
ZeroTrace: Oblivious Memory
Primitives from Intel SGX

Sajin Sasy1, Sergey Gorbunov1 and Christopher Fletcher2

1 - University of Waterloo, 2 - University of Illinois at Urbana-Champaign

Secure Remote Computations

Desirable Properties :
● Confidentiality : The server learns nothing about D
● Integrity : The server can only return P(D) and no other function of D
● Efficiency : It executes in time close to natively executing P(D)

1

 P , D

P , D

P (D)

Alice with Program(P) and Data(D) wishes to compute P(D)

Solution in the ideal world

Desirable Properties :
● Confidentiality : The server learns nothing about D
● Integrity : The server can only return P(D) and no other function of D
● Efficiency : It executes in time close to natively executing P(D)

2

 ,P , D

Alice with Program(P) and Data(D) wishes to compute P(D)

P (D)

P , D

Real world tools and techniques

FHE [1] :

3

Software Solutions :

[1] - Gentry, Craig. A fully homomorphic encryption scheme.

Real world tools and techniques

FHE [1] :
Confidentiality
Integrity
Efficiency

Software Solutions :

[1] - Gentry, Craig. A fully homomorphic encryption scheme.

3

Real world tools and techniques

FHE [1] :
Confidentiality
Integrity
Efficiency

ORAM [2] :
Confidentiality
Integrity
Efficiency

Software Solutions :

[1] - Gentry, Craig. A fully homomorphic encryption scheme.
[2] - Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.

3

Real world tools and techniques

FHE [1] :
Confidentiality
Integrity
Efficiency

3

ORAM [2] :
Confidentiality
Integrity
Efficiency

Intel TPM+TXT [3] :
Confidentiality
Integrity
Efficiency

Hardware Solutions :

Software Solutions :

[1] - Gentry, Craig. A fully homomorphic encryption scheme.
[2] - Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
[3] - Scarlata, Vincent, et al. TPM virtualization: Building a general framework.

Real world tools and techniques

FHE [1] :
Confidentiality
Integrity
Efficiency

ORAM [2] :
Confidentiality
Integrity
Efficiency

Intel TPM+TXT [3] :
Confidentiality
Integrity
Efficiency

Hardware Solutions :

Software Solutions :

Intel SGX [4] :
Confidentiality
Integrity
Efficiency

[1] - Gentry, Craig. A fully homomorphic encryption scheme.
[2] - Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
[3] - Scarlata, Vincent, et al. TPM virtualization: Building a general framework.
[4] - Anati, Ittai, et al. Innovative technology for CPU based attestation and sealing.

3

Real world tools and techniques

FHE [1] :
Confidentiality
Integrity
Efficiency

ORAM [2] :
Confidentiality
Integrity
Efficiency

Intel TPM+TXT [3] :
Confidentiality
Integrity
Efficiency

Hardware Solutions :

Software Solutions :

Intel SGX [4] :
Confidentiality
Integrity
Efficiency

[5] - Xu, Yuanzhong et al. Controlled-channel attacks: Deterministic side channels for untrusted operating systems.
[6] - Shinde, Shweta, et al. Preventing page faults from telling your secrets.
[7] - Lee, Sangho, et al. Inferring fine-grained control flow inside SGX enclaves with branch shadowing.
[8] - Brasser, Ferdinand, et al. Software Grand Exposure: SGX Cache Attacks Are Practical.
[9] - Moghimi, Ahmad et al. Cachezoom: How SGX amplifies the power of cache attacks.
[10] - Van Bulck, Jo, et al. Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution.

[5,6,7,8,9,10]

3

Our Goal

Can we design a solution that meets all the three desirable properties of secure
remote computation ?

Yes, ZeroTrace.

Our Approach :
Privacy of ORAM

 +
Efficiency of SGX

4

Outline

1. Secure Remote Computation
2. Preliminaries :

● Intel SGX
● ORAM

3. ZeroTrace Architecture
4. Evaluation

5

Preliminaries
Intel SGX Background

Intel SGX - Software Guard eXtensions

● x86 instructions extension

6

Intel SGX - Software Guard eXtensions

● x86 instructions extension
● Trusted processor fused with secret keys

6

Intel SGX - Software Guard eXtensions

● x86 instructions extension
● Trusted processor fused with secret keys
● Processor Reserved Memory

(PRM) set aside securely at boot

6

Intel SGX - Software Guard eXtensions

● x86 instructions extension
● Trusted processor fused with secret keys
● Processor Reserved Memory

(PRM) set aside securely at boot
● Secure virtual containers called enclaves

6

Intel SGX - Software Guard eXtensions

● x86 instructions extension
● Trusted processor fused with secret keys
● Processor Reserved Memory

(PRM) set aside securely at boot
● Secure virtual containers called enclaves
● “Secure as long as processor

 isn’t physically broken into.”

6

Secure Remote Computations with Intel SGX

Properties :
● Confidentiality
● Integrity
● Efficiency

,P , D
P (D)

P , D

7

Properties :
● Confidentiality
● Integrity
● Efficiency

Secure Remote Computations with Intel SGX

,P , D
P (D)

P , D

7

Security Limitations of SGX

Research has shown that SGX is susceptible to side channel attacks.
These attacks enable an adversary to extract secret data from enclaves !

● Page Fault Attacks [1,2]
● Branch Shadowing Attack [3]
● Cache Attacks [4,5]
● Data Access Pattern Attacks [1,6]

[1] - Xu, Yuanzhong, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic side channels for untrusted operating systems. 2015.
[2] - Shinde, Shweta, et al. Preventing page faults from telling your secrets. 2016.
[3] - Lee, Sangho, et al. Inferring fine-grained control flow inside SGX enclaves with branch shadowing. 2016.
[4] - Brasser, Ferdinand, et al. Software Grand Exposure: SGX Cache Attacks Are Practical. 2017.
[5] - Moghimi, Ahmad, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom: How SGX amplifies the power of cache attacks. 2017.
[6] - Van Bulck, Jo, et al. Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution. 2017.

8

Functional Limitations of SGX

● Effective PRM limited to 90 MB (with expensive cost for paging)
● No direct IO / syscalls
● Expensive context switching due to Asynchronous Enclave Exits (AEX)

9

Outline

1. Secure Remote Computation
2. Preliminaries :

● Intel SGX - Lightning Tour
● ORAM

3. ZeroTrace Architecture
4. Evaluation

10

Preliminaries
ORAM or Oblivious RAM

Oblivious RAM [1]

● Cryptographic primitive designed to hide memory access patterns
● All ORAMs fundamentally require a probabilistic encryption schema

[1] - Goldreich, Oded, and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. 1996

11

Tree based ORAMs [1,2,3]

[1] - Shi, Elaine, et al. Oblivious RAM with O ((logN) 3) Worst-Case Cost. 2011.
[2] - Stefanov, Emil, et al. Path ORAM: an extremely simple oblivious RAM protocol. 2013.
[3] - Wang, Xiao, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the Goldreich-Ostrovsky lower bound. 2015.

 Data Blocks

12

Tree based ORAMs [1,2,3]

[1] - Shi, Elaine, et al. Oblivious RAM with O ((logN) 3) Worst-Case Cost. 2011.
[2] - Stefanov, Emil, et al. Path ORAM: an extremely simple oblivious RAM protocol. 2013.
[3] - Wang, Xiao, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the Goldreich-Ostrovsky lower bound. 2015.

N Data Blocks

Bucket
Client

Server

 N leaves

12

Tree based ORAMs [1,2,3]

[1] - Shi, Elaine, et al. Oblivious RAM with O ((logN) 3) Worst-Case Cost. 2011.
[2] - Stefanov, Emil, et al. Path ORAM: an extremely simple oblivious RAM protocol. 2013.
[3] - Wang, Xiao, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the Goldreich-Ostrovsky lower bound. 2015.

Position Map Stash

N Data Blocks

Bucket
Client

Server

 N leaves

12

Tree based ORAMs [1,2,3]

Position Map Stash

N Data Blocks

 N leaves

Bucket

Invariant : A block in the system will always
reside in either the local stash, or in its path
to the leaf label on the server tree.

[1] - Shi, Elaine, et al. Oblivious RAM with O ((logN) 3) Worst-Case Cost. 2011.
[2] - Stefanov, Emil, et al. Path ORAM: an extremely simple oblivious RAM protocol. 2013.
[3] - Wang, Xiao, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the Goldreich-Ostrovsky lower bound. 2015.

Client
Server

12

 Client Server

Tree based ORAMs - Access

Request ID : 7

1 2 …. .. N-1 N

Position Map

 1 Fetch leaf for id = 7

 N leaves

7

12

 Client Server

Tree based ORAMs - Access

Request ID : 7

1 2 …. .. N-1 N

Position Map

 1 Fetch leaf for id = 7

 N leaves

7

 2 Sample new leaf ′

′

12

 Client Server

Tree based ORAMs - Access

Request ID : 7

1 2 …. .. N-1 N

Position Map

 1 Fetch leaf for id = 7

 N leaves

7

 2 Sample new leaf ′

′

 3 Request path to leaf

12

 Client Server

Tree based ORAMs - Access

Request ID : 7

1 2 …. .. N-1 N

Position Map

 1 Fetch leaf for id = 7

 N leaves

7

 2 Sample new leaf ′

′

 3 Request path to leaf

12

 Client Server

Tree based ORAMs - Access

Request ID : 7

Position Map

 1 Fetch leaf for id = 7

7

 2 Sample new leaf ′

′

 3 Request path to leaf

 4 Return path to leaf

path

12

 Client Server

Tree based ORAMs - Access

Request ID : 7

Position Map

 1 Fetch leaf for id = 7

7

 2 Sample new leaf ′

′

 3 Request path to leaf

path

 Stash 5 Push real blocks into stash

 4 Return path to leaf

12

 Client Server

Tree based ORAMs - Access

Request ID : 7

Position Map

 1 Fetch leaf for id = 7

7

 2 Sample new leaf ′

′

 3 Request path to leaf

path

 Stash 5 Push real blocks into stash

 4 Return path to leaf

 6 Rebuild path from stash

12

 Client Server

Tree based ORAMs - Access

Request ID : 7

Position Map

 1 Fetch leaf for id = 7

7

 2 Sample new leaf ′

′

 3 Request path to leaf

path

 Stash 5 Push real blocks into stash

 4 Return path to leaf

 6 Rebuild path from stash

new_path

 7 Return new path to leaf

12

 Client Server

Tree based ORAMs - Access

Request ID : 7

Position Map

 1 Fetch leaf for id = 7

7

 2 Sample new leaf ′

′

 3 Request path to leaf

path

 Stash 5 Push real blocks into stash

 4 Return path to leaf

 6 Rebuild path from stash

new_path

 7 Return new path to leaf

 ORAM
Controller

12

Outline

1. Secure Remote Computation
2. Preliminaries :

● Intel SGX - Lightning Tour
● ORAM

3. ZeroTrace Architecture
4. Evaluation

13

ZeroTrace Architecture

ZeroTrace Threat Model

● By default we consider a malicious active adversary
● Everything on the server stack except the processor is untrusted

,P , D
P (D)

P , D

14

Attempt 1

Req

Block

15

Attempt 1

Problems :
1. Controller code susceptible to side channel leakages

Req

Block

1 Side Channel
Leakages

15

Attempt 1

2 Access Pattern

Problems :
1. Controller code susceptible to side channel leakages
2. Access pattern leakages of position map and stash accesses

Leakages

1 Side Channel
Leakages

Req

Block

15

Attempt 1

2 Access Pattern

3 Exceeds PRM Limit

Problems :
1. Controller code susceptible to side channel leakages
2. Access pattern leakages of position map and stash accesses
3. Position map could exceed available PRM

Leakages

1 Side Channel
Leakages

Req

Block

15

Attempt 1

4 No I/O

2 Access Pattern

3 Exceeds PRM Limit

Problems :
1. Controller code susceptible to side channel leakages
2. Access pattern leakages of position map and stash accesses
3. Position map could exceed available PRM
4. Enclaves do not have IO support

Leakages

1 Side Channel
Leakages

Req

Block

15

Attempt 2

4 No I/O

2 Access Pattern

3 Exceeds PRM Limit

Problems :
1. Controller code susceptible to side channel leakages
2. Access pattern leakages of position map and stash accesses
3. Position map could exceed available PRM
4. Enclaves do not have IO support

Leakages

1 Side Channel
Leakages

Req

Block

15

Attempt 2

2 Access Pattern

3 Exceeds PRM Limit

Problems :
1. Controller code susceptible to side channel leakages
2. Access pattern leakages of position map and stash accesses
3. Position map could exceed available PRM

Leakages

1 Side Channel
Leakages

Req

Block

15

Attempt 2 : Recursive ORAMs

 N leaves

Position Map 1

 N/c leaves

Position Map 2

...

Position Map X

 N / cx entries

16

Attempt 2

2 Access Pattern

Problems :
1. Controller code susceptible to side channel leakages
2. Access pattern leakages of position map and stash accesses

Leakages

1 Side Channel
Leakages

Req

Block

17

Evaluation : Recursion

Data blocks are of 1 KB size in this experiment

18

Attempt 3 : Solving the security issues

Untrusted
 Shim

Leakages
2 Access Pattern

Problems :
1. Controller code susceptible to side channel leakages
2. Access pattern leakages of position map and stash accesses

1 Side Channel
Leakages

Req

Block

19

1) Oblivious functions at assembly level
● Library of assembly-level functions for oblivious operations.
● Wrapper functions over CMOV instruction [14,15]
● Example function :

Building blocks for side-channel proofing

[14] - Ohrimenko, Olya, et al. "Oblivious Multi-Party Machine Learning on Trusted Processors." USENIX Security Symposium. 2016.
[15] - Rane, Ashay, Calvin Lin, and Mohit Tiwari. "Raccoon: Closing Digital Side-Channels through Obfuscated Execution." USENIX Security Symposium. 2015.

20

2) Constant time code for the underlying ORAM schema
● Code branches must be data independent
● Access to stash and position map are made through linear scans

Building blocks for side-channel proofing

21

ZeroTrace

ZeroTrace

● First oblivious memory controller on a real secure hardware platform
● Flexible storage backends
● ZeroTrace is secure against ALL software side-channel attacks since it

realizes the oblivious enclave execution definition.

22

ZeroTrace - Usage Models

1) Memory Protection for Secure Computation
● Memory controller for other enclaves
● Data accesses are now side-channel secure

,P , D
P (D)

P , D

23

Evaluation : ZeroTrace performance with small data size

Data blocks are of 8 bytes size in this experiment

24

ZeroTrace - Usage Models

2) Remote Oblivious Data Storage
● Order of magnitude network bandwidth saving
● Order of magnitude decrease in access latency

Req

Block

25

Evaluation : ZeroTrace performance with increasing data sizes

26

How to use ZeroTrace

In order to use oblivious memory via ZeroTrace, where necessary :

● Create an oblivious memory abstraction by :
ZeroTrace_New (label, N, block_size, <params>)

● Access this oblivious memory by :
ZeroTrace_Access (label, id, op, data*)

27

Summary

● Illustrated design and evaluation of ZeroTrace
● Showed how to achieve efficient secure remote computation through

ZeroTrace
● Go play with ZeroTrace : https://github.com/Sajin7/ZT

28

Summary

● Illustrated design and evaluation of ZeroTrace
● Showed how to achieve efficient secure remote computation through

ZeroTrace
● Go play with ZeroTrace : https://github.com/Sajin7/ZT

28

Bonus Slides !

63

Comparing with Hardware ORAM solutions :

● No deployed / practically available solution
Since H/W required is custom and not commercially available

● Typically tied to DRAM storage
● All or nothing , no flexibility

64

Comparing with Raccoon:

● Experiments on Xeon processors (No SGX Support)
● Parameterized to fit recursion within the register space, and

discarded recursive ORAMs for SGX setting
● Streaming doesn’t account for encryption/decryption overhead

65

How does Meltdown/Spectre affect ZeroTrace

● Meltdown does not effect ZeroTrace. No PoC currently
● Spectre_1 doesn’t pan out since there are no branches
● Spectre_2 has been patched by Intel already
● We are still investigating this

66

High-level Security of ZeroTrace

27

Req

Block

Side-channel proofed
using oblivious
techniques

Untrusted
 Shim

Inherits traditional
ORAM security

Future Steps:

● Deploying ZeroTrace as an open source library
● Optimizing data structure support
● Optimizing initialization costs
● Asynchronous ORAM

68

Desired Property : Oblivious Enclave Execution

When a program P is loaded in an enclave, and a set of inputs y = (in1,...,inM) are executed
by this enclave it results in an adversarial view V(y) = trace((Ep,in1),...,(Ep,inM)). We say
that the enclave execution is oblivious if given two sets of inputs y and z, their adversarial
views V(y) and V(z) are computationally indistinguishable.

Here trace(Ep,in) captures the execution trace induced by running the enclave Ep with input
in. This trace(Ep,in) contains all the powerful side channel artifacts that the adversary can
view such as cache usage, page faults, etc.

10

ZeroTrace - Security Arguement

70

Side-channel proofed leaf label retrieval

Non-Oblivious Leaf-label Retrieval :

Oblivious Leaf-label Retrieval :

23

Other Graphs

72

Evaluation : Memory Primitives

28

Evaluation : Flexibility of Controller

24

Data blocks are of 1 KB size in this experiment

Evaluation : Breakdown of Request Time

75

Overhead of EPC memory accesses

76

oupdate() in depth

77

Building blocks for side-channel proofing

21

Trusted Processor

Processor Reserved
 Memory

Building blocks for side-channel proofing

21

Trusted Processor

Processor Reserved
 Memory

mov eax, src

mov ebx, dst

mov ecx, cond

1

Building blocks for side-channel proofing

21

Trusted Processor

Processor Reserved
 Memory

mov eax, src

mov ebx, dst

mov ecx, cond

cmp ecx, 1
cmovz ebx, eax

1

2

Building blocks for side-channel proofing

21

Trusted Processor

Processor Reserved
 Memory

mov eax, src

mov ebx, dst

mov ecx, flag

cmp ecx, 1
cmovz ebx, eax

1

2

mov src, eax

mov dst, ebx

3

Access Protocol for Tree
based ORAM schemes

82

 Client Server

Tree based ORAMs - Access

12

Request ID : 7

1 2 …. .. N-1 N

Position Map

 1 Fetch leaf for id = 7 from Position Map

 N leaves

 Client Server

Tree based ORAMs - Access

12

Request ID : 7

1 2 …. .. N-1 N

Position Map

 1 Fetch leaf for id = 7 from Position Map

 N leaves

 2 Request path to leaf

 Client Server

Tree based ORAMs - Access

12

Request ID : 7

1 2 …. .. N-1 N

Position Map

 1 Fetch leaf for id = 7 from Position Map

 N leaves

 2 Request path to leaf

 3 Sample new leaf

 Client Server

Tree based ORAMs - Access

12

Request ID : 7

1 2 …. .. N-1 N

Position Map

 1 Fetch leaf for id = 7 from Position Map

 N leaves

 2 Request path to leaf

 3 Sample new leaf

 Client Server

Tree based ORAMs - Access

12

path

Request ID : 7

Position Map

 4 Return path to leaf

 1 Fetch leaf for id = 7 from Position Map

 2 Request path to leaf

 3 Sample new leaf

 Client Server

Tree based ORAMs - Access

12

path Stash

Request ID : 7

Position Map

 4 Return path to leaf

 1 Fetch leaf for id = 7 from Position Map

 2 Request path to leaf

 3 Sample new leaf

 5 Push real blocks on path into stash

 Client Server

Tree based ORAMs - Access

12

path

new_path

 Stash

Request ID : 7

Position Map

 4 Return path to leaf

 5 Push real blocks on path into stash

 6 Rebuild path from stash

 1 Fetch leaf for id = 7 from Position Map

 2 Request path to leaf

 3 Sample new leaf

 Client Server

Tree based ORAMs - Access

12

path

new_path

 Stash

Request ID : 7

Position Map

 4 Return path to leaf

 5 Push real blocks on path into stash

 6 Rebuild path from stash

 7 Return new path to leaf back to server

 1 Fetch leaf for id = 7 from Position Map

 2 Request path to leaf

 3 Sample new leaf

 Client Server

Tree based ORAMs - Access

12

path

new_path

 Stash

Request ID : 7

Position Map

 4 Return path to leaf

 5 Push real blocks on path into stash

 6 Rebuild path from stash

 7 Return new path to leaf back to server

 1 Fetch leaf for id = 7 from Position Map

 2 Request path to leaf

 3 Sample new leaf

 ORAM
Controller

