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Abstract—Human mobility trajectories are increasingly col-
lected by ISPs to assist academic research and commercial ap-
plications. Meanwhile, there is a growing concern that individual
trajectories can be de-anonymized when the data is shared, using
information from external sources (e.g. online social networks).
To understand this risk, prior works either estimate the theo-
retical privacy bound or simulate de-anonymization attacks on
synthetically created (small) datasets. However, it is not clear how
well the theoretical estimations are preserved in practice.

In this paper, we collected a large-scale ground-truth trajec-
tory dataset from 2,161,500 users of a cellular network, and two
matched external trajectory datasets from a large social network
(56,683 users) and a check-in/review service (45,790 users) on
the same user population. The two sets of large ground-truth
data provide a rare opportunity to extensively evaluate a variety
of de-anonymization algorithms (7 in total). We find that their
performance in the real-world dataset is far from the theoretical
bound. Further analysis shows that most algorithms have under-
estimated the impact of spatio-temporal mismatches between
the data from different sources, and the high sparsity of user
generated data also contributes to the underperformance. Based
on these insights, we propose 4 new algorithms that are specially
designed to tolerate spatial or temporal mismatches (or both)
and model user behavior. Extensive evaluations show that our
algorithms achieve more than 17% performance gain over the
best existing algorithms, confirming our insights.

I. INTRODUCTION

Anonymized user mobility traces are increasingly collected
by Internet Service Providers (ISP) to assist various applica-
tions, ranging from network optimization [42] to user popula-
tion estimation and urban planning [11]. Meanwhile, detailed
location traces contain sensitive information about individual
users (e.g., home and work location, personal habits). Even
after the data is anonymized, there is a growing concern
that users can still be re-identified through external infor-
mation [40]. Recently, the US congress has moved towards
repealing the Internet Privacy Rules and legalizing ISPs to
share (or monetize on) user data [14]. The key question is

till yet to be answered: how much of user privacy is leaked if
the ISP shares anonymized trajectory datasets?

To answer this question, early research estimates the the-
oretical privacy bound by assessing the “uniqueness” of the
trajectories [9], [40], which shows that trajectory traces are
surprisingly easy to de-anonymize. With 4 spatio-temporal
points or top 3 most visited locations, results in [9], [40] show
that 80%–95% of the user scan be uniquely re-identified in a
metropolitan city.

Recently, researchers start to evaluate more practical at-
tacks by de-anonymizing ISP trajectories using external infor-
mation (e.g., location check-ins from social networks) [8], [10],
[15], [16], [23], [27]–[29], [31]–[33], [35]. However, due to the
lack of large empirical ground-truth datasets, researchers have
to settle on small datasets (e.g., 125 users in [35], 1717 users
in [31]) or simulating attacks on synthetically generated data
(e.g., using parts of the same dataset as the victim dataset and
the external information source) [23], [32], [33]. To date, it is
still not clear how easy (or difficult) attackers can massively
de-anonymize user trajectories in practice.

In this work, we spent significant efforts to collect two
large-scale ground-truth datasets to close the gaps between
theory and practice. By collaborating with a major ISP and
two large location-based online services in China, we obtain
2,161,500 ISP trajectories (as the target dataset), 56,683 users’
GPS/check-in traces from a large social network (external
information) and 45,790 users’ GPS traces from a large online
review service (external information). The three datasets cover
the same user population with the ground-truth mapping.1
Using this dataset, we seek to empirically evaluate how well
de-anonymization algorithms approach the privacy bound, and
what practical challenges (if any) that are often neglected when
designing these algorithms. Answering this question helps to
provide more accurate assessment on the privacy risks of
sharing the anonymized ISP traces.

By implementing and running 7 major de-anonymization
algorithms against our dataset, we find the existing algorithms
largely fail the de-anonymization task using practical data.
Their performance is far from the privacy bound [9], [40],
and massive errors occur, i.e., the hit-precision is less than
20%. Further analysis reveals a number of key factors that
are often neglected by algorithm designers. First, there widely
exist significant spatio-temporal mismatches between the ISP

1Personally identifiable information (PII) has been removed before the data
is handled to us. This work received the approvals from our local intuitional
board, the ISP, the online social network, and the online review service.
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trajectories and the external GPS/check-in traces, caused by
positioning errors and different location updating mechanisms.
In addition, user trajectory datasets are highly sparse across
time and users, making the de-anonymization attack very
challenging in practice.

To validate our insights, we design 4 new algorithms that
specially address the practical factors. More specifically, we
propose a spatial matching (SM) algorithm and a temporal
matching (TM) algorithm, which tolerate spatial and tem-
poral mismatches respectively. Further, we build a Gaussian
and Markov based (GM) algorithm that considers spatio-
temporal mismatches simultaneously. Finally, we enhance the
GM model by adding a user behavior model to incorporate
human mobility patterns (GM-B algorithm).

Extensive evaluation shows that our algorithms signifi-
cantly outperform existing algorithms. More importantly, our
experiments reveal new insights into the relationship between
human mobility and privacy. We find that tolerating temporal
mismatches is more important than tolerating spatial mis-
matches. An intuitively explanation is that human mobility has
a strong locality, which naturally sets a bound for location mis-
matches. However, at the temporal dimension, since the errors
are unbounded, making the algorithm aware of the temporal
matches makes a bigger difference to the de-anonymization
performance. Finally, the GM and GM-B algorithms achieve
even better performance by considering different mismatches
and human behavior models at the same time.

Overall, our work makes four key contributions:

• First, we collect the first large-scale trajectory dataset
(with ground-truth) to evaluate de-anonymization at-
tacks. The dataset contains 2,161,500 ISP trajectories
and 56,683 external trajectories, which helps to over-
come the limitations of theoretical analysis and small-
scale validations.

• Second, we build an empirical evaluation frame-
work by categorizing and implementing existing de-
anonymization algorithms (7 in total) and evaluation
metrics. Our evaluation on real-world datasets re-
veals new insights into the existing algorithms’ under-
performance.

• Third, we propose new algorithms by addressing
practical factors such as spatio-temporal mismatches,
location contexts, and user-level errors. Optional com-
ponents such as user historical trajectories can also be
added to our framework to improve the performance.

• Finally, extensive performance evaluation shows that
our algorithms achieve over 17% performance gain in
terms of the hit-precision. In addition, our algorithms
are robust against parameter settings, i.e., even without
ground-truth data, by using the empirical parameters,
our proposed algorithms still outperform existing ones.
This results confirm the usefulness of our insights.

Our work is a first attempt to bridge the gaps between the
theory bound and the practice attacks for the location trajectory
de-anonymization problem. We show that failing to consider
the practical factors undercuts the performance of the de-
anonymization algorithms. Future work will consider building

more accurate privacy metrics to quantify privacy loss given
imperfect data, and develop privacy protection techniques on
top of anonymized trajectory datasets.

In the following, we first categorize existing approaches to
evaluating the privacy leakage in anonymized mobility datasets
(§II), followed by our de-anonymization framework (§III). In
§IV, we describe the large ground-truth dataset, using which
we analyze the theoretical privacy bound and the performance
of existing algorithms (§V). After analyzing the main reasons
of the under-performance of existing approaches (§VI), we
build and evaluate our own algorithms to validate our insights
(§VII–VIII).

II. RELATED WORK

De-anonymization Methods: Overview. In Table I, we
summarize the key de-anonymization algorithms proposed in
recent years. These algorithms seek to re-identify users from
anonymized datasets leveraging external information (not all
the algorithms are applicable to location traces). We classify
them into three main categories based on the utilized user data:
content (user activities such as timestamps, location), profile
(user attributes such as username, gender, age), and network
(relationship and connections between users) [34]. Location
trajectory data belongs to the “content” category.

De-anonymization of Location Trajectories. Focusing on
the user content, a number of de-anonymization algorithms
have been proposed [8]–[10], [23], [27], [28], [31]–[33], [40].
Most of these algorithms can be directly applied or easily
adapted to trajectory datasets. However, due to the lack of
large scale ground-truth datasets (matched ISP dataset and
external traces), existing works either focus on theoretical
privacy bound [9], [40] or simulating de-anonymization attacks
on a small dataset [9], [23], [32], [33], [40]. Our work seeks to
use a large scale ground-truth dataset to explore their empirical
performance and identify practical factors (if any) that are
often neglected by algorithm designers.

In Table I, we further categorize these algorithms based on
their design principles. For example, some algorithms are de-
signed to tolerate mistakes in the adversary’s knowledge such
as temporal mismatching [28] and spatial mismatching [23].
Other algorithms [27], [32], [33] implement de-anonymization
attacks based on individual user’s mobility patterns [27], [33].
Finally, researchers also develop de-anonymization algorithms
based on “encountering” events [8], [31]. By considering the
location context (e.g., user population density), it achieves
a better performance [31]. As shown in Table I, none of
these algorithms checks all boxes. In particular, no algorithm
simultaneously tolerates both spatial and temporal mismatches.

De-anonymization of Network/Profile Data. Since we
focus on the de-anonymization of location trajectory datasets,
we only briefly introduce the algorithms designed for net-
work datasets [19], [20], [29], [35] and profile datasets [15],
[16], [26] for completeness. Mudhakar et al. [35] and Ji et
al. [19], [20] focused on de-anonymization based on users’
graph/network structures. These algorithms can be adapted to
deanonymizing location trajectories by constructing a “contact
graph” to model users encountering with each other. However,
these algorithms require using social network graphs as the
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TABLE I. COMPARISON OF DE-ANONYMIZATION ALGORITHMS,
√

=TRUE, ×=FALSE, −=N/A.

Information Used Tolerate Spatial
Mismatching

Tolerate Temporal
Mismatching

Per-user Mobility Model Considering Location
Context

POIS [31] Content × × ×
√

WYCI [32] Content ×
√ √

×
HMM [33] Content

√
×

√
×

HIST [27] Content ×
√ √

×
ME [8] Content × × × ×
MSQ [23] Content

√
× × ×

NFLX [28] Content ×
√

× ×
CG [35] Content/Network − − − −
ODA [20] Content/Network − − − −
SG [29] Network − − − −
PM [16] Profile − − − −
ULink [26] Profile − − − −
LRCF [15] Profile/Content − − − −

external information, which are not available in our scenario.
Thus, their approaches cannot be applied to solving our
problem. On the other hand, algorithms designed for profile
datasets [15], [16], [26] (e.g., age, gender, language) are not
applicable to location trajectories, and thus omitted for brevity.

Privacy Protection Mechanisms. Researchers have in-
vestigated different ways to anonymize user data to preserve
privacy. The most common privacy models are k-anonymity
[36], l-diversity [24] and t-closeness [21]. Related to these
three models, a number of specific techniques have been pro-
posed to anonymize location trajectory data. Osman et al. [2]
proposed a technique to protect privacy by shifting trajectory
points in space that are close to each other in time. Marco
et al. [18] proposed an algorithm named GLOVE to grant k-
anonymity of trajectories through specialized spatio-temporal
generalization. Another work from Osman [1] developed a
time-tolerant method. Simon et al. [30] provided two metrics,
conditional entropy and worst-case quality loss, to evaluate the
privacy protection mechanisms.

Recently, researchers also explore to apply differential
privacy to location trajectory datasets [3], [5], [12]. For ex-
ample, Andrés et al. [5] introduced geo-indistinguishability,
which used criteria of differential privacy to make sure the
user’s exact location is unknown while keeping enough utility
for certain desired service. Gergely et al. [3] studied an
anonymization scheme to release spatio-temporal density data
based on differential privacy. In our work, the definition of
privacy is based on the uniqueness of user trajectories, whose
privacy model is based on k-anonymity.

III. THREAT MODEL

In this work, we seek to examine how much of individuals’
privacy will be leaked if the ISP shares their anonymized tra-
jectory datasets. We investigate this problem by implementing
and testing a wide range of de-anonymization attack schemes
against real-world trajectory datasets. To better describe the
de-anonymization problem, we first formally define the threat
model in this section. Our threat model mainly consists of two
components, i.e., the ISP that is the data owner to publish
anonymized trajectory traces, and the adversary which seeks
to re-identify users in the published dataset. For the ease of
reading, we summarize the key notations in Table II.

A. Location Data Publishing by ISP

Let U represent the set of the identities of all users.
Before the dataset is published, the ISP uses a map function

TABLE II. A LIST OF COMMONLY USED NOTATIONS.
Notat. Description
U The set of true identities of all users.
V The set of pseudonyms of all users.
T The set of all time slots.
R The set of all regions.
L The set of anonymized ISP traces.
S The set of traces as external information (adversary knowledge).
Lv ISP trajectory of user with pseudonym v.
Su External trajectory of user u.
Lv(t) Location in the ISP trajectory of user with pseudonym v at time

slot t.
Su(t) Location in the external trajectory of user u at time slot t.
σ Anonymization function mapping U to V .
D Similarity score function between trajectories.

R(u,D) The rank of the true matched trajectory of u based on similarity
function D.

Tvi,j Transition matrix of user u.
Φ(S, D) Performance metric of de-anonymization attack.
I(·) Indicator function of logical expressions with I(true) = 1 and

I(false) = 0.

σ to anonymize it, i.e., replace the user identity u with
the pseudonym σ(u). We further define V as the set of
pseudonyms of all users.

After anonymization, a spatio-temporal record in the
dataset is defined as a 3-tuple (v, t, r), where v ∈ V is the
pseudonym of the user, and r, t are the observed location and
timestamp, respectively.

We define the mobility trace of the user with pseudonym
v ∈ V published by ISP as a T -size vector Lv =
(Lv(1), Lv(2), ..., Lv(T )) where Lv(t) represents the location
observed at time slot t, and T is the total number of time
slots. For time slots with a location record, Lv(t) is the
corresponding geographic coordinate. For time slots without
a location record, Lv(t) is ∅. We further define L as the set of
all mobility traces in the ISP dataset, as L = {Lv|v ∈ V }. In
this work, we mainly focus on the effectiveness of the de-
anonymization attacks. We assume the ISP does not apply
additional obfuscations to the data other than the common
steps such as reducing the spatio-temporal resolution of the
records [33]. This benefits assessing the upper-bound perfor-
mance of the existing attacking methods against real-world
datasets.

B. Adversary

In the de-anonymization attack, an adversary seeks to re-
identify users using external information. An adversary is de-
scribed by two components, i.e., utilized knowledge (external
information), and attack method.

Adversary Knowledge. Adversary can use different types
of external knowledge for de-anonymization. In this paper,
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we mainly focus on two categories of adversaries. The first
category is the company-level attacker, e.g., application and
service providers who have users’ sub-trajectory information
uploaded by the application software installed on the users’
mobile devices. The second category is the individual-level
attacker, who can obtain external information by crawling
the publicly available location information (online check-ins)
shared by users.

For an arbitrary adversary, regardless of its category, we
use a uniform T -size vector Su = (Su(1), Su(2), ..., Su(T ))
to represent its external information, with Su(t) representing
the location (geographic coordinate) observed at time slot t
for user u ∈ U , In addition, we set S(t) = ∅ in time slot t
without locations. We further define S = {Su|u ∈ U} as the
set of all traces in the external information.

Attack Method. Attack method of the adversary is de-
scribed by the similarity score function D defined between
trajectories in ISP dataset and external information, i.e., D :
L × S → R, where R is the set of real numbers. Based on
this similarity function, for each user u with external trajectory
Su, adversary rank of all its candidate trajectories in the ISP
dataset. The goal of the adversary is to rank the ISP trajectory
belonging to u, i.e., Lσ(u) as high as possible.

More specifically, we use R(u,D) to denote the rank of
Lσ(u) based on similarity function D. Further, denote function
h as the metric of the ranking R(u,D). For higher R(u,D),
h(R(u,D)) is larger. Then, the performance of the attack
method can be expressed as follows,

Φ(S, D) =
1

|U |
∑
Su∈S

h(R(u,D)).

For any adversary, given external information S, the target can
be expressed as follows,

arg max
D

Φ(S, D).

In terms of the ranking, a well-established and widely-
used evaluation metric is the hit-precision of top-k candidates,
which is defined as follows,

h(x) =

{
k−(x−1)

k , if k ≥ x ≥ 1,
0, if x > k.

For example, if the true matched trajectory Lσ(u) has the
largest similarity, i.e., D(Su,Lσ(u)) ≥ D(Su,Lv) for any
v ∈ V , then, R(u,D) = 1 and h(R(u,D)) = 1. If Lσ(u)

ranks 3 in all candidate trajectories in L, R(u,D) = 3 and
h(R(u,D)) = k−2

k .

IV. GROUND-TRUTH TRAJECTORY DATASETS

To empirically assess the effectiveness of de-anonymization
algorithms against large-scale trajectories from ISP, we collect
real-world ground-truth datasets. The data are obtained from
a major ISP, a large online social network and a check-
in/review service for an overlapped user population. We also
have the ground-truth mapping between users across these
three datasets. The datasets are obtained through our research
collaborations and a summary of the datasets is shown in
Table III. Below, we describe the datasets in detail and perform
a preliminary analysis.

A. ISP Dataset

The main dataset contains 2,161,500 ISP trajectories from
a major cellular service provider in China from April 19
to April 26 in 2016 covering whole metropolitan area of
Shanghai. Each trajectory is constructed based on the user’s
connection records to the base stations (cellular towers). Each
spatial-temporal data point in the trace is characterized by an
anonymized user ID, base station (BS) ID and a timestamp.
This dataset will serve as the target dataset for evaluating the
de-anonymization attack.

B. Social Network Dataset

As the external information for de-anonymizing users, we
also collect datasets from Weibo, a large online social network
in China with over 340 million users. The challenge is to
obtain the ground-truth mapping between users in the ISP
dataset and the Weibo users. This is doable from the ISP side
because Weibo’s mobile app uses HTTP to communicate with
its servers and the Weibo ID is visible in the URL. Given
the sensitivity of the data, we approached Weibo’s Data and
Engineering team to ask for the permission to collect the
Weibo IDs from the ISP end for this research. After setting
up a series of privacy and data protection plans, Weibo gave
us the approval to use the data only for research purposes
(more detailed data protection and ethical guidelines are in
Section IV-E).

App-level GPS Data. With the permission of Weibo, our
collaborators in the ISP marked the Weibo sessions for users
that appear in the ISP traces, within the same time window
April 19 to April 26 in 2016. In this way, we construct
an external GPS dataset of 56,683 matched users. In this
dataset, each location trajectory is characterized by a user’s
Weibo ID, and a series of GPS coordinates that show up in
HTTP sessions between the mobile app and Weibo server.
This dataset represents location traces that users report to the
Weibo server. Using this dataset as external information, we
can evaluate how much Weibo service can de-anonymize a
shared ISP dataset, i.e., company level attacks. Note that the
Weibo ID is only visible to the ISP collaborator. The ID has
been replaced with an encrypted bitstream before the data
is handled to us. A mapping between the bitstream to the
anonymized ISP user ID is provided to us.

User Location Check-ins. Based on the matched Weibo
IDs, our collaborator at the ISP also helped to collected a
check-in dataset using Weibo’s open APIs2. This dataset covers
the same time window of previous datasets (Synchronized),
as well as all the historical check-ins of the matched users
(Historical). Since check-in data is publicly available to any
third-parties, we use it to evaluate how much any attackers
can de-anonymize a shared ISP dataset, i.e., individual level
attacks. Similarly, we only access the anonymized ID, instead
of the actual Weibo ID.

C. Review Service Dataset

To make sure our analysis is not biased towards a single
dataset, we collected a secondary dataset to validate our obser-
vations. The secondary dataset was collected from Dianping,

2http://open.weibo.com
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TABLE III. STATISTICS OF COLLECTED DATASETS.

Dataset Total# Total# #Recd. #Loc.
Users Records /User /User

ISP 2,161,500 134,033,750 62.01 9.19
Weibo App-level 56,683 239,289 4.22 1.67
Weibo Check-in (Historical) 10,750 141,131 13.15 7.00
Weibo Check-in (Synchronized) 503 873 1.74 1.34
Dianping App-level 45,790 107,543 2.35 1.61

the largest online review service in China. Dianping has similar
features as the Yelp and Foursquare combined. It also uses
HTTP for its mobile app and the user ID is visible to ISP.
Following the same procedure, our ISP collaborator marked
Dianping sessions in the ISP traces within the same time
window April 19–26 in 2016. This produced an external GPS
dataset of 45,790 matched users. Each location trajectory is
characterized by a user’s Dianping ID, and a series of GPS
coordinates with timestamps.

Similarly, the Dianping ID is only visible to the ISP col-
laborator. The ID has been replaced by an encrypted bitstream
in our dataset. A mapping between the bitstream and the
anonymized ISP user ID is provided to us. We have also
notified Dianping Inc. about our research plan and received
their consent.

D. Data Processing

The collected datasets have different formats and precision
in terms of the time and location. We seek to format the data
in a consistent manner before our evaluation.

Converting Basestation ID to GPS. To construct user
mobility traces from the ISP data, we first convert the ID of
base stations to their geographical coordinates (longitudes and
latitudes) based on the ISP offered database, and use it to
represent the user location.

Building Trajectories. Since the timestamps have different
resolutions in different datasets, we build the trajectory based
on discrete time intervals. More specifically, we divide the time
span of a user’s trace into many fixed sized time bins. Then, we
add one location data point to each time bin to build the vector
Su and Lv . To systematically match GPS locations across
datasets, we also map the GPS coordinates into regions with a
certain spatial resolution. More specifically, we use a similar
method from [32], [33]. The idea is dividing the whole city into
grids, where each grid represents a “region”. Different regions
do not overlap with each other. In this way, we use a tuple
of a time bin and a location region to consistently represent a
location record. After the data processing, we define T and R
as the set of all the time bins and the set of all the spatial
regions, respectively. These above steps introduce two key
parameters to adjust the temporal and spatial resolutions of
the dataset. By default, we set the time bin as 1 hour, and
the spatial resolution as 1 km. In the later analysis, we will
also test different temporal and spatial resolutions to assess the
influence to our results and conclusions.

E. Ethics

We have taken active steps to preserve the privacy of
involved users in our datasets. First, all the data collected for
this study was kept within a safe data warehouse server (behind
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Fig. 1. Complementary cumulative distribution function (CCDF) of the
number of records and number of distinct locations per user.

a company firewall). We have never taken any fragment of the
dataset away from the server. Second, the ISP employee (our
collaborator) anonymized all the user identifiers, including the
unique identifiers of cellular network users, and the actual IDs
of Weibo and Dianping users. Specific steps (e.g., crawling
Weibo check-ins) that require unencrypted Weibo/Dianping
IDs were performed by the ISP employee. After obtaining
the target trajectory datasets, the ISP employee removed the
actual IDs from the datasets, and associated each entry with an
encrypted bitstream. The mapping between the bitstream and
the anonymized cellular user identifier is provided to us. The
real user IDs are never made available to, or utilized by us. All
our data processing was fully governed by the ISP employee to
ensure compliance with the commitments of privacy stated in
the Term-of-Use statements. Third, we obtained the approval
for using the Weibo data and Dianping data from the Data and
Engineering team of Weibo and Dianping, under the condition
that the data is processed strictly following the above steps
and can only be used for research. Finally, our research plan
has been approved by our local institutional board.

We believe through our work, we can provide more com-
prehensive understandings on the privacy risks of users when
anonymized ISP trajectory data is shared. The results will
help the stakeholders to make more informed decisions on
designing privacy policies to protect user privacy in the long
run.

F. Preliminary Data Analysis

Fig. 1 and Table III shows the basic statistics of the three
datasets. The ISP dataset is the largest one with 2,161,500
users. The Weibo dataset (app level), as the external infor-
mation source, has 56,683 users, which is about 3% of the
IPS user population. This indicates that using this external
information, the adversary still faces non-trivial noises to re-
identify the target users. Compared to other datasets, the ISP
dataset covers a bigger portion of a user’s mobility trace with
a higher average number of records and distinct locations
per user (62.1 and 9.19). The Weibo and Dianping datasets
(app level) are sparse with 4.22 and 2.34 records per user
respectively. The Weibo check-in datasets cover both the
same time-window as other datasets (Synchronized) as well
as the historical check-ins of the users (Historical). Not too
surprisingly, the check-in dataset is even sparser. Overall, the
4 external trajectory datasets from 2 different online services
provide a diverse and large collection of user trajectories with
a ground truth mapping to the ISP dataset. This helps to solve
the critical problem of lacking ground truth data in the existing
works [9], [32].
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Fig. 2. Theoretical analysis of the privacy bound, where p is the number of randomly selected data points from the trajectories as the external observations.
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Fig. 3. The impact of temporal and spatial resolutions on the privacy bound analysis of the IPS dataset. p is the number of randomly selected data points from
the trajectories as the external observations.

V. DE-ANONYMIZATION IN PRACTICE

Based on the above three large-scale datasets, we investi-
gate the potential privacy leakage of the ISP trajectory dataset.
In order to show the theoretical bound of privacy leakage, we
first investigate the uniqueness of trajectories in Section V-A.
Then, comparing with the theoretical bound, we implement
7 existing de-anonymization algorithms in practice, and show
their performance in Section V-B.

A. Theoretical Privacy Bound

Uniqueness of trajectory in an anonymity mobility dataset
is a well-recognized metric to measure the privacy bound and
the de-anonymization risks [9], [18], [40]. In 1930, Edmond
Locard showed that 12 points are sufficient to uniquely identify
a fingerprint [9], [13]. Similarly, the analysis of the uniqueness
of trajectories is to estimate the number of points necessary to
uniquely identify the mobility trace of an individual.

The uniqueness metric is computed as follows. Let Tp
denote a sub-trajectory of a user with p randomly selected
spatio-temporal points. Then we search for other trajectories in
the dataset that match or contain the p points of Tp. We define
the matched trajectories as the user’s anonymity set denoted as
A(Tp). Then the user’s uniqueness is characterized by |A(Tp)|,
i.e., the number of matched trajectories in the anonymity set.
Intuitively, the uniqueness metric estimates how likely a user
can be re-identified if an external adversary observed a random
p points in her trace. If |A(Tp)| = 1, its anonymity set only
contains one trace, i.e., trajectory of its true owner. This means
the p points can uniquely re-identify the user.

Note that the above trajectory matching is based on both
location and time. We consider two data points match if they
fall into the same location region and time bin (we defined
the location region and time bin in §IV-D). For example, if
two trajectories show users visiting the same locations in the
same order but at different times, they are not the same. The
uniqueness metric is the very basic metric to quantify the
de-anonymization risk. More sophisticated metric can further
consider the location context (e.g., user density in a given area)
and the time context (e.g., day and night patterns) [9].

We evaluate the uniqueness of trajectories in different
datasets as the function of p. The results are shown in Fig. 2.
As we can observe from Fig. 2(b) and (c), uniqueness of
trajectories in Weibo app-level and check-in dataset are both
very high, e.g., 5 points can uniquely identify over 90% users.
Results are similar for the Dianping dataset (the figure is
omitted for brevity). The high uniqueness of these two types
of external information guarantees their high ability to de-
anonymize the ISP trajectory dataset. On the other hand, from
Fig. 2(a), we can observe that the uniqueness of ISP trajectories
is a bit lower. The main reason is that the number of ISP
trajectories is significantly larger, e.g., 38 times larger than the
number of Weibo app-level trajectories. Such large quantity
of the data makes individuals better hidden in the crowd.
Nevertheless, the uniqueness of ISP trajectories is also high,
i.e., 5 points can uniquely identify over 75% users, indicating
their potential high risk to be de-anonymized.

In addition, we analyze the influence of the spatio-temporal
resolutions on the uniqueness. We fix the number of spatio-
temporal points as 5, and the obtained results for the ISP
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dataset. As shown in Fig. 3, the uniqueness measure is not
very sensitive to the spatio-temporal resolution (log scale x-
axis). Reducing the temporal resolution from 30 minutes to
4 hours only leads to the decreasing of uniqueness by 20%,
while reducing the spatial resolution from 250m to 1km only
leads to the decreasing of uniqueness by 26%. The resolution
degradation is likely to hurt the usability of the dataset which
only brings in a little privacy benefit in exchange.

In summary, the obtained user trajectories are highly
unique. Even when the spatial granularity is very low, 5 points
are sufficient to uniquely identify over 75% users, indicating
the high potential risk of individual trajectories to be de-
anonymized, which exposes a big threat to users’ privacy.

B. Actual Performance of Attack Methods

To examine the effectiveness of de-anonymization attacks,
we implement 7 major attacking algorithms discussed in the
Section II. We focus on algorithms that are designed (or can
be adopted) to work on trajectory datasets.

HMM: Shokri et al. [33] focus on de-anonymizing users’
trajectories based on their mobility patterns. Specifically, they
train a Markov model to describe the mobility of users, which
is represented by the transition matrix T v . They also define a
function f : R×R → R to describe the spatial mismatching
between the adversary’s knowledge and users’ true locations.
After using Lv to estimate T v , the similarity score can be
calculated by:

DHMM = P (Su|T v) =
∑
Z

∏
t∈T

f(Z(t), S(t))T vZ(t−1),Z(t),

where Z is the hidden variable representing users’ true loca-
tions.

HIST: Naini et al. [27] focus on de-anonymization by
matching the histograms of trajectories. Specifically, they use
Γu to denote the histogram of user u defined as Γu(r) =

1
|T |

∑
t∈T I(Su(t) = r). Based on the histograms, their

similarity score can be defined as:

DHIST = −DKL(Γu|
Γu + Γv

2
)−DKL(Γv|

Γu + Γv
2

),

where DKL the Kullback-Leibler divergence function [37].

WYCI: Rossi et al. [32] propose a probabilistic de-
anonymization algorithm. They use the frequency of user login
in different locations to approximate the probability of visiting
these locations by P (r|Lv) =

nvr+α∑
r∈R n

v
r+α|R| , where nvr is the

times of visit of user v to location r, |R| is the number of
locations in the dataset, and α > 0 is the smoothing parameter,
which is used to eliminate zero probabilities. By following the
recommended setting in [38], we set α = 0.1. Then, their
similarity score is defined as follow:

DWYCI =
∏

t∈T ,S(t) 6=∅

P (S(t)|Lv).

ME: Cecaj et al. [8] estimate the probability of trace-
user pairs being the same person according to the number of

their matching elements. Their similarity score is defined as
the number of meeting events as follow:

DME =
∑
t∈T

I(S(t) = L(t)).

POIS: Riederer et al. [31] mainly consider using the
“encountering” events to match the same users. They assume
the number of visits of each user to a location during a
time period follows Poisson distribution, and an action (e.g.
login) on each service occurs independently with Bernoulli
distribution. Based on this mobility model, the algorithm
computes a score for every candidate pair of trajectories, which
can be calculated as follows,

DPOIS(Su,Lv) =
∑
t∈T

∑
r∈R

φr,t(Su(t), Lv(t)),

where φ measures the importance of an “encountering” event
in location r at time slot t, and can be given as follows,

φr,t(Su(t), Lv(t)) =
P (Su(t) = r, Lv(t) = r|σ(u) = v)

P (Su(t) = r)P (Lv(t) = r)
.

It can be calculated based on their mobility model with the
assumptions of Poisson visits and Bernoulli actions.

NFLX: Narayanan et al. [28] propose a de-anonymization
algorithm that can tolerate some mistakes in the adversary’s
knowledge. In order to adapt this algorithm to the trajectory
data, we use the similarity score modified by [31], which is
defined as follows:

DNFLX =
∑

(r,t):r=Su(t)=Lv(t)

wr ∗ fr(Su,Lv),

where wr = 1/In(
∑
v,t Lv(t) = r) and fr(Su,Lv) is given

by

fr(Su,Lv) = e
nvr
n0 + e

− 1
nvr

∑
t:Su(t)=r mint′:Lv(t′)=r

|t−t′|
τ0 .

In addition, nvr is the times of visit of user v to location
r. Temporal mismatches are considered in this algorithm.
However, it cannot tolerate spatial mismatches.

MSQ: Ma et al. [23] find the matched traces by minimizing
the expected square between them. That is, their similarity
score can be expressed as follows:

DMSQ = −
∑
t∈T
|L(t)− S(t)|2.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

H
it
−

P
re

c
is

io
n

#Records

 

 

NFLX

WYCI

POIS

ME

HIST

HMM

MSQ

Fig. 4. Performance of different algorithms as a function of the number of
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Fig. 5. Complementary cumulative distribution functions (CCDF) and probability mass function (PMF) of the spatial and temporal mismatching (with the ISP
traces). The empirical distribution is compared with the fitting results of Rayleigh, exponential, power-law distributions.

Spatial mismatches are considered in this algorithm. However,
it cannot tolerate temporal mismatches.

Note that POIS, HMM, ME, MSQ algorithms are essen-
tially based on the “concurrent” events and do not expect
temporal mismatches. For these algorithms, we define “con-
currency” based on 1-hour time bins as the default setting,
i.e., if timestamps of two records are within the same 1-hour
time bin, we regard them as “concurrent”. On the other hand,
POIS, WYCI, HIST, ME and NFLX algorithms are based on
the definition of “co-located” events and do not expect spatial
mismatches. For these algorithms, we define the “co-location”
based on the 1km×1km geographic grids, i.e., if two records
are located in the same geographic grid, we regard them as
“co-located”. The resolution values 1 hour and 1 km are set as
the default. We will further analyze the influence of the spatio-
temporal resolutions to these algorithms later in Section VIII.

Fig. 4 shows the performance of all 7 algorithms for
using Weibo’s app-level trajectories to de-anonymize the ISP
trajectories. The hit-precision is plotted as the function of
the number of records in app-level trajectories. As shown in
Fig. 4, de-anonymization algorithms based on users’ mobility
patterns (e.g., HIST and HMM) have the worst performance
with a maximum hit-precision about 8%. On the other hand,
algorithms based on meeting events including ME and POIS
have better performance, with a maximum hit-precision about
11%. Algorithms such as NFLX and MSQ achieve a better
performance. Even so, their maximum hit-precision is only
about 20%, which is far from the privacy bound obtained in
Section V-A, i.e., 5 points can identify over 75% users.

Note that in our experiment, datasets are already “matched”
— the user population of the external dataset is already a

subset of users in the target ISP dataset. This means for each
trajectory in the external datasets, we know that there must be
a trajectory in the ISP dataset. In practice, the attack is likely to
be more difficult since the external dataset may contain users
that are not in the ISP dataset (i.e. extra noise). To this end, our
results are likely to represent the upper-bound performance of
the de-anonymization algorithms. Next, we further investigate
the reasons behind the under-performance.

VI. REASONS BEHIND UNDERPERFORMANCE

A. Spatio-Temporal Mismatch

We start by investigating the potential spatio-temporal mis-
matches between trajectories in different datasets. Fig. 5 shows
the distribution of spatio-temporal mismatches of external
datasets with respect to the ISP dataset. More specifically, for
a given user, we match her trajectory in the external dataset
with her ISP trajectory. We define a spatial mismatch as the
geographical distance between two data records (from two
trajectories) that fall into the same time slots. Similarly, we
define a temporal mismatch as the minimum time interval
between the external record and the ISP record at the same
location region. Note that we limit the temporal mismatch
within 24 hours to eliminate the influence of the second visit
to the same location.

Large Spatio-Temporal Mismatches. Fig. 5(a), (b) and
(c) show the complementary cumulative distribution functions
(CCDF) of spatial mismatches of different datasets. We ob-
serve that the spatial mismatches are prevalent. More than
37% of the records in the app-level trajectory data of Weibo
have spatial mismatches over 2km. It is similar in the other
application, Dianping, of which the spatial mismatch of over
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Fig. 6. The coverage radius of base stations, and its relationship with the
spatial mismatches.

31% of the records are larger than 2km. We also observe that
the distribution of Weibo’s app-level data and Dianping’s app-
level data can be approximated by the power-law distribution
in the range of 0 to 10km. After 10km, they can be ap-
proximated better by the exponential distribution. For Weibo’s
check-in data, the power-law part has longer range. The large
spatial mismatches can cause problems to de-anonymization
algorithms that rely on exact location matching [31], [32].

Fig. 5(d), (e) and (f) show the probability mass function
(PMF) of temporal mismatches. The temporal mismatches are
also very prevalent. Only 30% of Weibo’s app-level location
records are in the same time slot with their corresponding
ISP records. The large temporal mismatches indicate that
performing exact temporal matching will introduce errors to
determine the collocation of users [8], [31]. Overall, we can
observe significant spatial and temporal mismatches between
different datasets collected from the same set of users.

Finally, we observe that the mismatches follow different
types of distributions. For example, Fig. 5(b) and (c) show
that the spatial mismatch of Weibo’s check-in data can be
approximated by the power-law distribution. For Dianping, the
power-law distribution fits well for the head of the empirical
distribution, but did not capture the tail. To this end, mod-
elling the spatio-temporal mismatches requires a more general
framework.

Possible Reasons behind the Mismatches. There are a
number of possible reasons that can cause the mismatch. We
discuss some of them below.

First, inherent GPS errors: it is well-known that the GPS
system had intrinsic source of errors [4] such as satellite
errors (ephemeris and satellite clock), earth atmosphere errors
(ionosphere and troposphere), and receiver errors (frequency
drift, signal detection time).

Second, GPS unreachable locations: due to the coverage
of satellite signal, GPS signal is not always available in certain
areas such as indoor and underground [22]. For example, when
a user is on a subway going through a tunnel, the GPS reading
will be interrupted leading to corrupted trajectories. Mean-
while, the user’s smartphone can still connect to the nearby
base station, which can lead to spatio-temporal mismatches
between the ISP and the app-level trajectories.

Third, location updating mechanisms: to save battery life,
many mobile apps do not update user GPS frequently, espe-
cially when the device is sleeping [6]. The slightly outdated
GPS can still be used for non-critical services (e.g., venue
recommendation), but leads to inaccurate user trajectories.

Fourth, deployment of base stations: the base stations (BS)
are placed unevenly in the city. In the ISP trajectory dataset,
we use the connected BS to estimate the user’s location, which
may caused the spatial mismatches, especially in areas where
the base stations are sparse. To investigate this intuition, we
plot Fig. 6. We consider Weibo’s and Dianping’s app-level
trajectory data for Fig. 6(b), and use y = x as a baseline. A
larger radius indicates a sparser placement of base stations.
Not too surprisingly, a larger coverage radius (sparser BS
placement) leads to bigger spatial mismatches. In addition,
spatial mismatches (y axis) are significantly larger than the
coverage radius (x axis), indicating that the BS placement is
not the only reason for spatial mismatches.

Finally, user behavior: for the check-in dataset, mismatches
may also come from special user behavior. According to
recent measurement studies [39], [41], 39.9% check-ins (on
Foursquare) are remote check-ins with over 500 meters away
from users’ actual GPS location. Users often check-in at a
remote location (that they are not physically visiting) to earn
virtual badges or compete with their friends. Users may also
check-in a few hours later after they visited a venue [39]. These
factors can lead to major mismatches between the check-ins
and the ISP trajectories.

Such spatio-temporal mismatches can lead to major er-
rors for de-anonymization algorithms. However, many of the
above factors cannot be fundamentally avoided in practice. To
this end, de-anonymization algorithms should design adaptive
mechanisms to tolerant these spatio-temporal mismatches.

B. Data Sparsity

Another possible reason is high sparsity of the real-world
mobility traces. In large-scale trajectory datasets, the vast
majority of the users have very sparse location records. For
example, in the ISP dataset, users on average have 62 records
in a week, but 22.9% users have less than 1 records and 35.5%
of the users have less than 2 records (Fig. 1). The external
datasets (Weibo and Dianping) are even sparser with less than
5 records per user on average. This means that within the
1-hour time bins of the one-week period, the vast majority
of the time bins are empty (with the location unknown). The
high sparsity makes it difficult to accurately match trajectories
across two datasets. This property is often overlooked when
testing a de-anonymized algorithm on a synthetically generated
dataset or a small dataset contributed by several hundreds of
volunteers.

VII. OUR DE-ANONYMIZATION METHOD

Inspired by the reasons of under-performance of exist-
ing algorithms, we propose new de-anonymization algorithms
by addressing practical factors such as spatio-temporal mis-
matches and data sparsity. First, to address the spatio-temporal
mismatches, we develop a Gaussian mixture model (GMM) to
estimate and amend both spatial and temporal mismatches. The
parameters of GMM are flexible and can be optimized accord-
ing to specific datasets. Second, to address the data sparsity
issue, we propose two other methods. a) We propose a Markov-
based per-user mobility model to estimate the distribution of
a given user’ missing locations in the “empty” time slots of
the trajectory; b) We leverage the whole dataset to aggregate
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Fig. 7. Graph model for L (ISP trajectory) and S (external trajectory)

global location contexts and user behavior features to further
infer the missing location records.

Our proposed algorithms combine Gaussian mixture model
and Markov model. We refer the algorithm as GM. Fig. 7
shows the relationship of random variables in our model. Based
on this probabilistic model, we define the similarity score
function as follows,

DGM(S,L) = log p(S|L).

In this section, we will introduce how to compute this
probability-based similarity score to de-anonymize location
trajectories.

A. Modelling Spatio-Temporal Mismatches: Gaussian Mixture
Model (GMM)

In order to model the strong mismatches in the adversary’s
knowledge in terms of both spatial dimension and temporal
dimension, we adopt the Gaussian mixture model (GMM). By
definition, GMM is a linear superposition of finite Gaussian
densities, which can be expressed as:

p(x) =

K∑
k=1

π(k)N (x|uk,Σk),

where each Gaussian density N (x|uk,Σk) is called a compo-
nent and has its own mean uk and covariance Σk [7].

As shown in Fig. 7, we use component N (x|up,Σp) to
represent the probability density of external records with tem-
poral mismatching of p time units. Then, let LC represent the
complete ISP trajectory, i.e., ∀t ∈ T , LC(t) 6= ∅. Conditioned
on it, the probability density function (PDF) of an external
record S(t) belonging to the same user can be calculated as,

p(S(t)|L) =

Hu∑
p=−Hl

π(p) · N (S(t)|L(t− p), σ2(p)I2), (1)

where π(p) is the probability of the temporal mismatch to
be p time units, and σ(p) is the mean square root of the
spatial mismatch conditioned on the temporal mismatch of p
time units. In addition, since S(t) and L(t) are represented by
geographical longitudes and latitudes, which are 2-dimensional
vectors, I2 is a 2× 2 identity matrix.

Parameters π(p) and σ(p) can be chosen by the empirical
values shown in Fig. 5. On the other hand, they can also be
estimated by EM algorithm [7]. Specifically, given M external
records {S1, ..., SM} with their corresponding |Hu +Hl| ISP
records in neighboring time slots, e.g., for Sn, its neighboring
ISP records are (Ln,−Hl , ..., Ln,Hu). In addition, we define

znk as the latent variable to indicate whether Sn are generated
by Lnk (corresponding temporal mismatch is k time units).
Thus, we have

∑Hu
h=−Hl znk = 1. Then, in the E step of EM

algorithm, we calculate the distribution of znk conditioned on
the parameters π and σ, which can be expressed as follows,

γ(znk) := P (znk = 1) =
π(k)N (Sn|Lnk, σ2(k)I2)∑Hu

j=−Hl π(k)N (Sn|Lnj , σ2(j)I2)
.

In the M step, we re-estimate the parameters π and σ using
the distribution of znk, which can be expressed as follows,{

π(k) = 1
N

∑N
n=1 γ(znk), k = −Hl, ...,Hu,

σ2(k) = 1
2N

∑N
n=1 γ(znk)|Sn − Lnk|2, k = −Hl, ...,Hu.

Then, by a finite number of repeating E and M step, we
obtain the value of π and σ. Specifically in our problem,
we only consider time delay in adversary’s knowledge. Thus,
we set Hl to be zero. By defining Gπ,σ(p, r1, r2) = π(p) ·
N (r1|r2, σ

2(p)I2), (1) can be simplified as:

p(S(t)|L) =

H∑
p=0

Gπ,σ(p, S(t), L(t− p)), (2)

where u of Hu is ignored for simplicity.

B. Modelling User Mobility: Markov Model

Based on the graph model shown in Fig. 7, we can observe
that conditioned on a completely observed ISP trajectory L,
S(t) for different t is independent with each other. Then
probability density function (PDF) of a full trajectory in
external dataset can be calculated as follows,

p(S|L) =
∏

S(t) 6=∅

p(S(t)|L). (3)

However, from the analysis in Section IV-F, we can observe
that users’ locations in many time slots are missing, i.e.,
∃t ∈ T such that L(t) = ∅. In the case, (2) cannot be
applied directly. In addition, S(t) for different t also becomes
dependent with each other. Thus, (3) cannot be applied. To
solve it, we enumerate all possible complete trajectories of L,
and apply the formula of total probability with respect to them.
Specifically, denote C(L) as the set of all possible complete
trajectories of L. Then the PDF of S(t) conditioned on L can
be calculated as follow:

p(S|L) =
∑

LC∈C(L)

p(LC |L)
∏

S(t)6=∅

p(S(t)|LC). (4)

As for the probability p(LC |L), we calculate it by using a
Markov model. Specifically, we use two different orders, i.e.,
0-order and 1-order, Markov models as follows.

0-Order Markov Model. In the 0-order Markov model,
location of each time slot is assumed to be independent with
each other. Let E(r) to be the margin distribution of the user,
which can be calculated as follows,

E(r) := p(L(t) = r) =

∑
t∈T I(L(t) = r) + α(r)∑

t∈T I(L(t) 6= ∅) +
∑
r∈R α(r)

,

where I(·) is defined to be an indicator function of the logical
expression with I(true) = 1 and I(false) = 0. In addition,
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α(r) is the parameter to eliminate zero probabilities. For
example, in Laplace smoothing [25], α(r) is set to be the
same value for different r. In our work, we use the location
context to implement the smoothing as follow,

α(r) = α0 ·
∑
v∈V

∑
t∈T

I(Lv(T ) = r),

where α(r) is in proportion to the number of records at
location r with α0 as the parameter to adjust the influence
of location context.

Based on these definitions, the probability of a complete
trajectory LC ∈ C(L) conditioned on L can be calculated as
follows,

p(LC |L) =
∏

t∈T ,L(t)=∅

E(LC(t)). (5)

1-Order Markov Model. In the 1-order Markov model,
location of each time slot is assumed to be dependent on the
location in the last time slot. Denote Tr1r2 as the transition
probability matrix of the user, which can be calculated as
follows,

Tr1r2 :=p(L(t+ 1) = r2|L(t) = r1),

=

∑
t∈T I(L(t) = r1)I(L(t+ 1) = r2) + βr1r2∑

t∈T I(L(t) 6= ∅)I(L(t+ 1) 6= ∅) +
∑
r2,r2∈R βr1r2

.

Similarly, β(r1, r2) is the parameter to eliminate zero transition
probabilities. We also use the aggregate transition statistics of
users to help modelling users with sparse data, which can be
represented as follows,

βr1r2 = β0 ·
∑
v∈V

∑
t∈T

I(Lv(t) = r1) · I(Lv(t+ 1) = r2),

Then, we have:

p(LC |L) =
1

P (L)

∏
t∈T

T (LC(t), LC(t+ 1)),

where P (L) can be calculated by using n-order transition
matrix.

On the other hand, as we can observe from Section IV,
the trajectories in external information are obviously sparser
than those in the anonymized dataset. It indicates that in real
external trajectory, for each pair of adjacent non-empty S(t1)
and S(t2), we generally have |t1 − t2| � H . Thus, we can
assume that external records are independent regardless of
whether their dependent ISP records are observed. In this way,
the computational complexity can be significantly reduced.
Taking 0-order Markov model for example, we have:

p(S(t)|L) =

H∑
p=0

∑
r∈R

G(p, S(t), r)p(LC(t− p) = r|L),

where π and σ in Gπ,σ are omitted for simplicity. In addition,
p(LC(t− p) = r|L) is the probability of a record at location
r in time slot t− p, which can be represented as follows,

p(LC(t− p) = r|L) =


E(r), L(t− p) = ∅,
1, L(t− p) = r,

0, otherwise.

By this way, the complexity can be reduced from O(T ·RH) to
O(T ·R ·H), which is also similar for 1-order Markov model.
The influence of ignoring dependency of external records will
also be analyzed in Section VIII.

C. Modelling User Behavior

In previously proposed methods, we calculate the probabil-
ity p(S|L) by only considering the observed records in S such
that S(t) 6= ∅ as shown in (3), and ignoring the unobserved
time slots t with S(t) = ∅. However, (3) holds only when
records in S and L are generated independently, which is not
true in practice. For example, when a person is using cellular
phone, the location will be requested by some applications with
a larger probability. Similarly, when a user shares a check-
in, it is more likely to access Internet in the near time (e.g.,
navigation services, location-based services). The consequence
here is that spatio-temporal records in different datasets are
not generated independently. Thus, in order to calculate the
conditional probability p(S|L) more accurately, we need to
consider the similarity score in terms of correlation of record
generation in different datasets.

Specifically, we focus on whether there exists a record at
time slot t in S and L while ignoring their concrete value.
Thus, we define the 0-1 variable Ix to indicate whether x
equals to ∅, i.e., if x = ∅ then Ix = 0; otherwise Ix = 1.
Then, the similarity score can be expressed as:

DB(S,L) := log
∏
t∈T

P (IS(t)|IL(t))

=
∑

η,χ∈{0,1}

(1− |IS(t) − η|)(1− |IL(t) − χ|) logPη|χ,

where the correlation are characterized by four parameters
P1|1, P1|0, P0|1, and P0|0. For example, P0|1 represents the
probability of S(t) to be ∅ under the condition of L(t) 6= ∅.
Then, the combined similarity score can be calculated as:

DGM−B = DGM +DB.

We refer to this upgrade version of GM algorithm as the GM-B
algorithm. However, different with π and σ in GMM, which
can be set to be empirical value, parameters of Px|x highly
depend on the ground truth data. For the same reason, the
GM-B algorithm can only be used when there is a thorough
understanding of the dataset (e.g., sufficient ground truth
data to train the parameters). Thus, GM-B algorithm shows
the best performance that can be achieved in practice, while
GM algorithm shows the performance when we do not have
sufficient ground truth data.

D. Baseline Algorithm

For baseline comparisons, we also propose two simplified
versions which only consider spatial mismatches and temporal
mismatches, respectively. We refer to them as spatial matching
(SM) algorithm and temporal matching (TM) algorithm.

Spatial Matching Algorithm (SM). The SM algorithm
ignores the mismatch in temporal dimension, and only matches
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Fig. 8. Performance of different de-anonymization algorithms using Weibo’s app-level trajectories as the external information.

records at the same time slot with Gaussian distribution. Then,
its similarity score can be defined as:

DSM(S,L) = log
∏

S(t)6=∅

1

2πσ2
exp(− (S(t)− L(t))2

2σ2
).

Similarly with GM algorithm, when L(t) is ∅, the margin
distribution is used to estimate the PDF of S(t).

Temporal Matching Algorithm (TM). On the contrary,
the temporal matching algorithm only matches locations by
regions, and it sums the weighted minimum time interval to
obtain the similarity score as follows,

DTM(S,L) =
∑
S(t) 6=∅

π(arg min
p∈T ,S(t)=L(p)

|t− p|).

Specifically, we use empirical temporal mismatch distribution
shown in Fig. 5 as π(t).

VIII. PERFORMANCE EVALUATION

Now, we systematically evaluate the performance of our
algorithms and compare them with existing and baseline
methods. In the following, we apply our algorithms on different
trajectory datasets to perform de-anonymization. In addition,
we vary key parameters and experiment settings to examine
the robustness of the proposed algorithms.

A. De-anonymization Attack

De-anonymization using Weibo’s App-level Trajectories.
As a primary experiment, we evaluate the performance of
different algorithms by using Weibo’s 56,683 app-level tra-
jectories as the external information to de-anonymize the ISP
dataset. In Fig. 8, the hit-precision is calculated as functions of

different metrics of external trajectories, including number of
records, number of distinct locations, and the radius of gyration
[17] of the external trajectories.

Fig. 8(a) shows that SM algorithm does not perform
better than existing algorithms, especially compared with those
tolerating spatio-temporal mismatches, e.g., NFLX and MSQ.
On the other hand, TM algorithm shows a better performance
than SM algorithm, indicating tolerating temporal mismatches
is more important than tolerating spatial mismatches in de-
anonymization attacks. The intuition is that spatial mismatches
are bounded by the strong locality of human movements, while
temporal mismatches are not physically bounded.

In addition, we find that GM algorithm (modelling both
spatial and temporal mismatches) achieves much better re-
sults. The hit-precision of GM is 10% higher compared with
existing algorithms. Finally, by comprehensively modelling
users’ behavior, GM-B algorithm achieves another significant
performance gain (7% hit-precision). Overall, a large number
of records help to improve the de-anonymization accuracy. The
best hit-precision of our proposed algorithm achieves 41% for
external trajectories with more than 10 records, improving over
72% compared with the existing algorithms.

We notice that after the number of records get higher than
10, the performance gain stalls. In Fig. 8(b), we directly show
the relationships between the hit-precision with the number
of distinct locations of external trajectories. The results show
a very different trend: the hit-precision is rapidly growing
with the number of distinct locations. For external trajectories
with about 10 distinct locations, we can de-anonymize the
corresponding ISP trajectory with the best hit-precision over
77%.

Radius of gyration reflects the range of a user’ activity
area. It is defined as the mean square root of the distance
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Fig. 9. Performance of different de-anonymization algorithms using Dianping and Weibo Check-in trajectories as the external information.

of each points in the trajectory to its center of mass [17]. It
can be calculated by rg =

√
Σt∈T ,S(t) 6=∅(S(t)− Scm)2/n,

where n is the number of non-empty elements in S, i.e., n =∑
t∈T I(S(t) 6= ∅). In addition, Scm =

∑
t∈T ,S(t) 6=∅ S(t)/n

is the center of mass of the trajectory. As we can observe, the
best hit-precision in terms of radius of gyration only achieve
52%. Compared with Fig. 8(b), the result indicates that the
number of distinct locations is a more dominating factor in
the de-anonymization attack.

As mentioned in Section V-B, POIS, WYCI, HIST, ME
and NFLX are based on “co-located” events. These algo-
rithms are likely to be sensitive to spatial mismatches and
even spatial resolutions. To be fair for these algorithms, we
examine their performance under different spatial resolutions
(temporal resolution is set to the default value 1 hour). For
comparison purposes, we also mark the performance of GM
and GM-B in the figures (using default 1 hour and 1km). As
shown in Fig. 8(d), most algorithms, i.e., NFLX, WYCI and
HIST, achieve their best performance under our default spatial
resolution of 1km, while POIS and ME algorithms achieve
their best performance under the spatial resolution of 2km.
Our proposed algorithms still outperform existing algorithms,
i.e., the GM and GM-B algorithms improve the mean hit-
precision by 31.6% and 83.8% relative to the best performance
of existing algorithms respectively.

Similarly, POIS, HMM, ME and MSQ are based on “con-
current” events, making them potentially sensitive to temporal
resolutions. Fig. 8(e) shows their performance of under dif-
ferent temporal resolution (spatial resolution is set to default
1km). The result shows that HMM and MSQ algorithms
achieve their best performance under our default temporal
resolution of 1 hour, while POIS and ME achieve their best
performance under the temporal resolution of 30min. Our
proposed algorithms still outperform existing algorithm, e.g.,
performance gap of GM and GM-B algorithms are 21.6% and
69.9% relative to the best existing algorithm respectively.

Validation using Weibo Check-in Trajectories. To vali-
date our observations, we further evaluate the performance of
our algorithms using Weibo check-ins trajectories as external
information. We firstly focus on the 503 check-in trajectories
that have at least 1 records at the same time-window with
ISP dataset. The hit-precision is shown as the function of the
number of records of check-in trajectories in Fig. 9(a). As
we can observe, more records in check-in trajectories help to

improve the de-anonymization accuracy. In addition, our pro-
pose GM and GM-B algorithm outperform other algorithms.
The largest performance gap between our proposed algorithms
and existing algorithm achieves about 20% when there are 8
records in the check-in trajectories.

Fig. 9(b) shows the mean hit-precision of de-anonymization
based on synchronized and historical Weibo check-ins. The
mean hit-precision is very low because the synchronized
check-ins are extremely sparse. For example, as shown in
Fig. 1, over 80% users have less than 2 records. The historical
check-ins have more data points but can no longer use the
“encountering event” to match with the ISP data, leading to
a low hit-precision. In addition, the historical check-ins can
help to improve the de-anonymization accuracy for certain
algorithms (e.g., WYCI, HIST, HMM and our proposed GM,
GM-B algorithms). Therefore, we only show their mean hit-
precision of using historical check-ins versus not using them.
Clearly, utilizing the historical check-in improves the perfor-
mance of all the algorithms. Intuitively, historical check-ins
can greatly mitigate the sparsity issues synchronized check-in
trajectories.

Validation using Dianping Trajectories. Finally, we apply
our algorithms to de-anonymize the ISP dataset using the
45,790 app-level trajectories from Dianping as the external
information. This experiment has two purposes. First, to use
Dianping’s dataset to evaluate the performance of our algo-
rithms. Second, to simulate the scenario where ground-truth is
not available to train the GM-B algorithm. Here, we assume the
attacker does not have the ground-truth data from Dianping to
estimate the parameters for the GM-B algorithm. Instead, we
directly apply the parameters estimated from the Weibo dataset
to the Dianping experiment (empirical GM-B). As shown in
Fig. 9(c), the empirical GM-B has a competitive performance
with the best existing algorithm and GM algorithm with
parameters learnt from Dianping trajectory data. The result
shows the robustness of our proposed algorithm.

B. Parameter Evaluation

Finally, we examine how selected parameters in our algo-
rithm influence the attack results.

Impact of the Parameters in GMM. Fig. 10 shows the
sensitivity of GMM’s performance against different parameter
settings. Fig. 10(a) shows the average hit-precision of the GM
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Fig. 10. Performance vs. different parameters in GMM.

algorithm with different maximum tolerate delay Hu. We use
Weibo’s app-level trajectories with 2+ distinct locations. As we
can observe, the hit-precision is improved slowly with a very
slow rate with Hu. For a better performance, Hu should be
set to a large value. However, as mentioned in Section VII-B,
the computational complexity of GM algorithm increases with
Hu. Thus, we should compromise between accuracy and
computational complexity in real de-anonymization attack.

Next, we examine the impact of parameter π and σ in
the GMM. For an adversary without a detailed ground-truth
dataset, these parameters cannot be estimated by the EM
algorithm. To this end, instead of using parameters produced
by the EM algorithm, we apply different parameters from the
empirical distribution fitting: σ(p) is set to be 0.5km for all p,
and π(p) is set to be the power-law or exponential distribution.
Then, we compare their performance in Fig. 10(b).

From the results, we find that GM algorithm using power-
law empirical parameters outperforms the one using exponen-
tial empirical parameters. The result is consistent with our
prior observation that Weibo’s mismatches follow a power-law
distribution. In addition, the performance of using power-law
empirical parameters is very close to that of the ground-truth
parameters estimated by the EM algorithm. This indicates that
our algorithm is robust — the performance does not depend
on an accurate parameter estimation as long as the suitable
distribution model is selected.

Impact of the Parameters in Markov Mobility Model.
The key parameter of the Markov mobility model is the
component. Below, we evaluate the impact of the order of
Markov and location context.

In Fig. 11(a), we show the impact of using 0-order Markov
or 1-order Markov, as well as ignoring the dependency between
external records. Specifically, we use 0-order (simplified) to
represent the GM algorithm with 0-order Markov mobility
model ignoring dependency between external records. In ad-
dition, maximum tolerate delay Hu is set to be 1 hours, and
π and σ use the value estimated by EM algorithm. As shown
in Fig. 11(a), very small difference of hit-precision can be
observed between different settings, indicating that the order
of Markov and dependency between external records have
small impact on the performance. In addition, Fig. 11(b) shows
the relative performance gain for GM algorithm with location
context compared with it without location context. As we can
observe, by utilizing the location context, over 25% relative
performance gain is achieved, demonstrating its effectivity.
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Fig. 11. Performance vs. different components in the Markov model.

Experiment Limitation. As mentioned in Section V-B,
for each trajectory in the external datasets, there must exist
a matched trajectory in the ISP dataset. In practice, however,
the external dataset may contain users that are not in the ISP
dataset. To this end, the performance of all de-anonymization
algorithms (including ours) is an upper bound. The above
experiments have demonstrated the advantage of our proposed
algorithms based on the relative comparisons with existing
algorithms.

In summary, we demonstrate that de-anonymization attack
can be more effective by tolerating spatial and temporal
mismatching (GM algorithm), and modeling the user behavior
of the given service (GM-B algorithm). Specifically, the total
performance gain in terms of hit-precision is more than 17%
compared with the existing algorithms. Further, by adding
historical check-ins and location context, another 30% to
150% relative gain can be achieved. Finally, we show that the
proposed algorithms are robust against the parameter settings
of the models. The result suggests that even without ground-
truth data to estimate parameters, our proposed algorithms will
stay robust using empirical parameters.

IX. DISCUSSION & CONCLUSIONS

In this work, we use two sets of large-scale ground truth
mobile trajectory datasets to extensively evaluate commonly
used de-anonymization methods. We identify a significant
gap between the algorithms’ empirical performance and the
theoretical privacy bound. Further analysis then reveals the
main reasons behind the gap: the algorithm designers often
underestimate the spatio-temporal mismatches in the data col-
lected from different sources and the significant noises in user-
generated data. Our proposed new algorithms that are designed
to cope with these practical factors have shown promising
performance, which confirms our insights.

Our work has key implications to de-anonymization al-
gorithm designers by highlighting the key factors that matter
in practice. For example, we show that temporal mismatches
are more damaging than spatial mismatches. The intuition is
that spatial mismatches are naturally bounded by the strong
locality of human movements. To this end, having the algo-
rithm tolerating temporal mismatches (or both) is the key. On
the other hand, in order to provide better location privacy
protections, practical factors should also be considered. Our
result shows that both user mobility patterns and location
context have helped the de-anonymization. This means it might
be no longer sufficient to use simple mechanisms to manipulate
the time and location points in the original trajectories. Privacy
protection algorithms should consider the user and location
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context to provide stronger privacy guarantees (e.g., using
differential privacy [12]). As for the further work, we plan
to investigate de-anonymization attacks by considering other
types of external information, e.g., social graphs [19], [20],
[29], [35] or user’s home and work addresses and designing
better privacy protection mechanisms.
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