
1/22

IoTFuzzer: Discovering Memory Corruptions
in IoT Through App-based Fuzzing

Jiongyi Chen1, Wenrui Diao2, Qingchuan Zhao3, Chaoshun
Zuo3, Zhiqiang Lin3,4, XiaoFeng Wang5, Wing Cheong Lau1,

Menghan Sun1, Ronghai Yang1, Kehuan Zhang1

The Chinese University of Hong Kong1, Jinan University2, University of Texas at
Dallas3, The Ohio State University4, Indiana University Bloomington5

2/22

Introduction

More and more IoT devices are entering the consumer market,
forming a huge market:

I Connected ”things” will reach 20.4 billion by 2020 [1]

I Global smart home market will rise to $53.45 billion by 2022

Source: Zion Research Analysis 2017

3/22

Introduction

I More than 90 independent IoT attack incidents have been
reported from 2014 to 2016 [2]

I Examples: Mirai botnet, Reaper

The firmware of IoT device is poorly implemented and loosely
protected

4/22

Vulnerability Detection in IoT Devices

1. Firmware acquisition: vendors may not make their firmware
images publicly available

2. Firmware identification and unpacking: unknown
architectures, proprietary compression/encryption algorithms

3. Executable analysis:
I Static analysis: disassembling errors, inaccurate points-to

analysis, etc
I Dynamic analysis: disabled debugging port, emulation

problems for extracted program, etc

5/22

Motivation

I IoT official apps play an important role in controlling and
managing IoT devices

I They contain rich information about IoT devices

Command

messages

Protocol specifications & encryption

schemes of messages

Major data input

channel of IoT device

6/22

IoTFuzzer

A firmware-free fuzzing framework that:

I aims at detecting memory corruptions in IoT devices

I utilizes program logic in official mobile apps of IoT to produce
meaningful test messages

I fuzzes in a protocol-guided way without explicitly reverse
engineering the protocol

7/22

Technical Challenges

Blank

Blank

I Diverse protocols and
formats (e.g., XML, JSON,
key-value pairs)

I Use of homemade
cryptographic functions

I Crash monitoring

8/22

Our Solutions

I Mutate protocol fields before they are constructed as a
message

I Replay cryptographic functions in context

I Insert heartbeat messages

9/22

System Architecture

I Phase I: App Analysis

I Phase II: Fuzzing

9/22

System Architecture

I Phase I: App Analysis

I Phase II: Fuzzing

10/22

Phase I: UI Analysis

I To identify networking UI elements, we construct code paths
from networking APIs to UI event handlers

I To reach certain activities and trigger the network sending
events, we interact with UI elements and record activity
transitions.

11/22

Phase I: Taint Tracking

The goal is to identify protocol fields and the functions that the
fields pass to

I Taint sources: strings, system APIs, user inputs

I Taint sinks: data uses at networking APIs and encryption
functions

12/22

Taint Tracking Output Example

Example code: Taint tracking outputs:

13/22

Phase II: Runtime Mutation

Hooked functions and mutated parameters in the example code:

I Fuzzing scheduling: to only fuzz a subset of all fields
I Fuzzing policy:

I Change the length of strings
I Change the integer, double or float values
I Change the types, or provide empty values

14/22

Phase II: Response Monitoring

I Response types:
I Expected response
I Unexpected response
I No response
I Disconnection

I Crash detection:
I TCP-based connection: disconnection
I UDP-based connection: inserting heartbeat messages during

fuzzing to confirm the status of IoT devices

15/22

Evaluation

We selected 17 products of different categories offered by
mainstream manufacturers

Device Type Vendor Device Model Protocol and Format Encryption?
IP Camera D-Link DCS-5010L HTTP, K-V Pairs No

Smart Bulb
TP-Link LB100 UDP, JSON Yes
KONKE KK-Light UDP, String Yes

Smart Plug
Belkin WeMo Switch HTTP, XML No
TP-Link HS110 TCP, JSON Yes
D-Link DSP-W215 HNAP, XML No

Printer Brother HL-L5100DN LPD & HTTP No

NAS
Western Digital

My Passport Pro HTTP, JSON No
My Cloud HTTP, JSON No

QNAP TS-212P HTTP, K-V Pairs No
IoT Hub Philips Hue Bridge HTTP, JSON No

Home Router
NETGEAR N300 HTTP, XML No
Linksys E1200 HNAP, XML No
Xiaomi Xiaomi Router HTTP, K-V Pairs No

Story Teller Xiaomi C-1 UDP, JSON Yes

16/22

Evaluation

15 memory corruptions were discovered (including 8 zero-days)

Device Vulnerability Type # of Issues
Belkin WeMo (Switch) Null Pointer Dereference 1
TP-Link HS110 (Plug) Null Pointer Dereference 3
D-Link DSP-W215 (Plug) Buffer Overflow (Stack-based) 4
WD My Cloud (NAS) Buffer Overflow (Stack-based) 1
QNAP TS-212P (NAS) Buffer Overflow (Heap-based) 2
Brother HL-L5100DN (Printer) Unknown Crash 1
Philips Hue Bridge (Hub) Unknown Crash 1
WD My Passport Pro (NAS) Unknown Crash 1
POVOS PW103 (Humidifier) Unknown Crash 1

17/22

Evaluation

Crashes reported by IoTFuzzer v.s. Vulnerability-led crash

18/22

Evaluation

Comparison with two popular fuzzers

18/22

Evaluation

Comparison with two popular fuzzers

18/22

Evaluation

Comparison with two popular fuzzers

18/22

Evaluation

Comparison with two popular fuzzers

19/22

Limitations and Future Work

I Device acquisition: require physical IoT devices

I Connection mode: only support local Wi-Fi connection

I Code coverage: can only fuzz app-related code in IoT devices

I Crash detection: only detect memory corruptions that cause
program to crash

20/22

Summary

I We built a firmware-free fuzzing framework for IoT devices
based on mobile apps

I We developed several new techniques, such as protocol-guided
fuzzing without protocol specifications and in-context
cryptographic and network function replay

I By conducting experiments in real environment, we identified
15 memory corruptions in 17 IoT devices with IoTFuzzer

21/22

Q & A

Thank you!

22/22

References

[1]. Gartner, “Internet of Things (IoT) Market,”
https://www.gartner.com/ newsroom/id/3598917, February 2017
fake line
[2]. N. Zhang, S. Demetriou, X. Mi, W. Diao, K. Yuan, P. Zong,
F. Qian, X. Wang, K. Chen, Y. Tian, C. A. Gunter, K. Zhang, P.
Tague, and Y. Lin, “Understanding IoT Security Through the Data
Crystal Ball: Where We Are Now and Where We Are Going to
Be,” CoRR, vol. abs/1703.09809, 2017.

	motivation
	Our approach
	Technical challenges

