
A Security Analysis of 
Honeywords 

Ding Wang, Haibo Cheng, Ping Wang, 
Jeff Yan, Xinyi Huang 



Password 



 Password-based 
authentication is still ubiquitous 



Millions of passwords were leaked 

p Thousands of data breaches were confirmed 
l  2016，3141【 Verizon 2016 Data Breach Report 】 
l  2016，1093【IRTC Identity Breach Report】 
l  201603-201703，3785【Thomas et al., CCS 2017】 
l  2011-2015，96 in China【http://www.liu16.com/post/

476.html】 
p   Some popular websites didn’t survive 

      Yahoo, Dropbox, LinkedIn, Adobe, Xiaomi, CSDN, Tianya…. 



Password cracking 

p  The plaintext of most passwords can be 
recovered in a short time. 

p Password distribution follows Zipf law [1]. Most 
users’ passwords are in a small set of popular 
passwords.  

p Websites should inform the users as soon as 
possible after a data breach occurs. 

 

[1] Ding Wang et al. Zipf’s Law in Passwords (2017 TIFS) 



Websites did not realize the data 
breach 

Websites Account Leak time Notice time Time 
interval  

Myspace  360,213,049 2008 2016.07 8 years 
Fling 40,757,760 2011 2016.05 5 years 
LinkedIn 117 million 2012.06 2016.05 4 years 
Dropbox 68,680,741 2012.06 2016.08 4 years 
VK.com 100,544,934 2012 2016.06 4 years 
Yahoo 3 billion 2013.08 2017.10 4 years 
Yahoo 1 billion 2013.08 2016.09 3 years 
Yahoo 0.5 billion 2014.08 2016.12 2 years 
Weebly 43,430,316 2016.02 2016.10  8 months 
Last.fm 43,570,999 2012.03 2012.06 3 months 
Deloitte 5 million 2016.10 2017.03 5 months 



How to make the data leakage 
detectable?  

p Traditional storage method 
One sever (password file): (ID, pw) 

p Honeyword scheme proposed by Juels and 
Rivest (CCS’13) 
Two severs:  
l Password file: (ID, (sw1, sw2, …, swk))  

one real password and k-1 decoy passwords 
(honeywords) 

l Honeychecker: (ID, i)  
the position of real password 



Honeyword system 

p One parameter 
l k: the number of sweetwords (one real password 

and k-1 honeywords). E.g., k=20. 
p Two thresholds 

l 𝓣↓𝟏  : A user will be alarmed, when the 
honeyword login times of this user reaches  𝒯↓1 . 
E.g., 𝒯↓1 =1. 

l 𝓣↓𝟐  : The website will be alarmed, when the total 
honeyword login times of all user on the website 
reaches 𝒯↓2 . E.g., 𝒯↓2 =104.  



How to generate honeywords 

p Four Juels-Rivest methods 
l Tweak tail.  

Replace the tail characters with the same type characters. 
E.g., abcd12→abck40 (d→k, 1→4, 2→0). 

l Modeling syntax. 
Replace the segments with same type segments. E.g., 
abcd12→efgh40 (abcd→efgh, 12→40) 

l Hybrid. 
Hybrid of tweak tail and modeling syntax. 

l Simple model. 
A heuristic method that generates passwords character-by-
character. 



Our contribution 

Focus on the honeyword generation method: 
p Propose an efficient distinguish attack. 
p Propose two security metrics based on attack. 
p Evaluate the four Juels-Rivest methods on real 

datasets. 
p Evaluate the password probability model 

method. 



Efficient distinguish attackers 

The order of attack: 
p For a given user and his k sweetwords (sw1, 

sw2, …, swk). 
p For n users on the website and their n×k 

sweetwords. 

A straightforward idea: 
p Top-PW: The decreasing order of probability 

Pr(swi) . 



Efficient distinguish attackers 

A more efficient method: 
p Norm top-PW: The decreasing order of normalized 

probability Pr(swi)/Σt Pr(swt) . 
l For a given user, the order is the same as Top-PW. 
l For all users, the order is adaptive: 

1.  Compute Pr(swi)/Σt Pr(swt) for every sweetword. 
2.  Crack the user with the maximum sweetword. 
3.  If succeed, exclude the user and go back to Step 2. 

If fail, normalize the remaining sweetwords of the 
user and go back to Step 2. 



Two security metrics 

p Flatness graph 
The point (x,y) means a given 
user can be successfully cracked 
with y probability when logged 
in x times. 

p Success-number graph 
The point (x,y) means y users on 
the website can be successfully 
cracked when logged in x times 
with honeywords. 

TABLE III. ATTACKER CAPABILITIES CONSIDERED IN THIS WORK.

Attacker types PW Public Personally identifiable info User regist- Existing
file info∗ (e.g., name and birthday) ration order literature

A1 ! ! [18], [19], [21]
Distinguishing A2 ! ! ! None

attacker A3 ! ! ! None
A4 ! ! ! ! None

DoS A5 ! [18], [19], [21]
attacker A6 ! ! ! None

∗Typical public information include the various leaked password lists,
password policy and all the cryptographic algorithms (e.g., password hash
methods and the honeyword generation methods).

When Ui logs in with (IDi, PW∗
i ), S first looks up the list

SWi and see whether there is one element (with index C∗
i )

that matches PW∗
i . If not, the login is rejected. Otherwise,

S submits a command Check(IDi, C∗
i ) to the honeychecker.

If C∗
i = Ci, then the honeychecker signals to S to accept

Ui. Otherwise, it suggests that a login with honeyword is
attempted, and an alarm is raised to S. Depending on the
alarm policy, server S may take an appropriate action, such
as: 1) accept the login but on a honeypot system, and more
stringently monitor the user’s activities; 2) if the number of
honeyword login attempts against Ui’s account exceeds a pre-
defined threshold T1 (e.g., 3), lock out Ui’s account until the
user resets a new password; or 3) shut down the computer
system and require all users to reset new passwords, if all
users’ total honeyword login attempts exceeds a pre-defined
threshold T2 (e.g., 104).

Honeyword distinguishing attacker. As mentioned earlier,
the most essential security goal of any honeyword generation
method is to produce a set of honeywords for a given user Ui’s
account such that they shall be indistinguishable from Ui’s
real password PWi. This goal corresponds to the honeyword
distinguishing attacker A as shown in Fig. 1, who aims to tell
the real password apart from k − 1 honeywords associated
with Ui’s account by using the server S as a querying
oracle. A’s honeyword login attempts will be detected by
the honeychecker, and if the number of such attempts against
Ui’s account exceeds the per-user threshold T1 (e.g., 3), A
will cause the alarm on Ui’s account to be raised. A will
also raise the system-wide alarm if her login attempts exceed
the threshold T2 (e.g., 104). Therefore, A’s honeyword login
attempts shall be as few as possible.

As shown in Table III, we assume that A has somehow
already got access to the server S’s password hash file, knows
the algorithm under which the honeywords are generated and
hashed, and is armed with all the publicly available information
(e.g., various publicly leaked password datasets and the target
site’s password policy), and may also obtain the victim Ui’s
PII. These assumptions about A’s capabilities are indeed
realistic, yet they are often only implicitly made in previous
studies [18], [19], [21].

We also note that the registration order of users may be
useful for A. This piece of information is often explicitly
stored in the password file (e.g., QNB, Forbes and Tianya)
or implicitly reflected by the monotonically increasing user
registration number. Even if it is unavailable from the leaked
password hash file, it can often be crawled from the user
profiles in some applications (e.g., social/programmer forums
and discussion boards), or it can be largely determined by
the time when the user first participates in discussions, posts
questions/answers, etc. This capability is especially useful for

(a) Flatness graph. (b) Success-number graph.
Fig. 2. Two proposed metrics for measuring the resistance of a honeyword
generation method against the honeyword distinguishing attacker.

attackers against real-password unrelated methods. For in-
stance, with this capability A is able to break the “honeyindex”
method proposed in [21].

Other attackers. As discussed in [19], valid threats fac-
ing honeywords include attacking the honeychecker system,
denial-of-service attacks that game the honeyword system and
intersection attacks where an attacker exploit user passwords
reused across different systems. Since these attacks have little
relevance to the goodness of a specific honeyword generation
method, and thus they are beyond our scope.

C. Evaluation metrics
Juels and Revist [19] proposed a notion of ϵ-flat to measure

the security of a honeyword generation method. ϵ-flat denotes
the maximum success rate ϵ that the distinguishing attacker A
can gain, when given Ui’s k sweetwords, by submitting only
one online guess to S. However, this metric is inadequate for
measuring a method’s security level when A can make more
than one online guesses per user (e.g., when T1 > 1). In
addition, ϵ-flat falls short of reflecting the vulnerable “low-
hanging fruits” produced by a method. Erguler proposed a
special metric for for measuring DoS resistance, but it is
suitable only for his own honeyindex scheme (see Sec. 5.1
of [21]); no generic metric is available.

We propose two new metrics: flatness graph and success-
number graph. These two measure a method’s resistance
against the honeyword distinguishing attacker in the average
and worse-case point of view, respectively.

Flatness graph plots the number of sweetword login attempts
per user vs. the probability of distinguishing the real password.
As shown in Fig. 2(a), a point (x, y) on a curve indicates that y
fraction of real passwords are guessed in the first x attempts,
where x ≤ k. In reality, it also requires that x ≤ T1 (e.g.,
T1 = 3). Clearly, the data point (x = 1, y) on our flatness
curve corresponds to the ϵ-flat metric introduced in [19], i.e.,
ϵ = yx=1. A flatness graph provides a view of the average
resistance against a distinguishing attacker with varied guess
numbers all the way to k.

Success-number graph measures to what an extent a method
will produce vulnerable “low-hanging fruits” for attackers.
This graph plots the total number of failed login attempts
(i.e., with a honeyword) on the system vs. the total number
of successful login attempts (i.e., with a real password). As
shown in Fig. 2(b), a point (x, y) on a curve indicates that
y real passwords are successfully distinguished before the
xth honeyword login attempt occurs, where x ≤ T2 (e.g.,
T2 = 104). A 1

k -flat method is perfect, since it produces no
“low-hanging fruits” and every sweetword generated is of the
same probability to be a real password.

TABLE III. ATTACKER CAPABILITIES CONSIDERED IN THIS WORK.

Attacker types PW Public Personally identifiable info User regist- Existing
file info∗ (e.g., name and birthday) ration order literature

A1 ! ! [18], [19], [21]
Distinguishing A2 ! ! ! None

attacker A3 ! ! ! None
A4 ! ! ! ! None

DoS A5 ! [18], [19], [21]
attacker A6 ! ! ! None

∗Typical public information include the various leaked password lists,
password policy and all the cryptographic algorithms (e.g., password hash
methods and the honeyword generation methods).

When Ui logs in with (IDi, PW∗
i ), S first looks up the list

SWi and see whether there is one element (with index C∗
i )

that matches PW∗
i . If not, the login is rejected. Otherwise,

S submits a command Check(IDi, C∗
i ) to the honeychecker.

If C∗
i = Ci, then the honeychecker signals to S to accept

Ui. Otherwise, it suggests that a login with honeyword is
attempted, and an alarm is raised to S. Depending on the
alarm policy, server S may take an appropriate action, such
as: 1) accept the login but on a honeypot system, and more
stringently monitor the user’s activities; 2) if the number of
honeyword login attempts against Ui’s account exceeds a pre-
defined threshold T1 (e.g., 3), lock out Ui’s account until the
user resets a new password; or 3) shut down the computer
system and require all users to reset new passwords, if all
users’ total honeyword login attempts exceeds a pre-defined
threshold T2 (e.g., 104).

Honeyword distinguishing attacker. As mentioned earlier,
the most essential security goal of any honeyword generation
method is to produce a set of honeywords for a given user Ui’s
account such that they shall be indistinguishable from Ui’s
real password PWi. This goal corresponds to the honeyword
distinguishing attacker A as shown in Fig. 1, who aims to tell
the real password apart from k − 1 honeywords associated
with Ui’s account by using the server S as a querying
oracle. A’s honeyword login attempts will be detected by
the honeychecker, and if the number of such attempts against
Ui’s account exceeds the per-user threshold T1 (e.g., 3), A
will cause the alarm on Ui’s account to be raised. A will
also raise the system-wide alarm if her login attempts exceed
the threshold T2 (e.g., 104). Therefore, A’s honeyword login
attempts shall be as few as possible.

As shown in Table III, we assume that A has somehow
already got access to the server S’s password hash file, knows
the algorithm under which the honeywords are generated and
hashed, and is armed with all the publicly available information
(e.g., various publicly leaked password datasets and the target
site’s password policy), and may also obtain the victim Ui’s
PII. These assumptions about A’s capabilities are indeed
realistic, yet they are often only implicitly made in previous
studies [18], [19], [21].

We also note that the registration order of users may be
useful for A. This piece of information is often explicitly
stored in the password file (e.g., QNB, Forbes and Tianya)
or implicitly reflected by the monotonically increasing user
registration number. Even if it is unavailable from the leaked
password hash file, it can often be crawled from the user
profiles in some applications (e.g., social/programmer forums
and discussion boards), or it can be largely determined by
the time when the user first participates in discussions, posts
questions/answers, etc. This capability is especially useful for

(a) Flatness graph. (b) Success-number graph.
Fig. 2. Two proposed metrics for measuring the resistance of a honeyword
generation method against the honeyword distinguishing attacker.

attackers against real-password unrelated methods. For in-
stance, with this capability A is able to break the “honeyindex”
method proposed in [21].

Other attackers. As discussed in [19], valid threats fac-
ing honeywords include attacking the honeychecker system,
denial-of-service attacks that game the honeyword system and
intersection attacks where an attacker exploit user passwords
reused across different systems. Since these attacks have little
relevance to the goodness of a specific honeyword generation
method, and thus they are beyond our scope.

C. Evaluation metrics
Juels and Revist [19] proposed a notion of ϵ-flat to measure

the security of a honeyword generation method. ϵ-flat denotes
the maximum success rate ϵ that the distinguishing attacker A
can gain, when given Ui’s k sweetwords, by submitting only
one online guess to S. However, this metric is inadequate for
measuring a method’s security level when A can make more
than one online guesses per user (e.g., when T1 > 1). In
addition, ϵ-flat falls short of reflecting the vulnerable “low-
hanging fruits” produced by a method. Erguler proposed a
special metric for for measuring DoS resistance, but it is
suitable only for his own honeyindex scheme (see Sec. 5.1
of [21]); no generic metric is available.

We propose two new metrics: flatness graph and success-
number graph. These two measure a method’s resistance
against the honeyword distinguishing attacker in the average
and worse-case point of view, respectively.

Flatness graph plots the number of sweetword login attempts
per user vs. the probability of distinguishing the real password.
As shown in Fig. 2(a), a point (x, y) on a curve indicates that y
fraction of real passwords are guessed in the first x attempts,
where x ≤ k. In reality, it also requires that x ≤ T1 (e.g.,
T1 = 3). Clearly, the data point (x = 1, y) on our flatness
curve corresponds to the ϵ-flat metric introduced in [19], i.e.,
ϵ = yx=1. A flatness graph provides a view of the average
resistance against a distinguishing attacker with varied guess
numbers all the way to k.

Success-number graph measures to what an extent a method
will produce vulnerable “low-hanging fruits” for attackers.
This graph plots the total number of failed login attempts
(i.e., with a honeyword) on the system vs. the total number
of successful login attempts (i.e., with a real password). As
shown in Fig. 2(b), a point (x, y) on a curve indicates that
y real passwords are successfully distinguished before the
xth honeyword login attempt occurs, where x ≤ T2 (e.g.,
T2 = 104). A 1

k -flat method is perfect, since it produces no
“low-hanging fruits” and every sweetword generated is of the
same probability to be a real password.



Real password datasets 

p 10 datasets 
l 104.36 million passwords 
l 9 different web services 



Evaluate the four Juels-Rivest methods  

Success-number graph 
p Norm top-PW(smooth): At least 615,664 (8.75%) 

users are sucessfully cracked when the honeyword 
login times reaches 104 (on dodonew-ts). 

p Expected value: 526 (104/19) 

(a) Attacks on the tweaking-tail method. (b) Attacks on the modelling-syntax method. (c) Attacks on the hybrid method.

(d) Attacks on the simple-model method. (e) The flatness graph of each method (k=20). (f) Tweaking-tail: n=8,129,445, ϵ=0.3755.

Fig. 3. Experiment results for attacking the four methods in [19] in terms of the success-number and flatness metrics. Each method is evaluated
by 9 attacking strategies, trained on 50% of Dodonew (i.e., Dodonew-tr) and tested on the remaining 50% (i.e., Dodonew-ts). The sub-figures
(a)∼(d) show that the “norm top-PW” attacking strategy with smoothing can distinguish 711K+ real PWs against every method when allowed
T2=104 honeyword logins, where 1t means T1 = 1, 3t means T1 = 3 and so on; The sub-figure (e) reveals that all 4 methods are 0.35+-flat,
7+ times weaker than expected in [19]; The sub-figure (f) exemplifies the correlations between the flatness and success-number metrics.

n · k sweetwords from lists {SW1, SW2, · · · , SWn} in
decreasing order of normalized probability. More specifically,
the probability of each sweetword swi,j (1 ≤ i ≤ n and
1 ≤ j ≤ k) comes directly from a known password distribution
D (i.e., using the List password model PD(·)), but it has been
normalized among each user’s own k sweetwords:

Step 1. ∀swi,j ∈ SWi, if swi,j ∈ D, set
Pr(swi,j) = PD(swi,j);

Step 2. ∀swi,j ∈ SWi, if swi,j /∈ D, set Pr(swi,j) = 0;
Step 3. ∀swi,j ∈ SWi, set

Pr(swi,j) = Pr(swi,j)/
∑k

t=1 Pr(swi,t).

If the system allows more than one honeyword login at-
tempts (i.e., T1 >1), after any one of the sweetwords in SWi

has been attempted, the probability of all the other unattempted
sweetwords in SWi shall be normalized as follows:

Step 3’. Let I denotes the set of subscripts of all the
sweetwords in SWi that have already been used
in login attempts. ∀swi,j ∈ SWi ∧ j /∈ I , set

Pr(swi,j) = Pr(swi,j)/
∑

t /∈I Pr(swi,t).

After the probability of each unattempted sweetwords in
SWi has been normalized, one can sort the sweet list SWi

and identify the one with the highest priority. This corresponds
to an instantiation of the function getSweetword(SWi)
in Algorithm 1. Once this function has been instantiated, a
run of Algorithm 1 will produce the success-number graph.
Similarly, after the Steps 1∼3, every sweetword in SWi will
be with a (normalized) probability, and thus the function
getProbability() in Algorithm 2 can be instantiated. As
a result, a run of Algorithm 2 will produce the flatness graph.

It is expected that many sweetwords in the password file
F do not appear in the distribution D and will be assigned a
probability 0, causing great inaccuracies in sweetword ranking.
This can be inferred from Fig. 11: password distributions in

reality differ greatly from each other. For instance, when using
Dodonew-tr as the training set (i.e., to be D) and Dodonew-ts
as the test set, over 74% sweetwords in F will be assigned a
probability 0. Intuitively, one should not think that things that
one has not yet seen are of probability 0. This is called sparsity
issue in machine learning, and it can be addressed by applying
the technique of smoothing. A number of smoothing methods
have been proposed for language modeling, such as Laplace
and Good-Turing, and they have been widely used in password
studies [12], [13], [37]. However, they can not be readily
applied to our settings where the majority of sweetwords do
not appear. We devise an “+1” smoothing method:

Step 2’. ∀swi,j ∈ SWi, if swi,j /∈ D, set Pr(swi,j)= 1
|D|+1 .

We have experimented with the Laplace, Good-Turing and
“+1” smoothing methods, and found our “+1” method more
effective. Thus, we prefer the “+1” method.

As shown in Figs. 3(a)∼3(d), the “normalized Top-PW”
attacking strategy with smoothing performs significantly better
than the no-smoothing version. In most cases, it also performs
tangibly better than the “Top-PW” strategy, especially when
the login number allowed is small. When trained on Dodonew-
ts, it can tell at least 711,035 real passwords apart from
the 8,129,445 Dodonew-ts accounts protected by any of the
four honeyword generation methods in [19]. This indicates
that, in terms of the success-number metric, there are at least
1352=(711035/(T2/(k − 1))) times of underestimation of the
vulnerabilities in Juels-Revist’s methods.

When evaluating the flatness security goal of the methods in
[19], it is worth noting that both the above attacking strategies
will essentially try the same sequences of sweetwords for
each user account. This is due to the fact that the Step 3 of
the normalized Top-PW strategy does not change the relative
rankings within each sweetword list. Hence, they will produce

(a) Attacks on the tweaking-tail method. (b) Attacks on the modelling-syntax method. (c) Attacks on the hybrid method.

(d) Attacks on the simple-model method. (e) The flatness graph of each method (k=20). (f) Tweaking-tail: n=8,129,445, ϵ=0.3755.

Fig. 3. Experiment results for attacking the four methods in [19] in terms of the success-number and flatness metrics. Each method is evaluated
by 9 attacking strategies, trained on 50% of Dodonew (i.e., Dodonew-tr) and tested on the remaining 50% (i.e., Dodonew-ts). The sub-figures
(a)∼(d) show that the “norm top-PW” attacking strategy with smoothing can distinguish 711K+ real PWs against every method when allowed
T2=104 honeyword logins, where 1t means T1 = 1, 3t means T1 = 3 and so on; The sub-figure (e) reveals that all 4 methods are 0.35+-flat,
7+ times weaker than expected in [19]; The sub-figure (f) exemplifies the correlations between the flatness and success-number metrics.

n · k sweetwords from lists {SW1, SW2, · · · , SWn} in
decreasing order of normalized probability. More specifically,
the probability of each sweetword swi,j (1 ≤ i ≤ n and
1 ≤ j ≤ k) comes directly from a known password distribution
D (i.e., using the List password model PD(·)), but it has been
normalized among each user’s own k sweetwords:

Step 1. ∀swi,j ∈ SWi, if swi,j ∈ D, set
Pr(swi,j) = PD(swi,j);

Step 2. ∀swi,j ∈ SWi, if swi,j /∈ D, set Pr(swi,j) = 0;
Step 3. ∀swi,j ∈ SWi, set

Pr(swi,j) = Pr(swi,j)/
∑k

t=1 Pr(swi,t).

If the system allows more than one honeyword login at-
tempts (i.e., T1 >1), after any one of the sweetwords in SWi

has been attempted, the probability of all the other unattempted
sweetwords in SWi shall be normalized as follows:

Step 3’. Let I denotes the set of subscripts of all the
sweetwords in SWi that have already been used
in login attempts. ∀swi,j ∈ SWi ∧ j /∈ I , set

Pr(swi,j) = Pr(swi,j)/
∑

t /∈I Pr(swi,t).

After the probability of each unattempted sweetwords in
SWi has been normalized, one can sort the sweet list SWi

and identify the one with the highest priority. This corresponds
to an instantiation of the function getSweetword(SWi)
in Algorithm 1. Once this function has been instantiated, a
run of Algorithm 1 will produce the success-number graph.
Similarly, after the Steps 1∼3, every sweetword in SWi will
be with a (normalized) probability, and thus the function
getProbability() in Algorithm 2 can be instantiated. As
a result, a run of Algorithm 2 will produce the flatness graph.

It is expected that many sweetwords in the password file
F do not appear in the distribution D and will be assigned a
probability 0, causing great inaccuracies in sweetword ranking.
This can be inferred from Fig. 11: password distributions in

reality differ greatly from each other. For instance, when using
Dodonew-tr as the training set (i.e., to be D) and Dodonew-ts
as the test set, over 74% sweetwords in F will be assigned a
probability 0. Intuitively, one should not think that things that
one has not yet seen are of probability 0. This is called sparsity
issue in machine learning, and it can be addressed by applying
the technique of smoothing. A number of smoothing methods
have been proposed for language modeling, such as Laplace
and Good-Turing, and they have been widely used in password
studies [12], [13], [37]. However, they can not be readily
applied to our settings where the majority of sweetwords do
not appear. We devise an “+1” smoothing method:

Step 2’. ∀swi,j ∈ SWi, if swi,j /∈ D, set Pr(swi,j)= 1
|D|+1 .

We have experimented with the Laplace, Good-Turing and
“+1” smoothing methods, and found our “+1” method more
effective. Thus, we prefer the “+1” method.

As shown in Figs. 3(a)∼3(d), the “normalized Top-PW”
attacking strategy with smoothing performs significantly better
than the no-smoothing version. In most cases, it also performs
tangibly better than the “Top-PW” strategy, especially when
the login number allowed is small. When trained on Dodonew-
ts, it can tell at least 711,035 real passwords apart from
the 8,129,445 Dodonew-ts accounts protected by any of the
four honeyword generation methods in [19]. This indicates
that, in terms of the success-number metric, there are at least
1352=(711035/(T2/(k − 1))) times of underestimation of the
vulnerabilities in Juels-Revist’s methods.

When evaluating the flatness security goal of the methods in
[19], it is worth noting that both the above attacking strategies
will essentially try the same sequences of sweetwords for
each user account. This is due to the fact that the Step 3 of
the normalized Top-PW strategy does not change the relative
rankings within each sweetword list. Hence, they will produce



Evaluate the four Juels-Rivest methods  

Flatness graph 
p Norm top-PW(smooth): At least 35% users can be 

successfully cracked at the first try (on dodonew-ts). 
p Expected value: 5% (1/20) 

(a) Attacks on the tweaking-tail method. (b) Attacks on the modelling-syntax method. (c) Attacks on the hybrid method.

(d) Attacks on the simple-model method. (e) The flatness graph of each method (k=20). (f) Tweaking-tail: n=8,129,445, ϵ=0.3755.

Fig. 3. Experiment results for attacking the four methods in [19] in terms of the success-number and flatness metrics. Each method is evaluated
by 9 attacking strategies, trained on 50% of Dodonew (i.e., Dodonew-tr) and tested on the remaining 50% (i.e., Dodonew-ts). The sub-figures
(a)∼(d) show that the “norm top-PW” attacking strategy with smoothing can distinguish 711K+ real PWs against every method when allowed
T2=104 honeyword logins, where 1t means T1 = 1, 3t means T1 = 3 and so on; The sub-figure (e) reveals that all 4 methods are 0.35+-flat,
7+ times weaker than expected in [19]; The sub-figure (f) exemplifies the correlations between the flatness and success-number metrics.

n · k sweetwords from lists {SW1, SW2, · · · , SWn} in
decreasing order of normalized probability. More specifically,
the probability of each sweetword swi,j (1 ≤ i ≤ n and
1 ≤ j ≤ k) comes directly from a known password distribution
D (i.e., using the List password model PD(·)), but it has been
normalized among each user’s own k sweetwords:

Step 1. ∀swi,j ∈ SWi, if swi,j ∈ D, set
Pr(swi,j) = PD(swi,j);

Step 2. ∀swi,j ∈ SWi, if swi,j /∈ D, set Pr(swi,j) = 0;
Step 3. ∀swi,j ∈ SWi, set

Pr(swi,j) = Pr(swi,j)/
∑k

t=1 Pr(swi,t).

If the system allows more than one honeyword login at-
tempts (i.e., T1 >1), after any one of the sweetwords in SWi

has been attempted, the probability of all the other unattempted
sweetwords in SWi shall be normalized as follows:

Step 3’. Let I denotes the set of subscripts of all the
sweetwords in SWi that have already been used
in login attempts. ∀swi,j ∈ SWi ∧ j /∈ I , set

Pr(swi,j) = Pr(swi,j)/
∑

t /∈I Pr(swi,t).

After the probability of each unattempted sweetwords in
SWi has been normalized, one can sort the sweet list SWi

and identify the one with the highest priority. This corresponds
to an instantiation of the function getSweetword(SWi)
in Algorithm 1. Once this function has been instantiated, a
run of Algorithm 1 will produce the success-number graph.
Similarly, after the Steps 1∼3, every sweetword in SWi will
be with a (normalized) probability, and thus the function
getProbability() in Algorithm 2 can be instantiated. As
a result, a run of Algorithm 2 will produce the flatness graph.

It is expected that many sweetwords in the password file
F do not appear in the distribution D and will be assigned a
probability 0, causing great inaccuracies in sweetword ranking.
This can be inferred from Fig. 11: password distributions in

reality differ greatly from each other. For instance, when using
Dodonew-tr as the training set (i.e., to be D) and Dodonew-ts
as the test set, over 74% sweetwords in F will be assigned a
probability 0. Intuitively, one should not think that things that
one has not yet seen are of probability 0. This is called sparsity
issue in machine learning, and it can be addressed by applying
the technique of smoothing. A number of smoothing methods
have been proposed for language modeling, such as Laplace
and Good-Turing, and they have been widely used in password
studies [12], [13], [37]. However, they can not be readily
applied to our settings where the majority of sweetwords do
not appear. We devise an “+1” smoothing method:

Step 2’. ∀swi,j ∈ SWi, if swi,j /∈ D, set Pr(swi,j)= 1
|D|+1 .

We have experimented with the Laplace, Good-Turing and
“+1” smoothing methods, and found our “+1” method more
effective. Thus, we prefer the “+1” method.

As shown in Figs. 3(a)∼3(d), the “normalized Top-PW”
attacking strategy with smoothing performs significantly better
than the no-smoothing version. In most cases, it also performs
tangibly better than the “Top-PW” strategy, especially when
the login number allowed is small. When trained on Dodonew-
ts, it can tell at least 711,035 real passwords apart from
the 8,129,445 Dodonew-ts accounts protected by any of the
four honeyword generation methods in [19]. This indicates
that, in terms of the success-number metric, there are at least
1352=(711035/(T2/(k − 1))) times of underestimation of the
vulnerabilities in Juels-Revist’s methods.

When evaluating the flatness security goal of the methods in
[19], it is worth noting that both the above attacking strategies
will essentially try the same sequences of sweetwords for
each user account. This is due to the fact that the Step 3 of
the normalized Top-PW strategy does not change the relative
rankings within each sweetword list. Hence, they will produce



Evaluate the four Juels-Rivest methods  

p Same result on other datasets. 
p The four methods fail to provide the expected 

security. 
l  Success-number graph: on average at least 11% users can be 

successfully cracked when the honeyword login times reaches 104. 
l  Flatness graph: on average at least 29% users can be successfully 

cracked at the first try. 



The inherent defect of the four Juels-
Rivest methods  

p The honeyword distribution is uniform distribution. 
p The password distribution follows the Zipf law. 
p The honeyword distribution should be the same as  

the password distribution.  

Password probability 
model generating method 



Password probability model generating 
method 

p Two state-of-the-art probability models:  
l PCFG-based model. 
l Markov-based model. 

p Better on the flatness graph but still 
vulnerable on the success-number graph. 



Password probability model generating 
method 

p Every model is not good enough.  
p The probability of a large number of 

passwords is underestimated. 



Password probability model generating 
method 

p A possible solution: hybrid model of password 
models. E.g., List&Markov&PCFG. 
PrList&Markov&PCFG(pw)=1/3PrList (pw)+1/3PrMarkov (pw)+1/3PrPCFG(pw) 

p Hybrid model is the best on both metrics. 
l Flatness graph: 11%   (expected value 5%) 
l Success-number graph: 1113 (expected value 526) 



Conclusion 

Honeyword-generation method: 
p The four methods proposed by Juels and 

Rivest have inherent defect. 
p Password probability model method: 

l Single model is vulnerable.  
l Hybrid model is the best on success-number graph and 

flatness graph. 
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