LAPS LATTICE-BASED PRIVATE-STREAM AGGREGATION

"REVISITING PRIVATE-STREAM AGGREGATION: LATTICE-BASED PSA"

NETWORK AND DISTRIBUTED SYSTEMS SECURITY (NDSS) SYMPOSIUM 2018

Daniela Becker America Pittsburgh, USA

Jorge Guajardo Robert Bosch LLC – RTC North Robert Bosch LLC – RTC North America Pittsburgh, USA

Karl-Heinz Zimmermann Hamburg University of Technology Hamburg, Germany

Outline

- 1. Introduction: Private Stream Aggregation (PSA) Problem Statement, Previous Work - Shi et al.'s PSA Scheme (NDSS 2011).
- 2. (Augmented) Learning With Errors *Theory Background*.
- 3. Lattice-Based PSA: LaPS
 - ► General Construction.
 - ► LaPS instantiation & Experimental Results.
- 4. Summary & Outlook

Private Stream Aggregation (PSA) Problem

- ▶ **Distributed** set of users ({U_i}) want to compute **sum** of their sensitive data ({ d_i })
- ► **No** information must be leaked about individual user U_i
- ► **Untrusted** aggregator (*A*), i.e. honest-but-curious

Private Stream Aggregation (PSA) Solution

- ► Apply differential privacy mechanism \mathcal{M} to each $d_i \Rightarrow$ create noisy version x_i
- Send **encrypted** x_i to aggregator \mathcal{A}
- ▶ A aggregates ciphertexts and decrypts learns nothing but noisy sum x_{aaa}

Private Stream Aggregation (PSA) Security & Privacy Notions

► Aggregator **obliviousness** $\leftrightarrow \mathcal{A}$ learns **nothing but** noisy sum $\Rightarrow x_{agg}$ differentially private

Learning With Errors (LWE) [2]

[2] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005.

LWE [2]

[2] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005.

Augmented LWE (A-LWE) [3]

[3] R. El Bansarkhani, Ö. Dagdelen, J. Buchmann. Augmented Learning with Errors: The Untapped Potential of the Error Term. FC 2015.

Augmented LWE (A-LWE) – Message Embedding [3] Straightforward encryption

BOSCH

Augmented LWE (A-LWE) – Message Embedding [3] Decryption

[3] R. El Bansarkhani, Ö. Dagdelen, J. Buchmann. Augmented Learning with Errors: The Untapped Potential of the Error Term. FC 2015.

LaPS Let's take a closer look

Research and Technology Center | Daniela Becker CR/RTC3.2-NA | 02/19/2018 © 2017 Robert Bosch LLC and affiliates. All rights reserved.

Correctness:

As long as

- > AHOM. $Dec(\sum_{i=1}^{N} v_i) = \sum_{i=1}^{N} x_i$ and since
- \succ G · e_i mod q = v_i, where e_i ← D[⊥]_{Λv_i}(G),

the aggregator indeed outputs the noisy sum aggregate of the users' values. We require *AHOM* to be additively homomorphic therefore the sum of the homomorphic ciphertexts $\sum_{i=1}^{N} v_i$ corresponds to an encryption of the sum of the underlying plaintexts $\sum_{i=1}^{N} x_i$. \mathcal{A} - (param, A, G, $\{c_i\}_{i=1}^N$, sk, s_0) AggrDec $c_{aaa} \coloneqq c_1 + \ldots + c_N$ $\leftrightarrow c_{aaa} = A \cdot \sum_{i=1}^{N} \mathbf{s}_{i} + \sum e_{i}$ $c_{aaa} + As_0 \rightarrow \sum e_i$ $G \cdot \Sigma e_i \rightarrow \Sigma v_i$ $\sum v_i = \sum_{i=1}^N AHOM. Enc(pk, x_i)$ $= AHOM. Enc(pk, \sum x_i)$ $x_{aqq} = AHOM. Dec(sk, \sum v_i)$

LaPS: Security Guarantees NoisyEnc_i – Let's take a closer look

For security we want: Break NoisyEnc_i ↔ break w-c lattice problem

Theorem 1 (Semantic Security):

Let the output of *AHOM*. *Enc* be indistinguishable from random [...]. Then, the ciphertexts generated by **NoisyEnc** in are *semantically secure* assuming the hardness of worst case lattice problems.

Theorem 2 (Aggregator Obliviousness Security):

Let the output of *AHOM*. *Enc* be indistinguishable from random [...]. LaPS satisfies *aggregator oblivious security* assuming the hardness of worst case lattice problems.

LaPS Instantiation Experimental Results

Instantiation using \mathcal{M}_{χ} \rightarrow discrete Laplace mechanism and \mathcal{AHOM} \rightarrow reduced* BGV encryption scheme

V	BEFORE [1]		AFTER (this work)**	
NoisyEnc _i	<i>p</i> ∈ {0,1}:	0.6 ms	$p \le 5:$ $p \le 37:$ $p \le 65537:$	3.58 ms 3.62 ms 3.73 ms
AggrDec	$p \in \{0,1\}$:	300 ms	$p \le 5:$ $p \le 37:$ $p \le 65537:$	1.87 ms 1.88 ms 1.96 ms

*) Original BGV Scheme [4], adapted from [5] and reduced to homomorphic addition (, i.e. no multiplication)

**) Runtime results [ms] for LaPS instance for 1000 users, 80-bit security

MacBook, macOS Sierra, single 2.5 GHz Intel Core i7 and 16GB memory; averaged over 1000 runs

[4] Z. Brakerski and V. Vaikuntanathan, Efficient Fully Homomorphic Encryption from (Standard) LWE. ECCC 2011.

[5] I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. *Practical Covertly Secure MPC for Dishonest Majority or:* Breaking the SPDZ Limits. ESORICS 2013.

Summary

- ► Lattice-based Private Stream Aggregation
 - Plug-and-play deployment of additively homomorphic encryption
- Strong security & privacy guarantees
 - (Augmented) LWE-assumption provides postquantum security
 - Formal Differential Privacy analysis
- Significant efficiency improvements compared to previous work
 - ► 150 times faster decryption
 - ► \approx 66000 times larger plaintext space

Summary

Outlook

Lattice-based Private Stream Aggregation

Strong security & privacy guarantees

 Significant efficiency improvements compared to previous work Dynamic joins and leaves / user failures

- Enhance scheme to aggregator unforgeability / public verifiability of aggregate result
 - E.g. by combining with Homomorphic Aggregate Signature scheme (HAS) [6]

THANK YOU

QUESTIONS? DANIELA.BECKER2@US.BOSCH.COM

Parkhaus