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Secure Remote Computations

Desirable Properties :
● Confidentiality : The server learns nothing about D
● Integrity : The server can only return P(D) and no other function of D 
● Efficiency : It executes in time close to natively executing P(D) 
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Solution in the ideal world

Desirable Properties :
● Confidentiality : The server learns nothing about D
● Integrity : The server can only return P(D) and no other function of D 
● Efficiency : It executes in time close to natively executing P(D) 
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Real world tools and techniques

FHE [1] :
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[1] - Gentry, Craig. A fully homomorphic encryption scheme. 
[2] - Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. 
[3] - Scarlata, Vincent, et al. TPM virtualization: Building a general framework. 
[4] - Anati, Ittai, et al. Innovative technology for CPU based attestation and sealing. 
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Real world tools and techniques

FHE [1] :
Confidentiality
Integrity
Efficiency

ORAM [2] :
Confidentiality
Integrity
Efficiency

Intel TPM+TXT [3] :
Confidentiality
Integrity
Efficiency

Hardware Solutions :

Software Solutions :

Intel SGX [4] :
Confidentiality
Integrity
Efficiency

[5] - Xu, Yuanzhong et al. Controlled-channel attacks: Deterministic side channels for untrusted operating systems.
[6] - Shinde, Shweta, et al. Preventing page faults from telling your secrets.
[7] - Lee, Sangho, et al. Inferring fine-grained control flow inside SGX enclaves with branch shadowing. 
[8] - Brasser, Ferdinand, et al. Software Grand Exposure: SGX Cache Attacks Are Practical.
[9] - Moghimi, Ahmad et al. Cachezoom: How SGX amplifies the power of cache attacks. 
[10] - Van Bulck, Jo, et al. Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution. 

[5,6,7,8,9,10]
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Our Goal

Can we design a solution that meets all the three desirable properties of secure 
remote computation ?

Yes, ZeroTrace.

Our Approach :
Privacy of ORAM 

           +
Efficiency of SGX 
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Outline

1. Secure Remote Computation
2. Preliminaries :

● Intel SGX
● ORAM

3. ZeroTrace Architecture
4. Evaluation
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Preliminaries
Intel SGX Background



Intel SGX - Software Guard eXtensions

● x86 instructions extension
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Intel SGX - Software Guard eXtensions

● x86 instructions extension
● Trusted processor fused with secret keys
● Processor Reserved Memory

(PRM) set aside securely at boot
● Secure virtual containers called enclaves
●  “Secure as long as processor

 isn’t physically broken into.”
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Secure Remote Computations with Intel SGX

Properties :
● Confidentiality
● Integrity
● Efficiency
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Security Limitations of SGX

Research has shown that SGX is susceptible to side channel attacks. 
These attacks enable an adversary to extract secret data from enclaves !

● Page Fault Attacks [1,2]
● Branch Shadowing Attack [3]
● Cache Attacks [4,5]
● Data Access Pattern Attacks [1,6]

[1] - Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic side channels for untrusted operating systems. 2015.
[2] - Shinde, Shweta, et al. Preventing page faults from telling your secrets. 2016.
[3] - Lee, Sangho, et al. Inferring fine-grained control flow inside SGX enclaves with branch shadowing. 2016.
[4] - Brasser, Ferdinand, et al. Software Grand Exposure: SGX Cache Attacks Are Practical. 2017.
[5] - Moghimi, Ahmad, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom: How SGX amplifies the power of cache attacks. 2017.
[6] - Van Bulck, Jo, et al. Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution. 2017.
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Functional Limitations of SGX

● Effective PRM limited to 90 MB (with expensive cost for paging)
● No direct IO / syscalls 
● Expensive context switching due to Asynchronous Enclave Exits (AEX)
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Outline

1. Secure Remote Computation
2. Preliminaries :

● Intel SGX - Lightning Tour
● ORAM

3. ZeroTrace Architecture
4. Evaluation
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Preliminaries
ORAM or Oblivious RAM



Oblivious RAM [1]

● Cryptographic primitive designed to hide memory access patterns
● All ORAMs fundamentally require a probabilistic encryption schema

[1] - Goldreich, Oded, and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. 1996
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Tree based ORAMs [1,2,3]

[1] - Shi, Elaine, et al. Oblivious RAM with O ((logN) 3) Worst-Case Cost. 2011.
[2] - Stefanov, Emil, et al. Path ORAM: an extremely simple oblivious RAM protocol. 2013.
[3] - Wang, Xiao, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the Goldreich-Ostrovsky lower bound. 2015.

    Data Blocks
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Tree based ORAMs [1,2,3]

Position Map      Stash

N Data Blocks

 N leaves

Bucket

Invariant : A block in the system will always 
reside in either the local stash, or in its path 
to the leaf label on the server tree.

[1] - Shi, Elaine, et al. Oblivious RAM with O ((logN) 3) Worst-Case Cost. 2011.
[2] - Stefanov, Emil, et al. Path ORAM: an extremely simple oblivious RAM protocol. 2013.
[3] - Wang, Xiao, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the Goldreich-Ostrovsky lower bound. 2015.
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ZeroTrace Architecture



ZeroTrace Threat Model

● By default we consider a malicious active adversary
● Everything on the server stack except the processor is untrusted

,P , D
P ( D )

P , D
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Attempt 1
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Attempt 2 : Recursive ORAMs

 N leaves

Position Map 1

 N/c leaves

Position Map 2

...

Position Map X

 N / cx entries
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Attempt 2

2   Access Pattern

Problems :
1. Controller code susceptible to side channel leakages
2. Access pattern leakages of position map and stash accesses
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Evaluation : Recursion

Data blocks are of 1 KB size in this experiment
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Attempt 3 : Solving the security issues

Untrusted
   Shim 

Leakages 
2   Access Pattern

Problems :
1. Controller code susceptible to side channel leakages
2. Access pattern leakages of position map and stash accesses

1   Side Channel
Leakages

Req

Block
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1) Oblivious functions at assembly level
● Library of assembly-level functions for oblivious operations.
● Wrapper functions over CMOV instruction [14,15]
● Example function :

Building blocks for side-channel proofing

[14] - Ohrimenko, Olya, et al. "Oblivious Multi-Party Machine Learning on Trusted Processors." USENIX Security Symposium. 2016.
[15] - Rane, Ashay, Calvin Lin, and Mohit Tiwari. "Raccoon: Closing Digital Side-Channels through Obfuscated Execution." USENIX Security Symposium. 2015.
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2) Constant time code for the underlying ORAM schema 
● Code branches must be data independent
● Access to stash and position map are made through linear scans

Building blocks for side-channel proofing
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ZeroTrace



ZeroTrace

● First oblivious memory controller on a real secure hardware platform
● Flexible storage backends
● ZeroTrace is secure against ALL software side-channel attacks since it 

realizes the oblivious enclave execution definition.
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ZeroTrace - Usage Models

1) Memory Protection for Secure Computation
● Memory controller for other enclaves
● Data accesses are now side-channel secure

,P , D
P ( D )

P , D
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Evaluation : ZeroTrace performance with small data size

Data blocks are of 8 bytes size in this experiment
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ZeroTrace - Usage Models

2) Remote Oblivious Data Storage
● Order of magnitude network bandwidth saving
● Order of magnitude decrease in access latency

Req

Block
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Evaluation : ZeroTrace performance with increasing data sizes
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How to use ZeroTrace 

In order to use oblivious memory via ZeroTrace, where necessary :

● Create an oblivious memory abstraction by : 
ZeroTrace_New (label, N, block_size, <params>)

● Access this oblivious memory by : 
ZeroTrace_Access (label, id, op, data*)
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Summary 

● Illustrated design and evaluation of ZeroTrace
● Showed how to achieve efficient secure remote computation through 

ZeroTrace
● Go play with ZeroTrace : https://github.com/Sajin7/ZT
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Bonus Slides !
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Comparing with Hardware ORAM solutions :

● No deployed / practically available solution
Since H/W required is custom and not commercially available

● Typically tied to DRAM storage
● All or nothing , no flexibility
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Comparing with Raccoon:

● Experiments on Xeon processors (No SGX Support)
● Parameterized to fit recursion within the register space, and 

discarded recursive ORAMs for SGX setting
● Streaming doesn’t account for encryption/decryption overhead
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How does Meltdown/Spectre affect ZeroTrace

● Meltdown does not effect ZeroTrace. No PoC currently
● Spectre_1 doesn’t pan out since there are no branches 
● Spectre_2 has been patched by Intel already
● We are still investigating this
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High-level Security of ZeroTrace

27
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Block

Side-channel proofed 
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Untrusted
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ORAM security



Future Steps:

● Deploying ZeroTrace as an open source library
● Optimizing data structure support
● Optimizing initialization costs
● Asynchronous ORAM 
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Desired Property : Oblivious Enclave Execution

When a program P is loaded in an enclave, and a set of inputs y = (in1,...,inM) are executed 
by this enclave it results in an adversarial view V(y) = trace((Ep,in1),...,(Ep,inM)). We say 
that the enclave execution is oblivious if given two sets of inputs y and z, their adversarial 
views V(y) and V(z) are computationally indistinguishable.

Here trace(Ep,in) captures the execution trace induced by running the enclave Ep  with input 
in. This trace(Ep,in) contains all the powerful side channel artifacts that the adversary can 
view such as cache usage, page faults, etc.
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ZeroTrace - Security Arguement
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Side-channel proofed leaf label retrieval

Non-Oblivious Leaf-label Retrieval :

Oblivious Leaf-label Retrieval :
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Other Graphs
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Evaluation : Memory Primitives
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Evaluation : Flexibility of Controller

24

Data blocks are of 1 KB size in this experiment



Evaluation : Breakdown of Request Time
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Overhead of EPC memory accesses
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oupdate() in depth
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Building blocks for side-channel proofing
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Building blocks for side-channel proofing
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Trusted Processor

Processor Reserved
         Memory

mov eax, src

mov ebx, dst

mov ecx, cond

cmp ecx, 1
cmovz ebx, eax
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Building blocks for side-channel proofing

21

Trusted Processor

Processor Reserved
         Memory

mov eax, src

mov ebx, dst

mov ecx, flag

cmp ecx, 1
cmovz ebx, eax

1

2

mov src, eax

mov dst, ebx
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Access Protocol for Tree 
based ORAM schemes
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