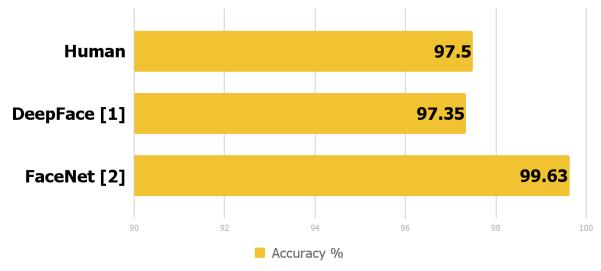


# rtCaptcha: A Real-Time CAPTCHA Based Liveness Detection System



<u>Erkam Uzun</u>, Simon Pak Ho Chung, Irfan Essa and Wenke Lee Department of Computer Science Georgia Institute of Technology, USA Background Cloud Services Attacks Defense Methods Threat Sec. of Current Proposed User Sec. of Proposed Conclusion

Face Authentication Systems


Background





# **Deep Learning Outperforms**

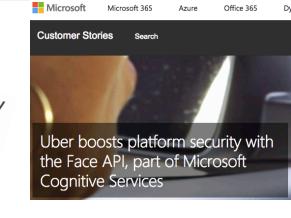
#### Face recognition performance on LFW dataset





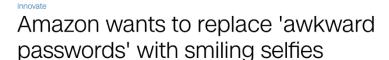
Background Cloud Services Attacks Defense Methods Threat Sec. of Current Proposed User Sec. of Proposed Conclusion




# **Deployed by Major Companies**



HSBC customers can open new bank accounts using a selfie rvices


#### Face Verification Cloud Services

- Microsoft Cognitive Services [3]
- Amazon Rekognition [4]
- Face++ [5]
  - Kairos Human Analytics [6]









by Ivana Kottasova @ivanakottasova

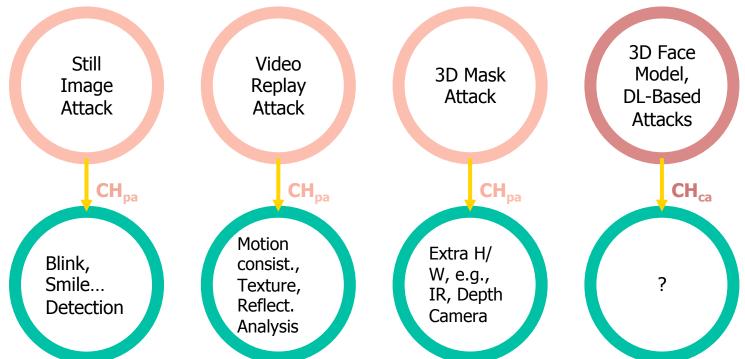
cw tech







ackground Cloud Services Attacks Defense Threat Threat Sec. of Current Proposed User Sec. of Proposed Conclusion




#### **Attack Channels of Biometric Authentication**





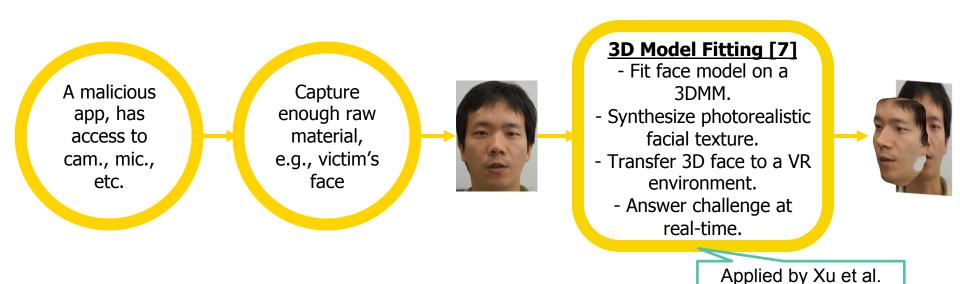
### **Adversarial Models vs Defense Systems**







# Threat Model


#### **Automated compromising attacks.**

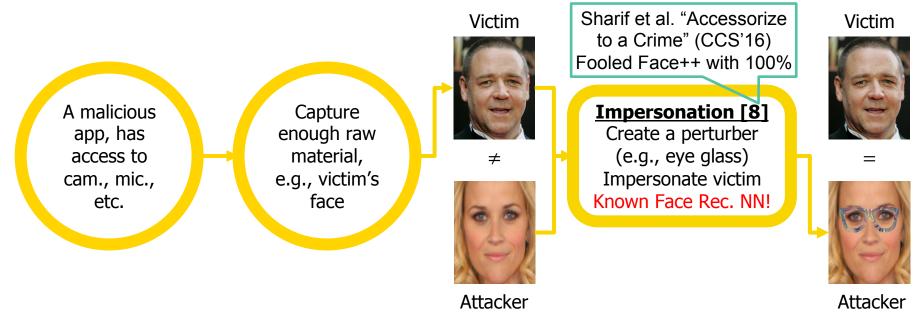
- Camera, microphone and device kernel are compromised.
- No form of attestation.
- Known client-server protocol.
- State-of-the art synthesizers and Captcha breaking tools.
- Authentication server is NOT compromised.





#### **Compromising Attack: Example-1**






"VirtualU" (Usenix'16)

ackground Cloud Services Attacks Defense Threat Threat Sec. of Current Proposed User Sec. of Proposed Conclusion



#### **Compromising Attack: Example-2**





Background Cloud Services Attacks Methods Model Example Systems System Study Conclusion

Face Authentication Face Spoofing Methods Face Spoofing Results Challenge Spoofing Voice Authentication Voice Spoofing Methods Voice Spoofing Results

# Security of Industry Leading Solutions (Face Authentication)

Do we need sophisticated attacks?



## **Security of Cloud Systems**

#### **Face Verification Cloud Services**

- Microsoft Cognitive Services
- Amazon Rekognition
- Face++
- Kairos Human Analytics

#### **Database**

- First 10 subjects of CASIA Face Anti-Spoofing Database [9].
- Six attack images are generated for each subject.

**Attack Vector** 3D<sub>fg</sub> 3Dct8 3Dsf Genuine 2Dcar 2Dske 2Dfem



Face Spoofing Methods

Face Spoofing Results Challenge Spoofing

Voice Authentication



# **Security of Cloud Systems (cont'd)**

| Cognitive    | Baseline/Conf. (%) |        | Spoofed/Overall Confidence (%) |                |                 |                    |                    |                    |
|--------------|--------------------|--------|--------------------------------|----------------|-----------------|--------------------|--------------------|--------------------|
| Service      | ТР                 | TN     | 3 <i>D↓sf</i>                  | 3 <i>D</i> ↓fg | 3 <i>D↓ct</i> 8 | 2 <i>D↓ca</i><br>r | 2 <i>D↓sk</i><br>e | 2 <i>D↓fe</i><br>m |
| MS Cognitive | 100/78             | 100/65 | 100/70                         | 100/75         | 100/70          | 100/82             | 100/84             | 100/86             |
| Amazon       | 100/97             | 100/82 | 100/89                         | 80/77          | 90/67           | 70/84              | 60/84              | 90/89              |
| Face++       | 100/87             | 100/83 | 100/86                         | 100/71         | 100/72          | 90/77              | 70/80              | 70/75              |
| Kairos       |                    | 80/58  | 8                              |                | OENICIK CLOCKIC | 3 & -              |                    |                    |
|              |                    |        | =                              |                | of Man          |                    |                    |                    |



Face Authentication

Face Spoofing Results Challenge Spoofing Voice Authentication



### **Security of Cloud Systems (cont'd)**







MS Cognitive Service



Face Authentication Face Spoofing Methods Face Spoofing Results Challenge Spoofing Voice Authentication Voice Spoofing Methods Voice Spoofing Results

# Security of Industry Leading Solutions (Speaker Authentication)

Do they also vulnerable to spoof?





### Security of Cloud Systems (cont'd)

#### **Speaker Verification Cloud Services**



Microsoft Cognitive Services

#### **Database**

- V↓dnn↑1-7: Contain 7 different DL-based synthesized version of genuine samples from two subjects, both female and male [10].
- V↓asv↑1 to V↓asv↑10: Contain genuine samples and their voice converted (7) and synthesized (3) versions of randomly selected 8 subjects from ASV Spoofing Challenge database [11].

#### Methodology

- 30 seconds of genuine samples are enrolled for each subject. Hence, a group with 10 people in MS Cognitive Service is created.
- Randomly selected different samples for genuine and spoofed voices are tested.



| Test<br>Sample        | Detected as<br>Original (%) | Test<br>Sample      | Detected as<br>Original (%) | Test<br>Sample    | Detected as<br>Original (%) |
|-----------------------|-----------------------------|---------------------|-----------------------------|-------------------|-----------------------------|
| Origina               | 97.0                        | V↓asv↑<br>4         | 60.0                        | V↓asv↑<br>9       | 71.3                        |
| <i>V↓dnn</i> ↑¹<br>-7 | 100                         | <i>V↓asv</i> ↑<br>5 | 77.5                        | <i>V↓asv</i> ↑ 10 | 91.3                        |
| V↓asvî1               | 81.3                        | V↓asv↑<br>6         | 77.5                        |                   |                             |
| V↓asvî2               |                             |                     | 50.0                        |                   |                             |
|                       | rtCantcha: A Real-Time      | LASUT               | d Liveness Detection S      | Notem NDSS 3      | 019                         |

Background Cloud Services Attacks Defense Threat Sec. of Current Proposed User Sec. of Proposed Conclusion

# 2 Proposed System

Fundamental Problem of Existing Schemes

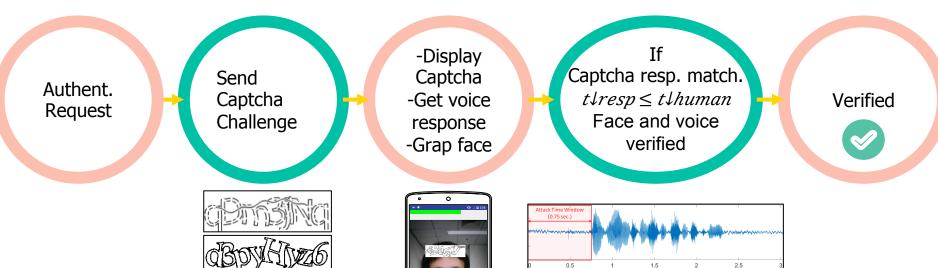


Security relies on audio/face analysis, which has endless improvement in adversarial settings.

Real-Time Captcha (rtCaptcha)



Security relies on an existing liveness detection mechanism.



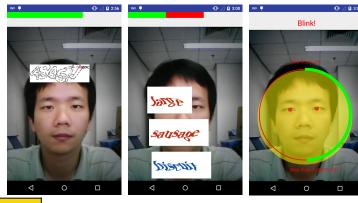

Background > Cloud Services > Attacks > Defense > Threat > Threat > Sec. of Current > Proposed > User > Sec. of Proposed > Conclusion



## **System Overview**

Noah






lackground Cloud Services Attacks Defense Threat Threat Sec. of Current Proposed System Sec. of Proposed Conclusion



#### <u>Challenges</u>

- Plaintext Numeric and Phrases
- Numeric Captchas reCaptcha, Ebay, Yandex
- Animated Phrase Captchas reCaptcha
- Blink/Smile



| Challenge   | Accuracy (%)<br>(1 trial) | Accuracy (%)<br>(2 trials) | Response Time (seconds) |
|-------------|---------------------------|----------------------------|-------------------------|
| Plain-text  | 90.3                      | 100                        | 0.77                    |
| Captcha     | 88.8                      | 98.4                       | 0.93                    |
| Smile/Blink | 85.5                      | 100                        | 5.01                    |





### **Captcha Breaking/Solving Attacks**

**Hum /aud** : Users in our user

study.

**Atc** *↓***typ** : Man-powered Captcha solving services [12].

**Atclocr:** OCR-based Captcha decoding services [13].

Recognition At Chestry State-of-the Response Prime (seconds) Captcha Captcha Atc↓tvp **Scheme** Sample Hum√a Hum Ja Atc/be Atc↓tv Atc↓o Atc√be Atc. lo ud st ud st cr cr p 87.1 96.7 0 77.2 0.90 22.11 2.98 10.27 reCaptcha√num eric 94.1 100 0 58.8 0.73 12.33 2.79 5.98 **Ebay** *↓* **numeric** bad apple 2.2 3.30 96.7 0.89 15.05 15.50 -Time CAPTCHA Based Liveness Detection System, NDSS 2018 Computer Science de L'humer



# **Conclusions**

- Smile/blink etc. detection is weak against spoofing.
- rtCaptcha: Very limited time to;
  - \* Break Captcha
  - \* Synthesize voice/face of the victim.
- Limitation: rtCaptcha needs audible response, which could NOT be usable in certain environments.





- [1] Taigman, Yaniv, et al. "Deepface: Closing the gap to human-level performance in face verification." IEEE CVPR. 2014.
- [2] Schroff, Florian, et al. "Facenet: A unified embedding for face recognition and clustering." IEEE CVPR. 2015.
- [3] https://azure.microsoft.com/en-us/services/cognitive-services/
- [4] http://ws.amazon.com/rekognition
- [5] https://www.faceplusplus.com/
- [6] http://kairos.com/
- [7] Jackson, Aaron S., et al. "Large pose 3D face reconstruction from a single image via direct volumetric CNN regression." *IEEE ICCV*. 2017.
- [8] Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition." ACM CCS. 2016.
- [9] Zhang, Zhiwei, et al. "A face antispoofing database with diverse attacks." *IEEE ICB*. 2012.
- [10] Wu, Zhizheng, et al. "A study of speaker adaptation for DNN-based speech synthesis." INTERSPEECH. 2015.
- [11] Wu, Zhizheng, et al. "ASVspoof 2015: the first automatic speaker verification spoofing and countermeasures challenge." INTERSPEECH. 2015.
- [12] https://anti-captcha.com/
- [13] http://www.captchatronix.com/
- [14] Gao, Haichang, et al. "A Simple Generic Attack on Text Captchas." NDSS. 2016.





# Thanks!

Any questions?