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Introduction

More and more IoT devices are entering the consumer market,
forming a huge market:

I Connected ”things” will reach 20.4 billion by 2020 [1]

I Global smart home market will rise to $53.45 billion by 2022

Source: Zion Research Analysis 2017
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Introduction

I More than 90 independent IoT attack incidents have been
reported from 2014 to 2016 [2]

I Examples: Mirai botnet, Reaper

The firmware of IoT device is poorly implemented and loosely
protected
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Vulnerability Detection in IoT Devices

1. Firmware acquisition: vendors may not make their firmware
images publicly available

2. Firmware identification and unpacking: unknown
architectures, proprietary compression/encryption algorithms

3. Executable analysis:
I Static analysis: disassembling errors, inaccurate points-to

analysis, etc
I Dynamic analysis: disabled debugging port, emulation

problems for extracted program, etc



5/22

Motivation

I IoT official apps play an important role in controlling and
managing IoT devices

I They contain rich information about IoT devices

Command 

messages

Protocol specifications & encryption 

schemes of messages

Major data input 

channel of IoT device
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IoTFuzzer

A firmware-free fuzzing framework that:

I aims at detecting memory corruptions in IoT devices

I utilizes program logic in official mobile apps of IoT to produce
meaningful test messages

I fuzzes in a protocol-guided way without explicitly reverse
engineering the protocol



7/22

Technical Challenges

Blank

Blank

I Diverse protocols and
formats (e.g., XML, JSON,
key-value pairs)

I Use of homemade
cryptographic functions

I Crash monitoring
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Our Solutions

I Mutate protocol fields before they are constructed as a
message

I Replay cryptographic functions in context

I Insert heartbeat messages
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System Architecture

I Phase I: App Analysis

I Phase II: Fuzzing
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System Architecture

I Phase I: App Analysis

I Phase II: Fuzzing
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Phase I: UI Analysis

I To identify networking UI elements, we construct code paths
from networking APIs to UI event handlers

I To reach certain activities and trigger the network sending
events, we interact with UI elements and record activity
transitions.
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Phase I: Taint Tracking

The goal is to identify protocol fields and the functions that the
fields pass to

I Taint sources: strings, system APIs, user inputs

I Taint sinks: data uses at networking APIs and encryption
functions
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Taint Tracking Output Example

Example code: Taint tracking outputs:
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Phase II: Runtime Mutation

Hooked functions and mutated parameters in the example code:

I Fuzzing scheduling: to only fuzz a subset of all fields
I Fuzzing policy:

I Change the length of strings
I Change the integer, double or float values
I Change the types, or provide empty values
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Phase II: Response Monitoring

I Response types:
I Expected response
I Unexpected response
I No response
I Disconnection

I Crash detection:
I TCP-based connection: disconnection
I UDP-based connection: inserting heartbeat messages during

fuzzing to confirm the status of IoT devices
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Evaluation

We selected 17 products of different categories offered by
mainstream manufacturers

Device Type Vendor Device Model Protocol and Format Encryption?
IP Camera D-Link DCS-5010L HTTP, K-V Pairs No

Smart Bulb
TP-Link LB100 UDP, JSON Yes
KONKE KK-Light UDP, String Yes

Smart Plug
Belkin WeMo Switch HTTP, XML No
TP-Link HS110 TCP, JSON Yes
D-Link DSP-W215 HNAP, XML No

Printer Brother HL-L5100DN LPD & HTTP No

NAS
Western Digital

My Passport Pro HTTP, JSON No
My Cloud HTTP, JSON No

QNAP TS-212P HTTP, K-V Pairs No
IoT Hub Philips Hue Bridge HTTP, JSON No

Home Router
NETGEAR N300 HTTP, XML No
Linksys E1200 HNAP, XML No
Xiaomi Xiaomi Router HTTP, K-V Pairs No

Story Teller Xiaomi C-1 UDP, JSON Yes
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Evaluation

15 memory corruptions were discovered (including 8 zero-days)

Device Vulnerability Type # of Issues
Belkin WeMo (Switch) Null Pointer Dereference 1
TP-Link HS110 (Plug) Null Pointer Dereference 3
D-Link DSP-W215 (Plug) Buffer Overflow (Stack-based) 4
WD My Cloud (NAS) Buffer Overflow (Stack-based) 1
QNAP TS-212P (NAS) Buffer Overflow (Heap-based) 2
Brother HL-L5100DN (Printer) Unknown Crash 1
Philips Hue Bridge (Hub) Unknown Crash 1
WD My Passport Pro (NAS) Unknown Crash 1
POVOS PW103 (Humidifier) Unknown Crash 1
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Evaluation

Crashes reported by IoTFuzzer v.s. Vulnerability-led crash
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Evaluation

Comparison with two popular fuzzers
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Evaluation

Comparison with two popular fuzzers
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Limitations and Future Work

I Device acquisition: require physical IoT devices

I Connection mode: only support local Wi-Fi connection

I Code coverage: can only fuzz app-related code in IoT devices

I Crash detection: only detect memory corruptions that cause
program to crash
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Summary

I We built a firmware-free fuzzing framework for IoT devices
based on mobile apps

I We developed several new techniques, such as protocol-guided
fuzzing without protocol specifications and in-context
cryptographic and network function replay

I By conducting experiments in real environment, we identified
15 memory corruptions in 17 IoT devices with IoTFuzzer
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Q & A

Thank you!
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