479401816693E9,
"events":[{"d":{"ll_accuracy":19.80900,
"longitude":-8*.4778, "latitude":3*.1615},}]}

Case 3: Social network data over-sharing. SnapTee (co.
snaptee.android) is a popular T-Shirt design app that allows
users to buy tees either customized by themselves or by other
designers. Also, users can share their designs with various
social networks (e.g., Facebook, Twitter) through the app. We
observed that when a user connects her SnapTee account with
a social network, Snaptee updates her profile including full
name, email, account ID and other information collected from
the social network. Further, the app passes all such profile
data to a data analytic library MixPanel [7]. From MixPanel’s
website, we found that the library is designed to “understand
who your users are, see what they do before or after they sign
up”. However, the user is kept in the dark when such data
collection and sharing happen. Following is the information
Snaptee shares with MixPanel.

{"$set":
{"$username":"p***t",

..,"$email":"li**v@gmail.com",
..,"$first_name":"John",

"$last_name":"Smith",
"Twitter":"795**16"},

"$token":"f81d***cdf96",
"$time":"1479324910201",...}

}

VI. DISCUSSION

Android users have been suffering from privacy leak-
age issue for a long time. Fortunately, with the advent of
ClueFinder, the issue will be mitigated because developers
can track various types of sensitive data in a more efficient
way. Specifically, the combination of semantic-based and code
structure based analysis makes precise localization against
private data possible, whereas traditional methods using fixed
APIs can not label. With the help of more sensitive sources
found by ClueFinder, existing privacy leakage analysis tools
can be improved by taking advantage of better precision
and wider coverage of users’ sensitive data. For example,
ClueFinder can be employed with both static and dynamic
taint analysis [23] [16], by assigning data objects within the
statements as sensitive sources. It can also be applied in various
access control mechanisms [20] [19] for fine grained control
over the sensitive data within the app.

Our measurement study against 445,668 apps helped us
to get a better understanding to the privacy-leakage issue
of Android apps. Although most of legitimate apps provides
information about how they manage users’ private data, includ-
ing what from third-party libraries, their vague descriptions
are proven to be weak and unpractical for effective protection
to user’s private data [43]. Our findings including the over-
sharing and third-party aggressive data collection highlight the
necessity of fine-grained access controls over these private
data. For example, alerting users with detailed private data
leakage information by third-party library at runtime.

Admittedly, ClueFinder does have limitations. For instance,
since ClueFinder heavily relies on semantics in app code to dis-
cover possible private data, obfuscation may help adversaries
to evade our analysis, as semantics including strings or method
names are helpless for those cases. However, as mentioned
in our evaluation (See section IV), given that most apps do
not obfuscate the entire code base, ClueFinder is still a very
practical approach of discovering private data at a large-scale.

Besides, the effectiveness of ClueFinder can be further
improved from several aspects. (1) Find more semantic re-
sources in the app to improve the coverage of ClueFinder.
Current implementation of ClueFinder only consider seman-
tics from method names, variable names and string con-
stants. Other information like package name (e.g., face-
book.userInfo.facebookUserProfile) may also provide abundant
semantics. (2) Find more features in app code to improve
the precision of the SVM classifier. E.g., features at the
caller/callee of the candidate statements may also help to
decide if it contains sensitive data.

What’s more, our measurement results for privacy leakage
(Section V-B) indeed tell if a specific private data have been
accessed by third-party libraries, while the results need further
pruning: First, the measurement did not confirm if all such
private data accessed by third-party libraries are indeed leaked
out at a large scale. Instead, as mentioned in Section V-B,
we manually validated a small set of apps and confirmed
over half of them involved in privacy leakage, as a lower-
bound of the actual leakage scale. Although it is possible
to give a further static taint analysis by assigning network
APIs as the final sinks, the result may not be feasible due
to the fundamental limitation of static analysis approach (e.g.,

13

heavy-weight and less precise). Further more, our system
ClueFinder, was designed to find more sensitive data sources.
Serving this purpose, our approach achieves a precision of
91.5% (Section IV-B). The measurement of privacy leakage
to third-party libraries is just a demonstration of how our
technique can be used. Second, our current approach can
not automatically distinguish if a given access by third-party
libraries is reasonable, though our manual analysis shows that
most of such access to private data is suspicious. Further
analysis could utilize semantics from app UI, app descriptions
and many other possible sources to determine if such access is
benign or malicious. An access is regarded as malicious only
if there is no matched UI or app description for the private
data access in apps.

VII. RELATED WORK

Privacy leakage detection. Effective privacy leakage detection
methods in Android platform have been studied for a long
time. Both static [16], [24] and dynamic [23] taint analysis
techniques are developed and widely used to track private data.
However, all these approaches only take into consideration
fixed System APIs as sensitive data sources, like IMEI, phone
number, etc. An exception is SUSI [35] that identifies more
privacy sources in Android by using machine-learning to
analyze Android system libraries. MudFlow [17] leverages
such sources labelled by SUSI to mine apps for abnormal usage
of sensitive data in mobile apps. However, these data are still
walking around APIs and are mainly controlled by system.
Further, UIPicker [32] and SUPOR [25] propose different
approaches to identify sensitive data from app UIs, these
approaches identify sensitive data from user input. UIPicker
uses a SVM classifier to judge if a given element in a UI
is privacy-critical or not, by learning only semantic features
(e.g., if a set of privacy-related keywords appear simultane-
ously). In contrast, ClueFinder pipes the code structure as a
feature to a SVM classifier to locate private data within app
codes. These approaches mentioned above can not completely
cover all private data identified by ClueFinder. BidText [26]
introduces a bi-directional data propagation mechanism for
detecting privacy leaks. Different from ours, BidText only
detects whether a specific private data is leaked to system logs
or network like HTTP requests, regardless of its responsibility.
By comparison, our work focuses on the measurement against
privacy leakage to third-party libraries, that is more helpful
to the understanding of real world threats resulted from such
privacy leakages. Similar to ClueFinder, Recon [36] detects
the leakage of a wide range of users’ private data, which
is called personal identifiable information (PII) by Recon.
However, different from ClueFinder in both approaches and
purposes, Recon employs a dynamic analysis over mobile apps
to directly confirm leaks by monitoring network traffic, while
ClueFinder focuses on discovering private sources through its
static analysis over decompiled app code. Also, Recon directly
enables users to view PII leaks from network flows, while
ClueFinder provides a basic tool for other existing approaches
to detect more privacy leaks in a static way.

NLP analysis over mobile apps. There are lots of works
utilizing NLP techniques to conduct semantic-based analysis
against mobile apps for different purposes in the field of mobile

security. Whyper [33] and AutoCog [34] inspect if a permis-
sion request is reasonable by analyzing its app descriptions.
Similar to ClueFinder, they use dependency relation parsing
to understand whether a given app contains descriptions about
its permission usage. BidText [26] introduces dependency
relation parsing to decide if a phrase or sentence is related
to private data, however, it only excludes specific keywords
with imperative negation (e.g., “you should not”) for labelling
sensitive data. AsDroid [27] detects if a sensitive operation
(e.g., sending SMS) matches its contents in the user interface,
for identifying suspicious behaviors within apps. UIPicker [32]
also utilizes some basic NLP techniques (e.g., stemming for
keywords) as its pre-processing step for analysing textual
resources in app UI for locating private information. However,
both AsDroid and UIPicker did not consider dependency
parsing over sensitive keywords within the sentence, thus
may introduce false positives for recognizing privacy-related
entities. All these approaches can further take advantages
from ClueFinder, by employing a more comprehensive NLP
analysis over app code or layout resources to improve their
effectiveness.

VIII. CONCLUSION

In this paper, we give our research on detecting privacy
leakage on mobile apps at a large-scale. To address the
main challenge that many new types of private data (e.g.,
sensitive data on server-side) can not be effectively identified
by traditional approaches, we propose ClueFinder, a new tech-
nique for sensitive data source discovery. ClueFinder leverages
semantic information from app code, together with their unique
program structures of their context to accurately and efficiently
find privacy-related data within a given app. The evaluation
results showed ClueFinder achieves a very high precision and
outperforms similar existing work to a large extent. Also,
using this technique, we investigated the potential information
exposure to third-party libraries over 445,668 apps with a
series of findings. These findings help better understand the
privacy exposure risk and highlight the importance of data
protection in today’s software composition.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers and
our shepherd Chris Kanich for their insightful comments that
helped improve the quality of the paper. We also thank Tongxin
Li from Peking University, Nan Zhang from IU, and Li Tan
for their assistance in our experiments. This work is funded in
part by the National Program on Key Basic Research (NO.
2015CB358800), the National Natural Science Foundation
of China (61602121, U1636204, 61602123), the Shanghai
Sailing Program under Grant 16YF1400800. The IU author is
supported in part by the NSF CNS-1527141, 1618493, ARO
W911NF1610127 and Samsung gift fund.

REFERENCES

[1] “Analytic sdk : co.inset.sdk,” https://www.youtube.com/watch?v=
sV0GwIl4oWs, accessed: 2017-08-10.

[2] “Bidtext-released version,” https://bitbucket.org/hjjandy/toydroid.
bidtext, accessed: 2017-08-10.

[3] “Google privacy policy,” https://www.google.com/policies/privacy/, ac-
cessed: 2017-08-10.

14

[4] “Inmobi,” http://inmobi.com, accessed: 2017-08-10.

[5] “Ironsec - user profiling function,” http://www.ironsrc.com/atom/
user-profiling/〉, accessed: 2017-08-10.

[6] “Meet appboy - mobile engagement marketing tech startup,” https://
www.appboy.com/about/, accessed: 2017-08-10.

[7] “Mixpanel,” https://mixpanel.com, accessed: 2017-08-10.

[8] “mopub,” http://www.mopub.com/resources/docs/
mopub-ui-account-setup/creating-managing-orders-and-line-items/
line-item-targeting/〉, accessed: 2017-08-10.

[9] “Proguard - the open source optimizer for java bytecode,” https://www.
guardsquare.com/en/proguard, accessed: 2017-08-10.

[10] “Requesting permissions,” https://developer.android.com/training/
permissions/requesting.html, accessed: 2017-08-10.

[11] “scikit-learn,” http://scikit-learn.org/, accessed: 2017-08-10.

[12] “Sharesdk for android,” http://www.mob.com/downloadDetail/
ShareSDK/android, accessed: 2017-08-10.

[13] “Snaptee: T-shrit design,” https://play.google.com/store/apps/details?id=
co.snaptee.android, accessed: 2017-08-10.

[14] “The-paper-news,” http://www.thepaper.cn/, accessed: 2017-08-10.

[15] “Tinder,” https://play.google.com/store/apps/details?id=com.tinder, ac-
cessed: 2017-08-10.

[16] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2014.

[17] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 2015, pp. 426–436.

[18] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detec-
tion in android and its security applications,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 356–367.

[19] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading
privacy for application functionality on smartphones,” in Proceedings
of the 12th workshop on mobile computing systems and applications.
ACM, 2011, pp. 49–54.

[20] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained
mandatory access control on android for diverse security and privacy
policies.” in USENIX Security Symposium, 2013, pp. 131–146.

[21] Y.-W. Chen and C.-J. Lin, “Combining svms with various feature
selection strategies.” Springer, 2006, pp. 315–324.

[22] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter, “Free
for all! assessing user data exposure to advertising libraries on android,”
in Proc. of NDSS’16, 2016.

[23] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “Taintdroid: an information flow tracking system for real-
time privacy monitoring on smartphones,” in Communications of the
ACM, vol. 57, no. 3. ACM, 2014, pp. 99–106.

[24] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard,
“Information-flow analysis of android applications in droidsafe,” in
Proc. of NDSS’15, 2015.

[25] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang, “Supor:
precise and scalable sensitive user input detection for android apps,” in
24th USENIX Security Symposium, 2015, pp. 977–992.

[26] J. Huang, X. Zhang, and L. Tan, “Detecting sensitive data disclosure
via bi-directional text correlation analysis,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 169–180.

[27] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction.” in Proc. of ICSE’14, 2014, pp. 1036–1046.

[28] Y. Z. X. Jiang and Z. Xuxian, “Detecting passive content leaks and
pollution in android applications,” in Proc. of NDSS’13, 2013.

[29] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in Pro-
ceedings of the 41st Annual Meeting on Association for Computational

Linguistics-Volume 1. Association for Computational Linguistics, 2003,
pp. 423–430.

[30] W. Meng, R. Ding, S. P. Chung, S. Han, and W. Lee, “The price of
free: Privacy leakage in personalized mobile in-app ads,” in Proc. of
NDSS’16, 2016.

[31] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[32] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “Uipicker:
User-input privacy identification in mobile applications,” in 24th
USENIX Security Symposium, 2015, pp. 993–1008.

[33] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards
automating risk assessment of mobile applications.” in USENIX Security
Symposium, vol. 13, no. 20, 2013.

[34] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android applica-
tions,” in Proc. of ACM CCS’14, 2014, pp. 1354–1365.

[35] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach
for classifying and categorizing android sources and sinks,” in Proc. of
NDSS’14, 2014.

[36] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “Recon:
Revealing and controlling pii leaks in mobile network traffic,” in
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2016, pp. 361–374.

[37] J. Rubin, M. I. Gordon, N. Nguyen, and M. Rinard, “Covert communi-
cation in mobile applications (t),” in Automated Software Engineering
(ASE),30th IEEE/ACM International Conference. IEEE, 2015, pp. 647–
657.

[38] S. Son, D. Kim, and V. Shmatikov, “What mobile ads know about
mobile users,” in Proc. of NDSS’16, 2016.

[39] E. Steel, C. Locke, E. Cadman, and B. Freese, “How much is your
personal data worth,” 2013.

[40] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-
tigating user privacy in android ad libraries,” in Workshop on Mobile
Security Technologies (MoST), 2012, p. 10.

[41] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt, “Identity, location, disease and more: In-
ferring your secrets from android public resources,” in Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 1017–1028.

[42] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of
my market: detecting malicious apps in official and alternative android
markets.” in NDSS, vol. 25, no. 4, 2012, pp. 50–52.

[43] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S. Wilson,
N. Sadeh, S. M. Bellovin, and J. Reidenberg, “Automated analysis of
privacy requirements for mobile apps,” in Proc. of NDSS’17, 2017.

15

