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Abstract—In this paper, we propose JSgraph, a forensic engine
that is able to efficiently record fine-grained details pertaining
to the execution of JavaScript (JS) programs within the browser,
with particular focus on JS-driven DOM modifications. JSgraph’s
main goal is to enable a detailed, post-mortem reconstruction of
ephemeral JS-based web attacks experienced by real network
users. In particular, we aim to enable the reconstruction of social
engineering attacks that result in the download of malicious
executable files or browser extensions, among other attacks.

We implement JSgraph by instrumenting Chromium’s code
base at the interface between Blink and V8, the rendering and
JavaScript engines. We design JSgraph to be lightweight, highly
portable, and to require low storage capacity for its fine-grained
audit logs. Using a variety of both in-the-wild and lab-reproduced
web attacks, we demonstrate how JSgraph can aid the forensic
investigation process. We then show that JSgraph introduces
acceptable overhead, with a median overhead on popular website
page loads between 3.2% and 3.9%.

I. INTRODUCTION
It is well known that JavaScript (JS, for short) is the

main vehicle for web-based attacks, enabling the delivery of
sophisticated social engineering, drive-by malware downloads,
cross-site scripting, and other attacks [20], [26], [29], [8], [14].
It is therefore important to develop systems that allow us to
analyze the inner workings of JS-based attacks, so to enable
the development of more robust defenses. However, while
extensive previous work exists on JS code inspection [9], [8],
[42], [41] and web-based attack analysis [4], [37], [35], [44],
[2], an important problem remains: to evade defense systems
and security analysts, web-based attacks are often developed
to be ephemeral and to deliver the actual attack code only if
certain restrictive conditions are met by the potential victim
environment [26], [20], [45]. Therefore, there is a need for
JS-based attack analysis tools that can enable real-time in-
browser recording, and subsequent detailed reconstruction, of
live security incidents that affect real users while they simply
browse the web.

In this paper, we aim to meet the above mentioned needs
by proposing JSgraph, a forensic engine that is able to effi-
ciently record fine-grained details pertaining to the execution of
JavaScript programs within the browser, with particular focus

on JS-driven DOM modifications. Ultimately, our goal is to
enable a detailed, post-mortem reconstruction of ephemeral
JS-based web attacks experienced by real network users.
For instance, we aim to enable the reconstruction of social
engineering attacks that result in the download of malicious
executable files or browser extensions, among other attacks.

Our main target deployment environment is enterprise
networks, including both mobile and non-mobile network-
connected devices. In such networks, it is common practice
to perform forensic investigations after a security incident
is discovered, and our primary goal is to aid such forensic
investigations by providing fine-grained details about web-born
attacks to the network’s devices.

To achieve our goal, we design JSgraph to satisfy the
following main requirements:

• Efficient Audit Log Recording. Because we aim to record
web attacks in real time, as they affect real victims, and
in consideration of the fact that most web attacks are
both difficult to anticipate and ephemeral, we need audit
log recording to be always on. Consequently, the main
challenge we face is whether it is feasible to record
highly detailed information related to in-browser JS code
execution without significantly impacting the browser’s
performance and usability.

• No Functional Interference. We aim to avoid any mod-
ification to the browser’s code base that would alter its
functionalities. For instance, some debugging tools that
perform in-browser record and replay, such as Time-
Lapse [4] and ReJS [44], alter the rendering engine to
force it to effectively run in single-threaded mode. As this
may have an impact on both rendering performance and
behavior, we deliberately avoid making any such changes.

• Portability. To make it easily adoptable, we aim to
implement a system that is highly portable. To this
end, we build JSgraph by instrumenting Chromium’s
code base at the interface between its rendering engine
(Blink) and the JavaScript engine (V8). By confining the
core of JSgraph within Blink/V8 (more precisely, within
Chromium’s content module [6]), we are able to inherit
Chromium’s portability, thus making it easier to deploy
JSgraph on multiple platforms (e.g., Linux, Android,
Mac, Windows), and different Blink/V8-based browsers
(e.g., Opera, Yandex, Silk, etc.) with little or no changes.

• Limited Storage Requirements. Because security incidents
are often discovered weeks or even months after the
fact, we aim to minimize the storage requirements for
JSgraph’s audit logs, making it feasible to retain the logs
for extended periods of time (e.g., one year or longer).
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In a nutshell, JSgraph works as follows (system details are
provided in Section II). Given a browser tab, JSgraph monitors
every navigation event, logs all changes to the DOM that occur
for each page loaded within that tab, records how JS code is
loaded (i.e., whether it is defined “inline” or loaded from an
external URL), follows the execution of every compiled JS
script, and logs every change that a script (or a callback) makes
to the DOM. This enables the reconstruction of how a page’s
DOM evolved in time, and how changes to that DOM exactly
came about. Ultimately, this enables a forensic analyst to trace
back what JS script or function was responsible for making
a given DOM change, including pinpointing what JS scripts
were responsible for presenting a social engineering attack to
the victim, and how the attack was actually constructed within
the DOM.

To make JSgraph efficient, we implement its core logging
functionalities by extending the DOM and JS code tracing
functionalities offered by Chromium’s DevTools. We then
show that our system introduces acceptable performance over-
head. For instance, we show that, on the top 1,000 websites
according to Alexa, JSgraph running on Linux introduces a
median website page load overhead of 3.2%, and a 95th-
percentile overhead of 7.4%. Besides building an instrumented
browser that can efficiently record fine-grained audit logs,
JSgraph also implements a module for abstracting its fine-
grained logs into more easily interpretable graphs. A moti-
vating example that illustrates how this can help in analyzing
in-the-wild web attacks is provided in the next Section I-B.

A. Threat Model
JSgraph aims to accurately record information that enables

the reconstruction of web attacks, with an emphasis on social
engineering malware attacks, but excluding attacks to the
browser software itself. Namely, we assume the browser’s
code is part of our trusted computing base (TCB), along with
the operating system’s code. As JSgraph is implemented via
lightweight instrumentation of the browser, we also assume
that JSgraph’s code is part of the TCB.

This entails that fully recording the behavior of drive-by
exploit kits [16], for example, is outside the scope of this
paper. Nonetheless, we should notice that JSgraph is capable
of accurately recording the execution of malicious JS code
delivered by exploit kits, up to the point in which the browser
itself is compromised. If the exploit succeeds, we cannot
guarantee that JSgraph will not be disabled, or that the logs
produced afterwards will be accurate, because the exploit code
could alter the logging process. At the same time, the logs
recorded before a successful exploit could be securely stored
outside the reach of possible tampering from the compromised
browser, for example by using append only log files [31], [3],
[34].

B. Motivating Example
In this section, we walk through a motivating example to

show how JSgraph can aid the forensic investigation of web
security incidents. Specifically, we analyze a real-world social
engineering malware download attack promoted via malicious
advertisement. The attack was observed on May 12, 2017.
Overview: The attack works as following (see Figure 1).
(a) The user simply searches for “wolf of wall street full
movie”; (b) After clicking on the first search result, the browser
navigates to gomovies[.]to. (c) Clicking on the play button

to start streaming the movie causes a new window to popup,
under the pressupdateforsafesoft[.]download domain name. An
alert dialog is displayed, with the message “Update the latest
version of Flash Player. Your current Adobe Flash Player
version is out of date.” Notice also that the same page displays
a “Latest version of Adobe Flash Player required [...]” message
right under the URL bar. (d) Clicking the OK button causes
a download dialog box to be shown. (e) Finally, clicking on
the “Download Flash” (or “OK”) button initiates a .dmg file
download. Interestingly, after the download starts, the attack
page also displays the instructions that the user needs to follow
to install the downloaded software.
Attack Properties: Searching for the downloaded file’s SHA1
hash1 on VirusTotal produced no results. Upon submission, 10
out of 56 anti-viruses found the file to be malicious. At the time
of writing, Symantec labels the file as OSX.Trojan.Gen.

By leveraging a passive DNS database and domain
registration information, we discovered that the two
domain names that are used to deliver the malicious
binary, namely pressupdateforsafesoft[.]download and
pressbuttonforupdate[.]bid, are related to more than 300
domain name variations that are highly likely used for a large
malware distribution campaign, because they shared close
name similarity, date of registration, and resolved IP addresses
(e.g., pressandclickforbestupdates[.]download, pressyoourbest-
button2update [.]download, clickforfreeandbestupdate[.]
download, click2freeupdatethebest[.]bid, etc.). In addition, we
found that in a time window of about eight days, more than
one thousand clients (roughly one third of which were located
in the US) may have fallen victim to this malware campaign.
How JSgraph can Help: The question we would like to answer
is: “how did this attack work under the hood?” Answering this
question is important, because knowing how the attack is deliv-
ered can greatly help in developing effective countermeasures.
Below, we discuss how JSgraph can help in answering this
question.

Remember that JSgraph is an always-on in-browser record-
only system, which aims to perform an efficient recording of
any DOM change, with particular focus on DOM changes
triggered by JS code execution. Our goal is to record highly
detailed audit logs that can enable the reconstruction of com-
plex JS-based attacks. At the same time, we aim to provide a
tool that can present a forensic analyst with a high-level and
thus more easily interpretable description of how the attack
played out.

Our analysis of the attack starts with retrieving, from
the JSgraph logs, the URL that served the executable file
download. One may ask “how can the forensic analyst know
where to look for potential malware downloads?” To help
answering this question and aid the analysis process, JSgraph
instruments the browser so that it can record if a file download
(of any kind) is initiated, the URL from which the download
occurs, and the hash and storage path where the file was
saved (while not currently implemented, JSgraph can also
easily store a copy of every downloaded file in the audit logs).
Similarly, JSgraph also instruments the browser to record the
download and installation of new browser extensions. It is
therefore straightforward to explore JSgraph’s logs to identify
all file (or extension) download events. This allows a forensic

1flshPlay2.42.dmg: 1b9368140220d1470d27f3d67737bb2c605979b4
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(a) (b)

(c) (d) (e)
Fig. 1: Overview of in-the-wild social engineering malware download attack

analyst to spot potential malicious software installations. In the
particular example we consider here, a forensic analyst may
notice that an executable file named flshPlay2.42.dmg
was downloaded from a suspicious .bid domain name (i.e.,
pressbuttonforupdate[.]bid). We assume this to be our starting
point for attack analysis.

JSgraph’s audit logs report fine-grained details about where
a given piece of JS code originated from, what event listen-
ers it registered (if any), exactly what DOM modifications
it requested, and how those changes were made (e.g., via
document.write, explicit DOM node creation and inser-
tion, change of a DOM element’s parameters, etc.). Now, let us
refer to the graph in Figure 2, which we automatically derived
by post-processing and abstracting JSgraph’s audit logs (see
also the legend in Figure 6 in Section III). The details on
how this graph was generated are provided in Section III. In
this section, we will leverage the graph simply as an example
of how JSgraph can help in simplifying the analysis of web
attacks.

The graph was computed by starting from the download
URL (the node at the bottom highlighted in red) and back-
tracking along browsing events, until the beginning of the
browsing session (e.g., until a parent tab first opened). What
the graph shows is that the user first visited www.google.
com. Notice that the search query string typed by the user
is not shown in the first graph node. The reason is that
Google uses XMLHttpRequests to send search keywords
to the server and dynamically load the search results, and
that the page’s URL is changed by JS code by leveraging
history.pushState() without triggering any navigation.
This type of information is captured in detail in the JS
audit logs, as shown in Figure 3; however, for the sake of
simplicity our log visualization tool does not include them
in the graph. Nonetheless, the forensic analyst could use the
graph to identify nodes of interest, and then further explore
the related detailed logs, whenever needed.

Figure 2 shows that the user then navigated to gomovies[.]
to. There, the browser was instructed to load and execute
a piece of JS code (Script 362) that registered an event
listener for mousedown events on an element of the page.
As the user clicked to watch the movie (see Figure 1b),

the callback was activated, which first created a “no source”
iframe element (the source is indicated as about:blank),
dynamically generated some JS code, and injected the new
script (Scrip 622) in the context of the newly created
iframe, as also shown in Figure 4. As the new JS code is
injected into the DOM, it is compiled and executed, triggering
a window.open call. A new window is then opened, with
content loaded from onclkds[.]com, including a JS script
that redirects to adexc[.]net by resetting the page’s location.
Then, an HTTP-based redirection takes the browser to a page
on pressupdateforsafesoft[.]download. As we will see later, this
page renders as shown in the screenshots of Figures 1c-1e
(notice that while JSgraph does not log visual screenshots,
this functionality could be easily implemented very efficiently
with the approach used by ChromePic [43]). As the user clicks
on the download button (see Figure 1d), this corresponds to
clicking on an HTML anchor that navigates the browser to the
pressbuttonforupdate[.]bid, triggering the .dmg file download.

We would like to emphasize that this backtracking graph
provides a high-level, and more easily interpretable abstraction
of the highly complex web content loaded by the browser. In
fact, the gomovies[.]to page alone contains 121 scripts, for
a total of more than 6.2MB of (mostly obfuscated) JS code.
Also, the pressupdateforsafesoft[.]download page contains a
large amount of JS code, which is needed to create the social
engineering portion of the attack. JSgraph condenses these to
report only the content of interest that had a direct role in
leading to the actual malware attack.

To further analyze the social engineering code delivered
by the attack, and how the malware download is actually
triggered in practice, the forensic analyst could then fo-
cus on the last step of the attack, namely the page un-
der pressupdateforsafesoft[.]download, and ask JSgraph to
perform forward tracking. The resulting graph is shown in
Figure 8 in Section IV. While we defer a detailed explanation
of the forward tracking graph to Section IV, from Figure 8 we
can notice that the JS code shows an alert popup, listens to
the user’s clicks (which is needed to begin the file download),
and schedules callbacks, which we found are used to display
the installation instructions shown in Figure 1e.
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Fig. 2: Malware attack analysis using JSgraph: backtracking graph.

InspectorForensicsAgent::handleRecordXHRDataOpenForensics: OPENED: 1
InspectorForensicsAgent::handleRecordXHRDataReadyStateForensics: ReadyState: 1
InspectorForensicsAgent::handleRecordXHRDataReadyStateForensics: ReadyState: 1
ForensicDataStore::recordAddEventListenerEvent : eventTarget: 68966990005520, listener: 25269018159104 
InspectorForensicsAgent::willSendXMLHttpRequest : URL: https://www.google.com/search?sclient=psy-ab&biw=1215&bih=555
&q=wolf+of+wall+street+full+movie&oq=wolf+street+of+wall+full&gs_l=hp.3.0.0i22i30k1l4.21523.30020.0.31402.24.22.0.0.0.0. ...
InspectorForensicsAgent::handleRecordHistoryStateObjectAdded: frame: 25269014741568,  
Url: /?gws_rd=ssl#q=wolf+of+wall+street+full+movie, Type: 0

Fig. 3: JSgraph audit logs – Excerpt 1 (simplified)

InspectorForensicsAgent::handleCreateChildFrameLoaderForensics
ForensicDataStore::recordChildFrame : requestURL: about:blank, frame: 25269023519680
InspectorForensicsAgent::handleCreateChildFrameLoaderEndForensics
ForensicDataStore::recordInsertDOMNodeEvent: m_selfNode: 43987025453064, 
m_parentNode: 43987026382560, m_nodeSource: <iframe style="display: none;"></iframe>
InspectorForensicsAgent::didModifyDOMAttr: m_selfNode: 43987025302224, m_nodeSource: <script type="text/javascript"></script>
ForensicDataStore::recordInsertDOMNodeEvent: m_selfNode: 43987026264856, m_parentNode: 43987025302224, 
m_nodeSource: window.top = null;window.frameElement = null;
var newWin = window.open("https://onclkds.com/?auction_id=9a51fc8f-2e6d-4125- ... ", "new_popup_window_1494561683103", ""); 
window.parent.newWin_1494561683114 = newWin; window.parent = null; newWin.opener = null;
InspectorForensicsAgent::handleCompileScriptForensics : Thread_id:140362442277824, 
Script_id:622, URL: , line: 0, column: 0, Source: window.top = null; window.frameElement = null; 
var newWin = window.open("https://onclkds.com/?auction_id=9a51fc8f-2e6d-4125-  ... ", "new_popup_window_1494561683103", "");
window.parent.newWin_1494561683114 = newWin; window.parent = null; newWin.opener = null; 
InspectorForensicsAgent::handleRunCompiledScriptStartForensics : Thread_id:140362442277824, 
iframe: 25269023519680, Script_id: 622
InspectorForensicsAgent::handleWindowOpenForensics : URL: https://onclkds.com/?auction_id=9a51fc8f-2e6d-4125-…, 
frameName: new_popup_window_1494561683103, windowFeaturesString: 

Fig. 4: JSgraph audit logs – Excerpt 2 (simplified)

C. Differences w.r.t. Previous Work
We now discuss how the same attack described in Sec-

tion I-B could be analyzed using previous work, and compare
these alternative approaches to JSgraph. We should first re-
member that one of our main requirements is that we need
to be able to record the “real” attack, as it happens on the
user’s system. The reasons for this requirement are multiple: (i)
Web attacks are often ephemeral, and visiting the attack URLs
at a later time (e.g., using high-interaction honeypots) would
likely produce different or no results [19]. (ii) The attack code
is often environment-sensitive, and may behave differently
on other machines, compared to what the victim actually
experienced. (iii) As we are interested in social engineering
attacks, user actions are critical to “activate” the attack [39];
however, user actions are often difficult to reproduce exactly,
unless a highly detailed recording of user-browser interactions
is performed at the time of the attack. (iv) Some social
engineering attacks (e.g., malware attacks) are delivered via
malicious advertisement; because ad-serving networks may
introduce a high level of non-determinism (e.g., due to the
ad bidding process typical of online ad networks), it may be
difficult to reproduce the exact same attack multiple times.

Keeping the real-time recording requirement in mind, there
exist a few alternative approaches that may enable the analysis
of in-the-wild web attacks that affect real users. One possible
way would be to record, and later statically analyze, all the
HTML and JavaScript content loaded by the browser during a
time window that includes the attack. This could be done by
recording all network traffic traces, or by using a lightweight
system such as ChromePic [43]. However, understanding how
the browser loaded, parsed, interpreted, and rendered the
web content from network traces is notoriously hard [38].
Also, while ChromePic can efficiently record screenshots and
DOM snapshots from inside the browser, it does so only at
significant user interactions (e.g., at every mouse click, key
press, etc.). This limits the visibility on DOM changes and
JavaScript behavior that occurred in between such interactions.
In addition, in these scenarios code analysis presents several
challenges, since the code may need to be re-executed at a later
time on a separate system, to try to fill the gaps, thus suffering
from limitations similar to the ones faced by honey-clients.

Concretely, referring to the example in Figure 2,
ChromePic would not be able to track and reconstruct fine-
grained details about the JS code that enables the social
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engineering attack. For instance, ChromePic would not be able
to log any detailed information about how Script 362 injects
an iframe into the page, about the existence of Script 622
(which is dynamically generated) and how it opens a new
window, and how Script 623 redirects the browser towards
the malware download URL.

Another possible approach is to use record and replay
(R&R) systems. However, VM-level R&R systems [12], [11]
tend to be very inefficient, preventing them from being de-
ployed on mobile devices, for example. On the other hand, OS-
level R&R systems [36], [10] are more efficient, though they
are not easily portable to different devices. Unfortunately, both
these types of systems leave a large semantic gap that makes
analyzing web attacks difficult. In fact, while they can re-run
browsing sessions, they cannot interpret what is happening in-
side the browser, such as interpreting the interactions between
the JS engine (e.g., V8) and the rendering engine (e.g., Blink)
that carried out the attack. Attaching a JS debugger inside the
browser (e.g., via DevTools) at replay time would alter the
browser execution, compared to the recorded traces, and thus
prevent a correct system-level replay to move forward.

Browser R&R systems such as TimeLapse [4] and We-
bCapsule [37] may come to help, in that they are able to
record fine-grained details internal to the browser (rather then
“external”, as in system-level R&R systems), and thus fill
the semantic gap that characterizes VM- and OS-level R&R
systems. Unfortunately, because they attempt to record and
replay all events at the rendering engine level (e.g., inside
WebKit or Blink), both these systems tend to have high time
and storage overhead and may fail to deterministically replay
the recorded browsing traces. For instance, in an attempt to
achieve deterministic replay, TimeLapse changes the rendering
engine to effectively prevent multi-threading, thus violating
the no functional interference requirement. On the other hand,
WebCapsule does not explicitly record JS-level events such
as scheduled actions, and is therefore incapable of performing
deterministic replay [37].

JavaScript-level R&R debugging tools, such as
Mugshot [35] and ReJS [44], offer direct visibility into
JS execution and JS-driven DOM changes, and could
therefore be used to perform a replay and step-by-step
analysis of JS attack code. However, these systems were
not intended for always-on recording, and are not suitable
for analyzing adversarial JS code. For instance, Mugshot is
not transparent, in that it modifies the JS environment, and
could be detected (and potentially also disabled) by the JS
attack code being recorded. On the other hand, ReJS forces
the rendering engine to run in single-threaded mode, thus
impacting the browser’s functionality and performance in a
way similar to TimeLapse.

Unlike the works mentioned above, JSgraph aims to be
an efficient, always-on, record-only system that is capable
of producing highly detailed audit logs related to browsing
sessions, and that can assist in the investigation of in-the-wild
web attacks.

II. JSgraph SYSTEM
In this section, we explain how JSgraph works internally.

A. Overview
JSgraph consists of two components: (i) an efficient, fine-

grained audit logging engine, and (ii) a visualization module

(detailed in Section III) that can post-process the audit logs
to produce a higher-level description of navigation events, JS
code inclusion and execution, DOM modifications, etc.

To efficiently record internal browsing events, we
leverage and extend Chrome’s DevTools. Specifically,
we implement a new InspectorAgent, extending the
InspectorInstrumentation APIs to collect fine-
grained information that is not otherwise gathered by existing
DevTools agents. This makes JSgraph highly portable. In fact,
because the vast majority of JSgraph’s code resides within
Chromium’s content module [6], it could be easily adapted
and integrated in other browsers that make use of Blink/V8 for
rendering and JS execution, such as Opera, Yandex, Amazon
Silk, etc.

B. Efficiently Recording Page Navigations
Reconstructing the sequence of pages visited by a

user is essential to understanding how modern web at-
tacks work. For instance, the social engineering attack
we described in Section I-B is delivered through multi-
ple pages/URLs. To efficiently record fine-grained details
about how the browser navigates from one page to an-
other, we extend Chromium’s DevTools instrumentation hook
didStartProvisionalLoad, and register our JSgraph
inspector agent to listen to the related callbacks. Furthermore,
we instrument receivedMainResourceRedirect to ef-
ficiently record HTTP-based page redirections.

C. Logging iframe Loading Events
Unlike page navigations, to record the loading of an

iframe whose content loads from a URL expressed in the
src parameter, we create a new instrumentation hook into
WebLocalFrameImpl:: createChildFrame. This al-
lows us to record a pointer to the iframe to be loaded
and the URL from which the content will be retrieved. As
the iframe’s web content is loaded asynchronously by the
browser, this information allows us to correctly track all
DOM changes related to the iframe’s DOM, including the
compilation and execution of JS code and callbacks within the
iframe’s context.

D. Tracking DOM Changes
Our main goal in recording DOM changes is to be

able to reconstruct the state of the DOM right before
each JS code execution, thus allowing us to understand
how potentially malicious code modifies the DOM to
launch an attack. To improve efficiency, instead of
creating a full DOM snapshot every time a JS script or
callback function is executed, we incrementally record all
DOM changes applied by Blink, including all changes
requested by the HTML parser and the JS engine via
the Blink/V8 bindings. To achieve this, we leverage six
different DevTools instrumentations: didInsertDOMNode,
characterDataModified, willRemoveDOMNode,
didModifyDOMAttr, didRemoveDOMAttr, and
didInvalidateStyleAttr. Moreover, to efficiently
store information about the node that was added/removed or
modified, we take advantage of Blink’s DOM serialization
functionalities2.

We now provide more details about how we leverage the
InspectorInstrumentation APIs listed above.

2see /src/third party/WebKit/Source/core/editing/serializers/Serialization.h

5



• didInsertDOMNode monitors the insertion of DOM
nodes. To allow us to later reconstruct the exact position
of the inserted node in the page DOM, its parent node
pointer, its next sibling and the HTML markup of the
node (using createMarkup). This will also record all
node attributes, including the src parameter, if content
needs to be loaded from an external source. Because the
DOM tree can be built by assembling document fragments
(e.g., by inserting an entire DOM subtree via JS code),
the inserted node could actually represent the root of a
subtree with many children nodes. Therefore, we log the
markup representation for the entire subtree. Notice that
knowing the subtree root’s parent and next sibling is still
sufficient to correctly reconstruct the state of the DOM
tree during analysis.

• characterDataModified logs any modifications to
text nodes. For instance, during DOM construction, if a
text node is too large to load at once, the parser will
create a node with partial data and perform a character
data modification once the content of the node finishes
loading. JSgraph simply records the node pointer and the
final state of the node content. Because text nodes do not
have attributes, and for efficiency reasons, we record the
value of the text node without having to store the full
node markup.

• willRemoveDOMNode monitors the deletion of a DOM
node. We record the pointer of the node that is going to be
removed, so that the event can be reconstructed by parsing
the audit logs and matching the deleted node pointer to
the related entry in the reconstructed DOM tree.

• didModifyDOMAttr and didRemoveDOMAttr,
record all changes to a DOM node’s attributes, whereas
didInvalidateStyleAttr is called when a node’s
style change is requested.

E. Logging Script Executions and Callbacks
Before explaining how we record scripts and callbacks

execution, we first need to provide some high-level background
on how JS scripts and callbacks are executed in Blink/V8. Let
us first consider scripts. Essentially, a scripts can be defined
“inline,” as part of the page’s HTML, or can be loaded from
an external source, e.g., by expressing a URL within the src
parameter of a script HTML tag. When a script node is
inserted into the DOM, Blink will retrieve the related source
code and pass it to V8 to be compiled. The JS compiler
will give the script’s code a unique script identifier within
that V8 instance, and will then execute the script right after
compilation. On the other hand, callbacks are JS functions
that are defined either within a JS script or as a DOM
level 0 event handler, and will be executed when a certain
circumstance to which they “listen” arises (e.g., an event such
as mousedown, keypress, etc.). There exist multiple types
of callbacks, including event callbacks, scheduled callbacks,
animation callbacks, mutation observers, errors, and idle task
callbacks. It is also worth noting that a callback function could
be defined in a JS script script A, but registered as a callback
for an event (e.g., using addEventListener) by a separate
script script B.

To record complex relationships between DOM elements,
scripts, and callback functions, which can greatly help in
understanding the inner-workings of JS-driven web attacks,
we extend Chromium’s DevTools by adding a number of

instrumentation hooks within the code bindings that link Blink
to V8 and allow JS code to access and modify the DOM.

Specifically, we instrument Chromium’s
V8ScriptRunner and ScriptController, adding five
instrumentation hooks: to handle events such as CompileScript,
RunCompiledScriptStart, RunCompiledScriptEnd,
CallFunctionStart, and CallFunctionEnd.

At the moment in which V8 is called to compile a script,
we record detailed information that will be difficult to retrieve
once the code is compiled, such as the source code, the
source URL from which the code was retrieved, and the start
position of the code in the HTML document (in terms of text
coordinates) for “inline” scripts. We also record the script ID
assigned by V8 to the compiled code, to link future executions
of the script to its source code. When RunCompiledScriptStart
is called, we also log the script ID and its execution context,
by recording the address of the frame (or page) within which
the script was loaded.

Because JavaScript execution within a tab can be seen as
single-threaded (notice that WebWorkers do not have direct
access to the DOM), all the DOM changes that are made by
JS code in between the start and end of a RunCompiledScript
can be uniquely attributed to a specific script ID recorded in
the audit logs. Similarly, observing when a CallFunction starts
and ends allows us to record the name of the callback function,
the script ID related to the source code where it was defined,
and the line and column number where the function is located
in the source code. However, these instrumentation hooks do
not allow us to determine how the callback functions were reg-
istered and triggered. To this end, we additionally instrument
calls to addEventListener and willHandleEvent, to
log the execution of the callbacks. This allows us to determine
what JS script registered a certain callback function, and for
what particular event. In addition, when a callback is triggered,
we can record the details of the event that triggered it. For
instance, if the event is a mousedown, we can record the
event type and mouse coordinates; if the event is a keypress,
we record the key code; etc. (our instrumentation also takes
event bubbling into account, to record the correct target DOM
element). In a similar way, we also record callbacks associated
to XMLHTTPRequests, for which we record the request
URL, request header, ready state, response content, etc. We
follow a similar logging process to record details related to
scheduled callbacks, animation callbacks, idle task callbacks,
etc. JSgraph also records messages passed between frames,
thus enabling the reconstruction of possible multi-frame at-
tacks. In addition, JSgraph can naturally handles asynchronous
scripts. From JSgraph’s point of view, script tags with an
”async” attribute do not differ from synchronous scripts. The
reason is that for all scripts, whether they run asynchronously
or not, JSgraph will record the exact time when a script is
parsed and compiled by the browser, as well as whenever a
script performs an action on the page.

Notice that, because we automatically log DOM and JS
events belonging to different tabs into different log files, the
recorded events described above can be correctly attributed to
a specific web page and related frames. This per-tab logging
approach also serves the purpose of enabling opportunistic
offloading and improving log security and privacy, because
each tab can be independently encrypted (with different keys
from a key escrow) and archived.
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Nested Scripts and Callbacks – One factor that complicates the
logging and reconstruction of the relationship between scripts
and callbacks, is the possibility of nested execution. The nested
execution of JS code may occur due to dynamic JS code gen-
eration, such as when a JS script, script A, adds an additional
script tag into the DOM (e.g., via document.write()),
thus triggering the execution of a new script, script B. In this
case, the execution of script A will pause until script B is
compiled and executed, after which the execution of script A
will resume (a similar scenario may occur in other corner
cases; for instance, if an iframe with no source and a DOM
level 0 onload event callback is dynamically added to the
DOM via JS code). JSgraph is able to correctly reconstruct
such nested executions as well.

F. Logging Critical Events
Of course, logging only DOM changes does not allow us to

have a complete picture of how JS code may impact the user’s
browsing experience. To this end, we instrument a number
of critical JS methods and attributes related to changing
the page’s location (e.g., with location.replace() or
location.href, opening a new tab or window (e.g., with
window.open()), making asynchronous network requests
(e.g., sending an XMLHttpRequest), etc.

Identifying what JS methods and attributes to instrument
is challenging, because there exist literally thousand of APIs
available to JS code. Fortunately, we are only interested in
JS APIs that have an effect on the page, by either modifying
the current DOM tree, changing the page URL, opening new
pages, loading new web content, passing messages between
page components, etc. Conversely, we do not need to log
calls to APIs that allow for reading the value a variable (e.g.,
Node.nodeType(), location.toString(), etc.), as
they have no effect on the page/DOM, and are therefore
less important to understand how a piece of malicious JS
constructed page elements to launch an attack (e.g., a social
engineering attack). To identify what APIs are of interest, we
proceed as explained below.

In practice, Blink and V8 communicate via an interface
referred to as “bindings.” Essentially, all calls to JS meth-
ods or attributes that request or pass data to the rendering
engine (e.g., to insert or remove a DOM node or change
its attributes, read/change the URL, open a new window,
etc.) must pass through these bindings. The bindings are
dynamically generated when Chromium is compiled, via a
fairly complex process (explaining this process is out of the
scope of this paper; we refer the reader to [7] for details).
However, once the bindings are compiled, they can be ac-
cessed at a specific disk location3, which for brevity we
refer to as blink/bindings. Under blink/bindings,
a large number of C++ classes are created, within mul-
tiple subdirectories and .cpp files, that enable access to
Blink from JS code. Especially, V8DOMConfiguration::
MethodConfiguration mappings are of particular inter-
est. For instance, these include methods such as Document::
write, Window:: setTimeout, XMLHttpRequest::
send, and so on, just to name a few. A small excerpt from
the bindings code for the Window’s MethodCallbacks is
shown in Figure 5.

To select what methods should be instrumented, we

3/src/out/Debug/gen/blink/bindings/

static const V8DOMConfiguration::MethodConfiguration V8WindowMethods[] = {
    {"stop", V8Window::stopMethodCallback, ...},
    {"open", V8Window::openMethodCallback, ...},
    {"alert", V8Window::alertMethodCallback, ...},
    {"confirm", V8Window::confirmMethodCallback, ...},
    {"prompt", V8Window::promptMethodCallback, ...},
    {"requestAnimationFrame", V8Window::requestAnimationFrameMethodCallback, ...},
    {"cancelAnimationFrame", V8Window::cancelAnimationFrameMethodCallback, ...},
    {"requestIdleCallback", V8Window::requestIdleCallbackMethodCallback, ...},
    {"cancelIdleCallback", V8Window::cancelIdleCallbackMethodCallback, ...},
    {"setTimeout", V8Window::setTimeoutMethodCallback, ...},
    {"clearTimeout", V8Window::clearTimeoutMethodCallback, ...},
    {"setInterval", V8Window::setIntervalMethodCallback, ...},
    {"clearInterval", V8Window::clearIntervalMethodCallback, ...},
    ...
};

Fig. 5: Excerpt from Blink/V8 bindings code we instrumented.

proceeded as follows. First, we automatically instrumented
the bindings of an unmodified version of Chromium,
so to output a log message every time a Blink/V8
MethodConfiguration callback is called. Then, we used
this instrumented version of Chromium to browse highly-
dynamic websites, using the top ten global sites list from
Alexa.com. Finally, we compiled a list of all Blink/V8 binding
callbacks that were activated during these browsing sessions.
This gave us a little less than one hundred APIs that we had to
manually inspect. As the vast majority of API names clearly
communicate the API’s functionality, it was quite straight-
forward to select the API calls to be included in the audit
logs, because they either directly impacted the page’s content
(e.g., changing page location, passing messages between page
components, etc.) or represented critical events (e.g., opening
a new window, showing an alert popup, etc.), and the ones
that should be excluded. For a few APIs, we had to refer
to the related documentation (i.e., JavaScript documentation
or HTML standard) to understand their effect on the page.
However this process was also straightforward. Once we
identified the APIs to be logged, the more time consuming
part of this process was to actually instrument the APIs at
Blink’s side, which required us to interpret and serialize all
objects passed as arguments to each API of interest.

Notice that the API selection process discussed above
is simply meant to reduce engineering effort. With more
engineering time, our instrumentations could be extended
to all APIs, and could potentially also be automated using
Chromium’s own dynamic code generation process for the
bindings [7]. At the same time, the APIs currently instru-
mented by JSgraph are the most commonly used, and are
therefore suitable for demonstrating JSgraph’s capabilities and
estimating performance overhead. Finally, as we will show in
Section IV, the current instrumentation is sufficient to capture
complex malicious code behavior.

G. Some Optimizations
When didModifyDOMAttr, didRemoveDOMAttr, or

didInvalidateStyleAttr hooks are called, we need to
be careful about what we log. As mentioned earlier, we use
Blink’s createMarkup function to log the HTML markup
related to DOM nodes. However, createMarkup logs both
the DOM node that is being modified as well as all its children,
thus potentially generating a large (and costly) log at every
node attribute modification. To avoid logging the entire subtree
under a node, we therefore implemented a customized version
of createMarkup to log only the actual node markup (along
with the node pointer, parent, and next sibling pointer), without
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logging its children. In addition, we should notice that some
HTML elements may contain attributes with large amounts of
data. For instance, the img tag may have a src that embeds
an entire (e.g., base64 encoded) image into a data: URL4.
Similarly, CSS styles could also include data: URLs (e.g.,
to include a background image)5. To avoid storing the same
large markup every time a DOM attribute or style is changed,
therefore improving performance and storage overhead, we
proceed as follows. The first time a node containing a data:
URL is observed by our instrumentation hooks, we cache a
hash of the data: URL. Next time an attribute or style is
modified and we log the event, if the data: URL has not
changed we only log a placeholder that indicates that the
data: URL has not changed since we have last seen that
node. This will be reflected in the logs, from which it is then
easy to reconstruct the complete representation of the node by
retrieving the full data: URL from the earlier logs related
to the same node.

In large part, the overhead imposed by JSgraph comes from
the log I/O overhead (i.e., writing the logs to disk). To reduce
this overhead, we offload the job of storing the audit logs
to disk to a separate Blink thread. To this end, we leverage
base::SingleThreadTaskRunner6, which allows us to
create log writing tasks that are responsible for periodically
storing batches of recorded events and can be executed in a
separate thread (via PostTask).

III. VISUALIZING JSgraph’S AUDIT LOGS
As discussed in Section II, JSgraph’s audit logs are very

detailed, as they contain fine-grained information about all
DOM modifications, the source code of JS scripts, critical JS
API calls and parameters, file download events, etc. Finding
interesting information among these detailed logs can be time
consuming.

To aid the investigation process, JSgraph allows for visu-
alizing important events captured in the audit logs in the form
of a graph. A complete legend showing the meaning of the
node shapes and what relationships are tracked by JSgraph

4https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics of HTTP/
Data URIs

5https://css-tricks.com/data-uris/
6see /src/base/single thread task runner.h

is shown in Figure 6. The visualization process works in two
steps. First, the analyst selects an event or object of interest.
For instance, in the malware download attack we analyzed in
Section I-B, the forensic analyst selects the suspected malware-
serving URL as starting point. Then, given the starting point,
JSgraph can produce two different graphs: a backward tracking
graph and a forward tracking graph.

The backward tracking graph follows “causal” relation-
ships, and visualizes the chain of events that directly affected
the node of interest. As an example, let us refer again to
the example in Section I-B, and consider the window.open
event in Figure 2. From that event, the next iteration of the
backward tracking process flags Script 622 as having caused
the window.open event. Notice that other JS scripts that may
be present on the same page are deliberately not shown (unless
they directly affected the currently considered node). Going
one step further (or one causal relationship “up”), Script 622
was directly affected (created and inserted into an iframe) by
an event callback triggered by a mousedown event; and so on.
The backward tracking ends when no new causal relationships
can be found.

Referring again to the legend in Figure 6 and the example
backward tracking graph in Figure 2, we should notice that
the critical events essentially represent calls to the JS APIs we
discussed in Section II-F. Also, notice that a script can create
a node and insert it into the DOM as child of another parent
node, thus producing a parent-child relationship. Similarly,
a JS script can define a JS function, and then register that
function as a callback.

The forward tracking graph aims to visualize different type
of information. Specifically, given a starting node, we visualize
significant events that have been “caused” by the starting
node. We then recursively proceed by considering all nodes
affected by the starting node, and performing forward tracking
from each of them. An example of forward tracking graph
related to the example in Section I-B is shown in Figure 8 (in
Section IV). This graph was obtained by selecting the second-
to-last URL from the backward tracking graph in Figure 2
(i.e., the URL of the page immediately preceding the malware
download event), and walking forward through the logs.

To better explain what type of relationships are captured
by JSgraph’s visualization module, we now provide another
example, for which we can analyze both the HTML content
and the related graph. Figure 7 shows the forward tracking
graph related to the HTML content in the top left quadrant.
The logs were produced using our instrumented browser to
load the HTML page, and then click on the “Click me” button.

Notice that the showHello function is defined as part of a
script, but registered as an event listener via a DOM level
0 onclick attribute. Also, notice that the definition of the
anonymous function that is set as a callback for setTimeout,
is also represented in the graph, with an edge from Script 52 to
the Scheduled Callback node (notice that the function name is
missing from the graph, since this is an anonymous function).
Also, the graph shows that Script 51 is loaded from an external
URL, and that it performs critical operations on the window
object (an attempt to create a popunder window).

IV. ANALYSIS OF WEB ATTACKS
In this section, we report details on three experiments

aimed at demonstrating how JSgraph can record fine-grained
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 // s2.js
 window.open("http://wikipedia.org").blur();
 window.focus();

 // HTML content
 <html>
 <script src="s2.js"></script>
 <body>
 <script>
 function showHello() {
    setTimeout(function(){ alert("Hello!"); }, 1);
 }
 </script>
 <p>Click here to show "Hello" </p>
 <button onclick="showHello()">Click me</button>
 </body>
 </html>

main
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Fig. 7: HTML+JS content and related forward tracking graph

details about web-based attacks and make their post-mortem
analysis easier. We will first provide details on the forward
tracking graph for the malware download attack discussed
in Section I-B. Then, we will analyze an in-the-wild social
engineering attack that tricks users into installing a malicious
extension, and a phishing attack based on a cross-site scripting
(XSS) vulnerability in real web software [18].

A. Forward Tracking for Malware Download Attack
In Section I-B, we presented the backward tracking graph

in Figure 1, which reconstructs the navigation steps and
events that took the user from the starting page (the Google
search) to the malware download event. On the other hand,
Figure 8 reconstructs the JS scripts, callbacks, critical events,
and navigations that occurred starting from the URL the user
visited right before the malware download event (i.e., starting
from the second-to-last node in Figure 1).

Figure 8 shows that an “inline” (i.e., not externally loaded)
script (Script 624) first defines an anonymous function (at
source line 13, column 19) to be registered as a scheduled
callback. The scheduled callback registration is actually ex-
ecuted later, after a user’s click, which activates the event
callback at logic order 2956. This behavior corresponds to
the excerpt from the attack code shown below. By analyzing
the audit logs related to these graph nodes, we found that the
onclick callback will be used later to display the installation
instructions (hence the function name “showStep”) for the
downloaded software (see Figure 1e).
//DOM level 0 event
<a href="hxxp://update4soft.pressbuttonforupdate.bid/..."

onclick="showStep();" class="download_link"></a>
//Script_624 (simplified)
<script>
function showStep() {
window.onbeforeunload=null;
var nAgt=navigator.userAgent;
...
setTimeout(function(){
window.location=
"hxxp://update4soft.pressbuttonforupdate.bid/..."; },1000);}

</script>

Script 625 and Script 627 define and register an event

listener for the load and DOMContentLoaded events,
whereas Script 628 defines the showPopup function that will
display the “fake” download dialog box in Figure 1d, and
registers it as a scheduled callback. As it executes, Script 629
will raise a system alert with the message “Update the latest
version of Flash Player. Your current Adobe Flash Player
version is out of date,” as shown in Figure 1c. This has
the effect of “freezing” the tab, including the execution of
all scheduled callbacks and the parsing of the rest of the
page, until the user clicks “OK”. As the user clicks on “OK”
to close the alert window, the browser finishes loading the
page, and fires the DOMContentLoaded and load event
listeners, at logic order 2936 and 2937, respectively. Then, the
scheduled callback at logic order 2938 is activated to show
the “fake” download dialog box (Figure 1d), using JS-driven
animations activated at logic order 2939-2955. When the user
clicks on the download button, the static HTML anchor shown
in the previous attack code excerpt is activated, to navigate
to the malware download URL. At the same time, the DOM
level 0 onclick callback will execute the registration of the
scheduled callback, which will be triggered one second later
(at logic order 2957) to make sure the malware download is
indeed initiated.

B. Social Engineering Extension Download Attack
We also found that visiting the gomovies[.]to site from a

Linux machine would lead to the installation of a malicious
browser extension, rather than a .dmg software package7.

As in the malware download case, clicking on the play
button on gomovies[.]to causes a new window to popup, under
the getsportscore[.]com domain name. As shown in Figure 9,
a popup dialog box lures the user to add an extension called
Sport Score to Chrome, which has been found to be responsible
for delivering unwanted ads and PUP software8 and is detected
by the ESET anti-virus as JS/Adware.StreamItOnline9. Then,
clicking the “ADD TO CHROME” button causes a browser
extension installation popup.

The backward and forward tracking graphs for this attack
are shown in Figure 10 and 11, respectively. The backward
tracking graph is quite similar to the malware download
case (though the ad-delivering and extension serving domains
are different), and we therefore show only part of it, for
space reasons. The forward tracking graph is more complex.
The reason is that the install.getsportscore[.]com site, which
lures the user into installing the extension, contains a large
amount of user tracking code (due to space constraints, we
omit a detailed analysis of the tracking code). However,
the mechanism that triggers Chrome’s extension installation
authorization popup is fairly straightforward, and can be seen
in both the backward and forward tracking graphs. Specifically,
the JS code at install.getsportscore[.]com uses jQuery to first
register a callback on mouse clicks, as shown in the attack
code snippet below (extracted from our audit logs).

$addToBrowser.click(function (e) {
e.preventDefault();
installExtension();

});

7The User-Agent string used during the recording of the previous malware
download attack was purposely set to advertise a Mac OS machine, rather
than a Linux machine

8Simply search for: chrome ”Sports Score” extension adware
9http://www.virusradar.com/en/JS Adware.StreamItOnline/map/day
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The jQuery library translates the above code into the reg-
istration of two callbacks: one on the DOMContentLoaded
event, which in turn registers a callback for click events on
the “ADD TO CHROME” button shown in Figure 9b.

C. XSS Attack Analysis
We now discuss an attack based on an XSS vulnerability

on the PHPEcho CMS 2.0-rc3, a content management system
(this vulnerability was first disclosed by Jose Luis Gongora
Fernandez in June 2009 [18]). We use this vulnerability to
conveniently reproduce a possible XSS-driven phishing attack
using a keylogger to steal Facebook login credentials. To
reproduce the attack, we deploy PHPEcho CMS 2.0-rc3 on
a virtual machine with CentOS 5.11, Apache 2.2.3, PHP
5.1.6, and MYSQL 5.0.95, to satisfy PHPEcho’s software
dependencies. We then leverage third-party attack code to
trigger the XSS vulnerability, and launch the phishing attacks.

We reproduce the Facebook phishing attack by making
use of a JS-based key-logger adapted from [18]. First, using
the XSS vulnerability, a fake Facebook login user interface is
injected and forced to alway appears in the middle of the page,
as shown in Firgure 12a. A site visitor may get confused by this
window, and type in their username and password to make the
window disappear. In the background, a key-logger captures
the victim’s keypresses and sends them to the attacker in real
time. Even if the victim realized that this may be a phishing
attempt before submitting the credentials, the attacker will have
gained precious information that may be used for reducing the
search space in a following brute-force attack, or other social
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Fig. 11: Extension download attack: forward tracking graph

engineering efforts, for example.
To identify similar attacks in the audit logs, an analyst may

start by looking for frequent callbacks triggered by keypress
events, paired with critical events such as XMLHttpRequests,
loading a third-party image, iframe, etc., that may be used to
exfiltrate the stolen information. In our specific example, the
analysis may start from the pair of keypress event callback and
loading of a third-party image, as highlighted in red in Fig-
ure 12b. An analysis of the (partial) backward tracking graph,
drawn by starting from those events, shows that Script 62 is
responsible for registering the keypress callbacks. Also, the
script registers a scheduled callback that periodically loads
an external image. Looking at the image’s URL parameters,
we can notice that this is likely used to encode the key code
captured by the keypress callback, thus sending them to the
attacker. From the forward tracking graph in Figure 12c, which
was drawn starting from the page that contains Script 62, we
can see that the scheduled callback defined by Script 62 at line
15, column 27, is activated multiple times during the attack
(once every 200 milliseconds, via a setTimeInterval),
and that every time it is called, it loads the same third-party
image with different parameter values.

V. PERFORMANCE EVALUATION
In this section, we present a set of experiments dedicated

to measuring the overhead introduced by our JSgraph browser
instrumentations.

A. Experimental Setup
JSgraph is built upon Chromium’s codebase version

48.0.2528.1. Our source code modification amount to approx-
imately 2,400 lines of C++ code, 150 lines of IDL code
and 800 lines of Python code. We plan to make JSgraph
available at https://github.com/perdisci/JSgraph. To evaluate
the overhead imposed by our code changes to Chromium, we
performed three different sets of experiments using both Linux
and Android systems, as described below. In all experiments,
we leveraged Chromium’s TRACE_EVENT instrumentation
infrastructure [5] to accurately measure the time spent exe-
cuting our instrumentation code, and to create the baseline
performance measurements needed to compute the relative
overhead introduced by JSgraph.
Linux – automated browsing (Linux Top1K): The goal of this
experiment is to measure the performance of JSgraph on
a large set of popular websites. To this end, we leverage
the list of top 1,000 most popular websites according to
Alexa.com. Because it is very time consuming to manually

visit all these websites, we created an automated browsing
process. Specifically, we implemented a tool that allows us to
automatically visit the top 1,000 websites, and browse on each
one for about two minutes. To roughly mimic the browsing
behavior of a human user, during the two minute time interval,
our system clicks on three randomly selected links, in an
attempt to navigate through different pages on each site. For
this, we leverage xdotool10, and program it to send a random
number of Tab plus Enter keystrokes, to simulate a click on
a random link. To account for variability in the performance
measurement due to random inputs, we visit each website 5
times. Overall, our automated browsing system spent about 167
hours browsing on these top websites. In order to perform this
experiment, we used a machine with 32 CPU cores (AMD
Opteron 6380) and 128 GB of RAM, and 10 QEMU-based
virtual machines running Linux Ubuntu 14.04.
Linux – manual browsing (Linux Top10): With this experiment,
we further explore JSgraph’s performance on ten top US web-
sites. This includes performing searches on Google, watching
videos on Youtube, browsing on Facebook, sending emails in
Gmail, posting tweets on Twitter, browsing on Reddit, etc.
We used JSgraph to manually browse on each of these highly
dynamic websites for about five minutes, using a Linux-based
Dell Inspiron 15 laptop with a Core-i7 Intel CPU and 8GB of
RAM.
Android - manual browsing (Android Top10): We repeated
the experiment outlined above on an Android-v6.0 Google
Pixel-C tablet with an Nvidia X1 quad-core CPU and 3GB of
RAM. To this end, we compiled an APK version of JSgraph,
and used the adb bridge to collect JSgraph audit logs and
TRACE_EVENT measurements for analysis.

B. Performance Traces
We now provide some details on how we leveraged

Chromium’s TRACE_EVENT instrumentation infrastructure
for profiling JSgraph’s performance. We use three types
of trace events: TRACE_EVENT0, TRACE_EVENT_BEGIN0,
and TRACE_EVENT_END0.

When placed at the beginning of a function,
TRACE_EVENT0 records the execution time spent
on executing the whole function. We add this at the
beginning of all JSgraph’s instrumentation hooks.
In addition, we add TRACE_EVENT_BEGIN0 to
didStartProvisionalLoad to monitor the exact time

10https://github.com/jordansissel/xdotool
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Fig. 12: Analysis of phishing attack with key-logger

when a user navigation is request, and to CallFunctionStart and
RunCompiledScriptStart to monitor the start of each JavaScript
code execution. Furthermore, we add TRACE_EVENT_END0
to CallFunctionEnd and RunCompiledScriptEnd, to
record the end of each JavaScript code execution, and
allow us to separately analyze JS execution time from
page/DOM construction and idle times. Also, we inject
TRACE_EVENT_END0 into loadEventFired, to monitor
the firing of page/frame load events.

Using this instrumentation, we measure four types of
overhead:
• The page load overhead measures the time spent ex-

ecuting JSgraph’s code between the time the web
page first starts loading and when the load event11

is fired for that same page. The baseline is repre-
sented by the execution time spent by the browser
(excluding the time spent into JSgraph’s hooks) be-
tween calls to the didStartProvisionalLoad and
loadEventFired instrumentation hooks.

• Similarly, the DOM construction overhead measures the
time spent by JSgraph’s code (and related baseline ex-
ecution time) in between when the first DOM node is
inserted in the DOM tree for the page and when the user
triggers the navigation to a new page (excluding the time
spent in JS execution).

• The JS execution overhead is measured by considering
the total time spent by the browser to execute JS code
during a given browsing session. Essentially, we sum up
all time intervals in between RunCompiledScriptStart and

11https://developer.mozilla.org/en-US/docs/Web/Events/load

RunCompiledScriptEnd, and between CallFunctionStart
and CallFunctionEnd.

• The overall overhead is measured by considering the en-
tire time spent on a page. For instance, this is often equal
to the time in between when a request to load the page is
made, and when the user triggers the navigation to a new
page. Specifically, we can measure this time interval by
measuring the time distance between consecutive calls to
the didStartProvisionalLoad hook.

In summary, to compute JSgraph’s overhead relative to the
original Chromium code, we use the following simple formula:
o = O

T−O , where o is the relative overhead, O is the absolute
time spent on JSgraph’s code execution, and T denotes the
time interval between browser events as discussed above (T −
O is the baseline time).

C. Experimental Results
Table I lists the results of the three experiments performed

to measure JSgraph’s overhead described in Section V-A. Each
row indicates the results for one of the three experiments. The
columns correspond to the four types of overhead measure-
ments we described in Section V-B. Each table cell reports
the median and 95-th percentile of the relative overhead, o,
seen during the experiments.

The page load column is particularly significant, since
high loading time overhead could frustrate a user and drive
them away from a web page (the relation between page load
time and user satisfaction has been established in previous re-
search [13]). As can be seen from Table I, the 95-th percentile
for the page load overhead is at most 8.2%.
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TABLE I: Performance overhead (50th- and 95th-percentile) percentage overhead
Experiment Overall Page load DOM Construction JS Execution
Linux Top1K 0.5%, 3.1% 3.2%, 7.4% 0.2%, 1.6% 6.8%, 20.1%
Linux Top10 1.6%, 3.7% 3.3%, 5.7% 0.6%, 1.2% 9.6 %, 17.1%

Android Top10 1.5%, 4.7% 3.9%, 8.2% 0.4%, 1.7% 10.2%, 17.3%
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(b) Linux Top10 and Android Top10 Experiments
Fig. 13: Overhead and baseline execution time for page loads

Linux Top1K experiment results indicate the median page
load overhead is only about 3.2%. The JS execution time
overhead median value is also low, at 6.8%. Note that the
results for Linux Top10 and Android Top10 experiments are
also very similar, even though those experiments involved very
active browsing by a human user.

The three graphs in Figure 13 provide further insight into
the performance of JSgraph during the page load phase of
all the experiments reported in Table I. The X-axis represents
the number of domains crawled during the experiment, while
the Y-axis represents time in microseconds, in log scale. In all
the graphs, the solid blue curve represents the base execution
time (i.e., T−O) spent by the browser, excluding any JSgraph
overhead. The curve is obtained by plotting the absolute
execution time for each website visit (i.e. each domain will
be represented at multiple points on the X-axis). The instances
are arranged in increasing order of the baseline execution time.
The red marker indicates the overheads introduced by JSgraph.
We can see that in all the 3 graphs the overhead is about one
order of magnitude smaller than the baseline execution time.

D. Dromaeo Performance Benchmark
To further analyze the overhead introduced by JSgraph, we

make use of Dromaeo, a JavaScript performance benchmark
suite from Mozilla (see dromaeo.com). Using a modern laptop
running Ubuntu Linux, we ran the Dromaeo tests two times: (1)
with JSgraph enabled, thus including the overhead discussed
in Section V-B; and (2) with JSgraph disabled, so that our

instrumentation hooks are not called by Chromium.
With JSgraph enabled, the browser was able to perform

4143 runs/s12; whereas with JSgraph disabled, the browser
performed 4341 runs/s13. Using the relative overhead definition
defined in Section V-B, this translates to about 4.6% overhead.
These results show that JSgraph performed approximately as
in the Linux Top10 experiments (on the same device) reported
in the JS Execution column of Table I.

E. Storage Requirements
The storage requirements for JSgraph are limited. In the

experiments reported in Table I, rows 1-2 (Linux-based exper-
iments), we observed that a total of 50 minutes of very active
browsing on 10 highly dynamic, popular websites resulted in
37 MB of compressed audit logs. This means the average disk
space requirement is only about 0.74 MB per minute of active
browsing. Assuming 8 hours of active browsing per work day,
multiplied by 262 workdays per year, gives us less than 84GB
of audit logs per network user per year, or less than 84TB
of storage for 1,000 network users, for one entire year. For
mobile devices, this requirements reduce even further, to 0.34
MB/minute, or less than 42TB of storage for 1,000 network
users for one year. This is likely due to the more limited web
content typically delivered by websites to resource-constrained
mobile devices. Considering the low cost of archival storage,
this represents a sustainable cost for an enterprise network.

VI. DISCUSSION
Our proof-of-concept implementation of JSgraph has some

limitations. For instance, as discussed in Section II, with more
engineering effort we could instrument all Blink/V8 bindings
that have an impact on any aspect of the page. However, we
should notice that our current instrumentations capture all such
bindings that are activated by JS code running on popular
websites. Therefore, adding audit log instrumentation to rarely
used APIs is unlikely to significantly affect our overhead
estimates, for example.

We should also point out that while the Chromium code
based tends to evolve fairly rapidly, porting JSgraph to newer
versions of Chromium is possible with reasonable effort. In
fact, a large part of the effort for our research team was
to design the system and identify how to extend the Dev-
Tools instrumentation infrastructure to enable the necessary
fine-grained audit logs without introducing high overhead or
altering the browser’s functionalities. Now that this research
task has been performed, and because the DevTools inspector
instrumentation infrastructure is fairly stable, porting our ef-
forts to newer versions of Chrome mostly involves engineering
time. This also implies that, with adequate engineering effort,
JSgraph updates could be deployed with a timeline comparable
to Chrome browser releases. Furthermore, to facilitate deploy-
ability JSgraph could integrate a way for administrators to
enable/disable logging, or to whitelist highly sensitive websites
that should be excluded from recording.

12Archived results: http://dromaeo.com/?id=268497
13Archived results: http://dromaeo.com/?id=268495
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VII. ADDITIONAL RELATED WORK
Along with the previous works discussed in Section I-C,

there exist other studies that are related to JSgraph from
different aspects, as discussed below.
Graph-based Forensic Analysis. Causal graphs that show the
causality relations between subjects (e.g., process) and objects
(e.g., file) are widely used in system-level attack analysis [24],
[15], [23], [25], [27]. They record important system events
(e.g., system calls) at runtime and analyze them in a post-
mortem attack analysis. Recently, a series of works [28], [33],
[32] have proposed to provide accurate and fine-grained attack
analysis. They divide long-running processes into multiple
autonomous execution units and identify causal dependencies
between units. A node in their causal graphs represents fine-
grained execution unit instead of a process in the previous
system call based approaches and an edge shows causal
relations between those units. Bates at el. [1] propose a
novel technique for auditing data provenance of web service
components, called Network Provenance Functions (NPFs).

Dynamic taint analysis techniques [40], [21], [17] can also
be used for causality analysis. They monitor each program
instruction to identify data-flow between system components
(e.g., memory object, file, or network). A causal graph con-
structed by the taint analysis shows data-flow between those
system components.

These techniques present causal relations between system
or network components, however, it is difficult to understand
JavaScript execution from their analysis due to a large semantic
gaps between system-level events and JS execution inside
a browser. JSgraph can complement these techniques and
fill the gap by providing detailed behaviors of JavaScript
execution. For instance, incorporating JSgraph with a system-
level analysis technique will enable seamless reconstruction of
both system-level and in-browser attack provenance.
Record and Replay: System-level record and replay (R&R)
techniques [12], [23], [15], [10], [36] have been proposed
to allow forensic analysis or to recover the system from the
attack. System-level record and replay systems might not be
very helpful to analyze what happend inside the web-browser
because there is a large semantic gap between the system-
level events (i.e., system call) and the high-level events happen
inside the browser such as interaction between the JavaScript
engine (e.g., V8) and the rendering engine (e.g., Blink).

As we discussed earlier, Web-browser R&R systems [4],
[37] and JavaScript R&R techniques [35], [44] have been
proposed, however, they have limitations to allow accurate
forensic analysis of JS execution. Details are discussed in
section I-C.
Static JS Analysis: A few static analysis techniques have been
proposed to identify malicious JS code [9], [14]. For example,
ZOZZLE [9] classifies JS code based on contextual infor-
mation from the abstract syntaxt tree (AST) of the program.
Caffein Monkey [14] identifies malicious JS code based on the
usage of obfuscations and methods in the program. However,
the dynamic features of JavaScript make it difficult to statically
analyze JS code.
Dynamic JS Analysis: Dynamic anlaysis is widely used to
monitor dynamic behaviors of JS programs. Cova et al. [8]
developed a system that can detect and analyze malicius JS
codes by executing them in the emulated environment. They
extract a number of features from the JS code execution and

use machine learning techniques to identify the characteristics
of malicious JS programs. There are a number of symbolic
execution techniques for JavaScript have been proposed such
as SymJS [30] Kudzu [41], Jalangi [42]. Recently, a forced
execution engine for JavaScript, called J-Force [22], has pro-
posed to identify possible malicious execution paths from
the JS code. J-Force iteratively explore execution paths until
all possible paths are covered including the hidden paths by
event and exception handlers. Symbolic executions and forced
execution techniques for JavaScript are generally heavy-weight
and requires special execution environment (e.g., VM-based
framework) as they focus on off-line analysis to reveal security
issues. On the other hand, JSgraph focuses on recording the
“real” attacks as we discussed in Section I-C.

VIII. CONCLUSION
We proposed JSgraph, a forensic engine aimed at effi-

ciently recording fine-grained audit logs related to the execu-
tion of JavaScript programs. JSgraph’s main goal is to enable
a detailed, post-mortem reconstruction of ephemeral JS-based
web attacks experienced by real network users, with particular
focus on social engineering attacks.

We implemented JSgraph by instrumenting Chromium’s
code base at the interface between Blink and V8, and de-
sign our system to be lightweight, highly portable, and to
require low storage capacity for its fine-grained audit logs.
Using a number of both in-the-wild and lab-reproduced web
attacks, we demonstrated how JSgraph can aid the forensic
investigation process. We also showed that JSgraph introduces
acceptable overhead on the browser, which could be further
reduced with some more engineering effort to perform code
optimizations.
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