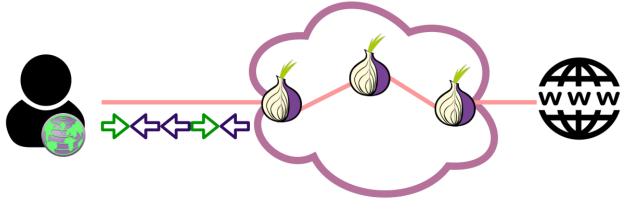
Automated Website Fingerprinting through Deep Learning

<u>Vera Rimmer</u>¹, Davy Preuveneers¹, Marc Juarez², Tom Van Goethem¹ and Wouter Joosen¹

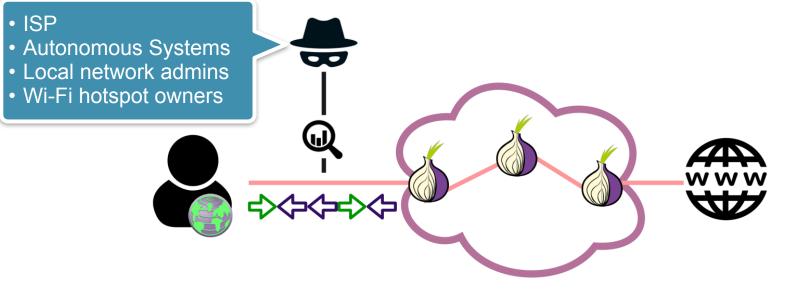
NDSS 2018 – Feb 19th (San Diego, USA)

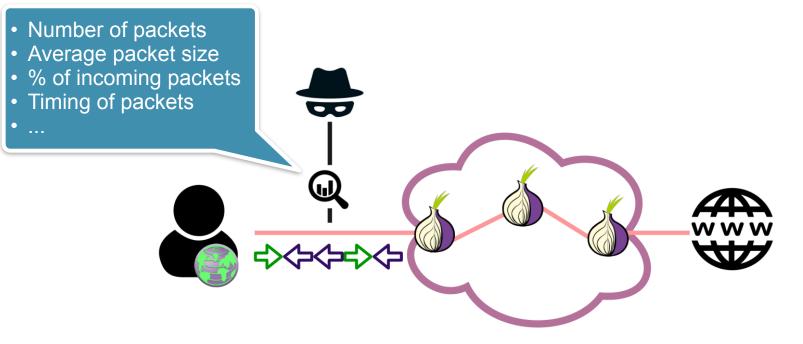
Anonymous Communication through Tor

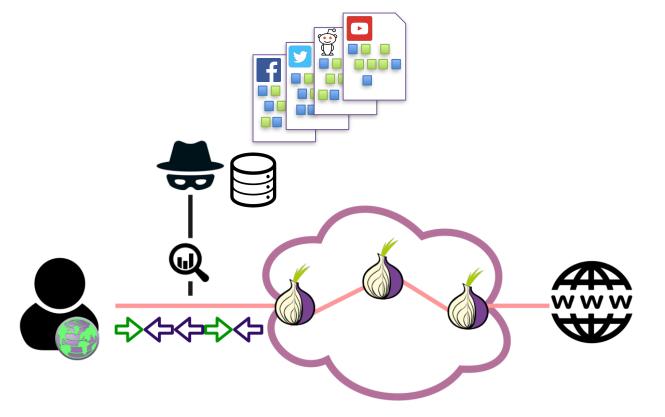
- > All (secure) communication protocols expose metadata
 - >> timing, size of packets, identities, locations, addresses, communication patterns -> reveal private information
- > Anonymity tools relay traffic through protected communication channels
 - >> The Onion Router (Tor)

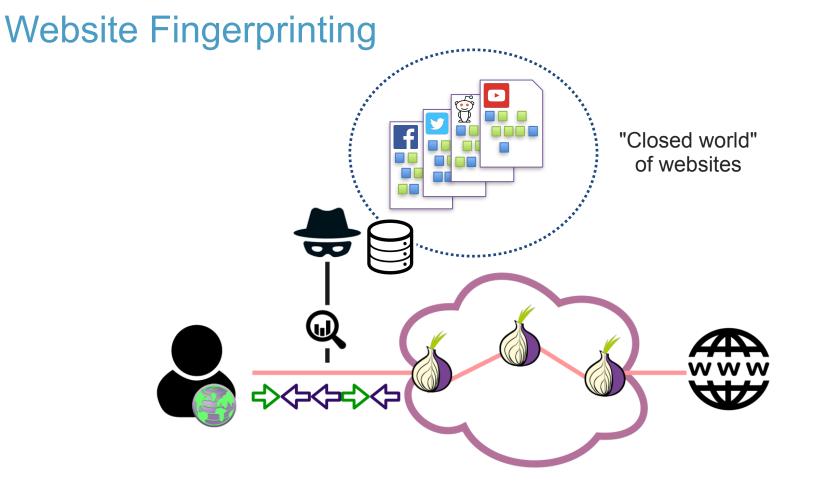


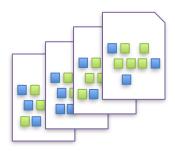
- > Side-channel attack that reveals user's browsing activity
- > Adversary is a local eavesdropper



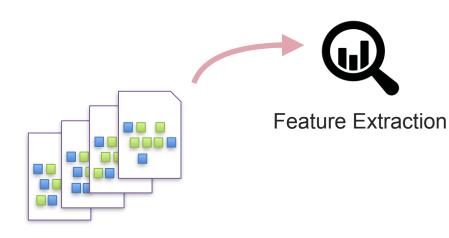




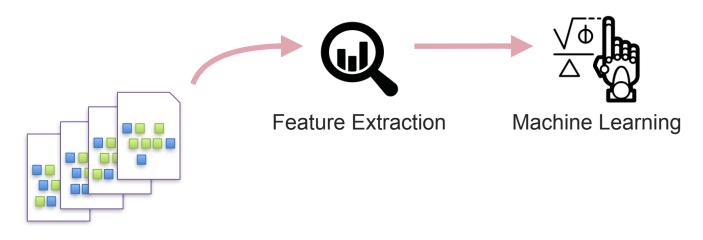




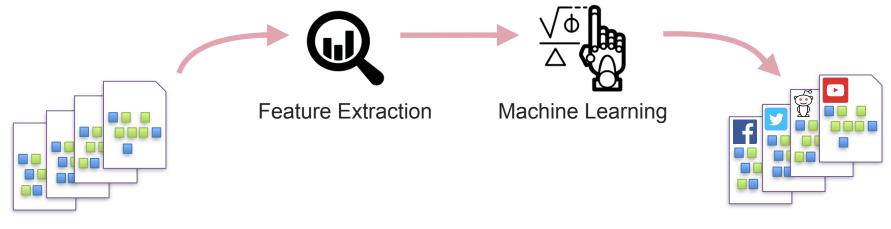
Communication patterns



Communication patterns



Communication patterns

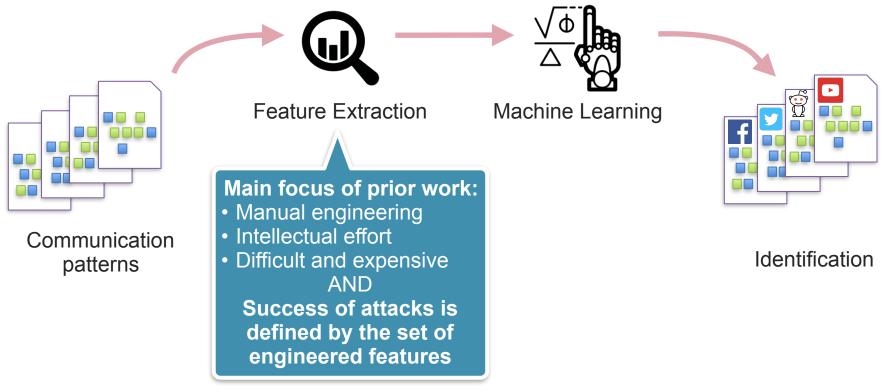


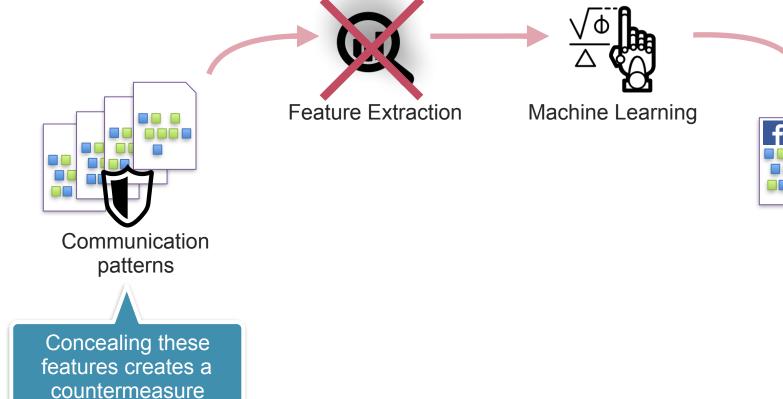
Communication patterns

Identification

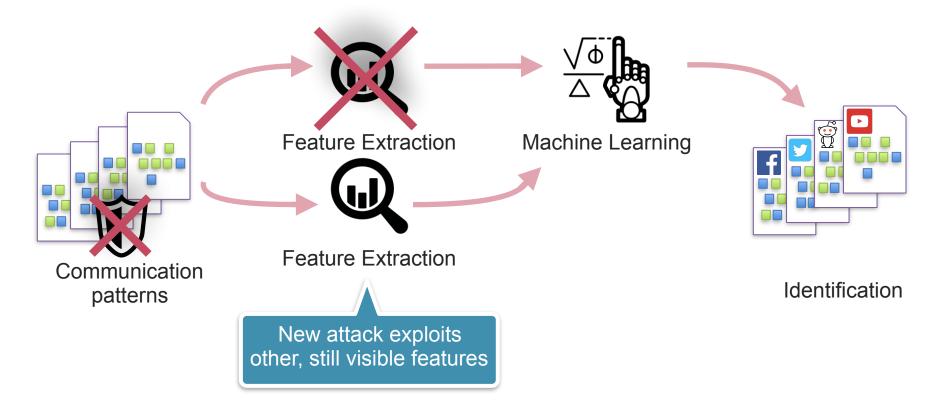
State-of-the-Art Attacks

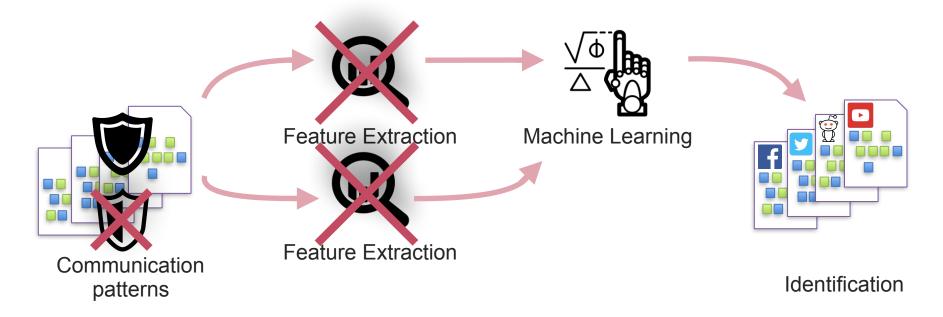
- > kNN (Wang et al., 2014)
 - 3,000 features picked through heuristics (total size, total time, number of packets, packet ordering, traffic bursts...)
 - > Classifier: k-Nearest Neighbors
- > k-Fingerprinting (Hayes et al., 2016)
 - > 150 features selected from Wang's through the analysis of feature importance
 - Classifier: Random Forest and k-Nearest Neighbors
- > CUMUL (Panchenko et al., 2016)
 - > 100 features, interpolation points of the cumulative sum of packet lengths
 - > Classifier: Support Vector Machine

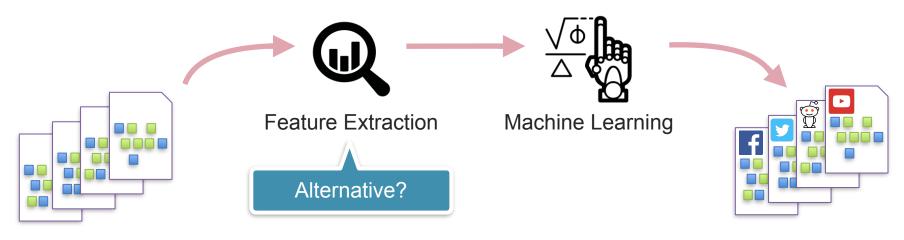




Identification

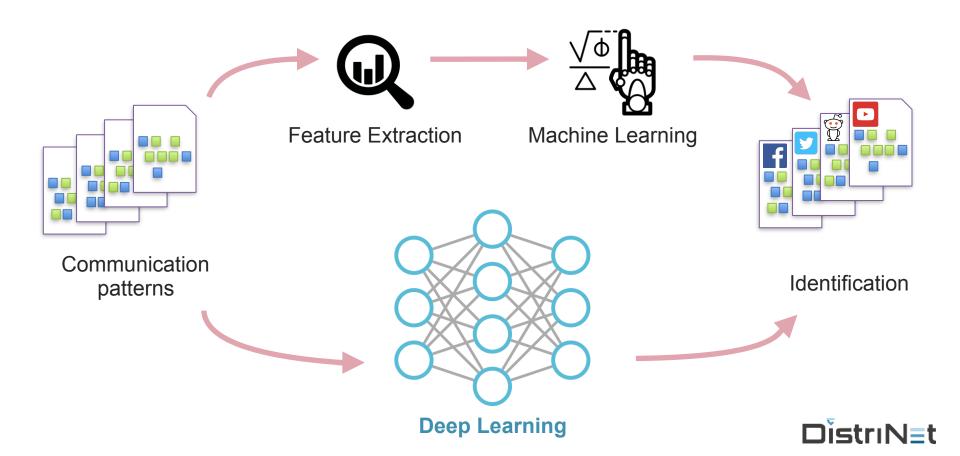






Communication patterns

Identification



Deep Learning for WF

Why Deep Learning?

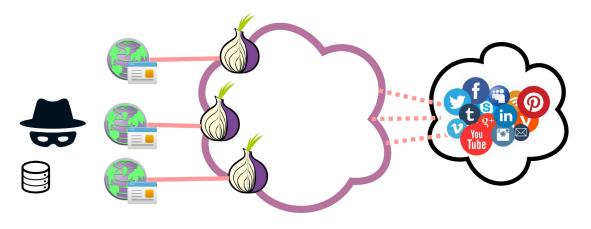
- > Automatic feature learning from raw input
 - > Obviates hand-engineering of features
 - Adaptive to changes in patterns
- > Limited transparency and interpretability
 - > Learned features are implicit and abstract
- > Efficient, easily distributed and parallelized

Deep Learning based WF

- Data Collection
 - > DL requires a lot of training data
- > Deep Neural Network choice
 - > Choosing the best suited deep learning algorithm
- > Hyperparameter Tuning and Model Selection
 - > Tuning of heavily parameterised models

Data Collection

- > Built a distributed crawler
 - > captures timing, direction and sizes of TCP packets
- > 2,500 traces for each 900 top Alexa most popular sites: **largest-ever dataset**
- > Closed worlds: CW_N datasets, where N is the number of sites

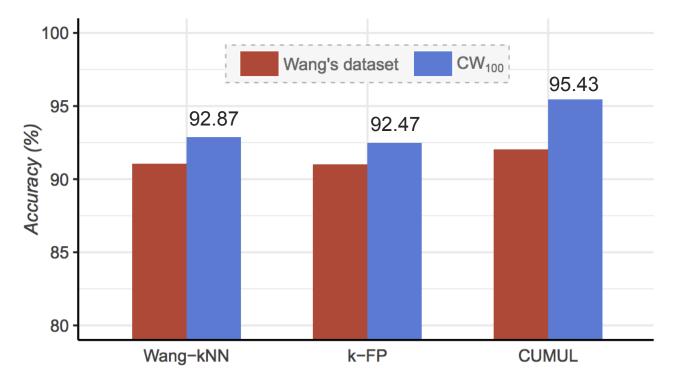


Deep Neural Networks

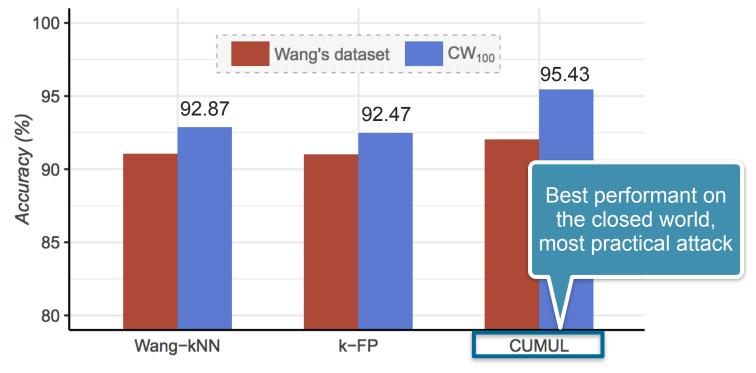
- > Choice of a Deep Neural Network (DNN) suited for the input data
 - 1D sequences of incoming and outgoing Tor cells encoded as 1 and -1
- > Explored 3 major types of DNNs:
 - feedforward: Stacked Denoising Autoencoder (SDAE)
 - learns from the *continuous structure* through dimensionality reduction
 - > convolutional: Convolutional Neural Network (CNN)
 - learns from the spatial structure through convolutions and subsampling
 - recurrent: Long Short Term Memory (LSTM)
 - learns from the *temporal structure* (time-series) through internal memory

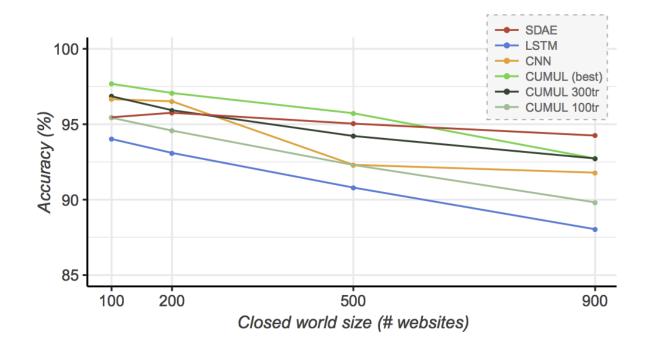
Evaluation and Results

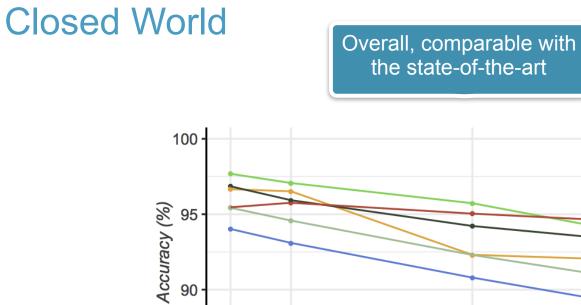
Re-evaluation of Traditional Attacks



Re-evaluation of Traditional Attacks

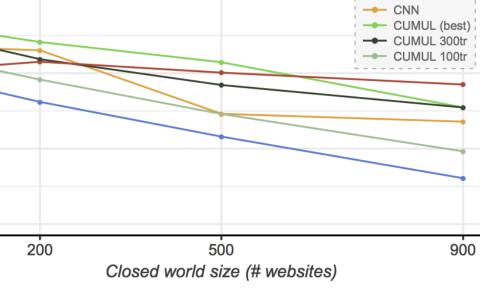






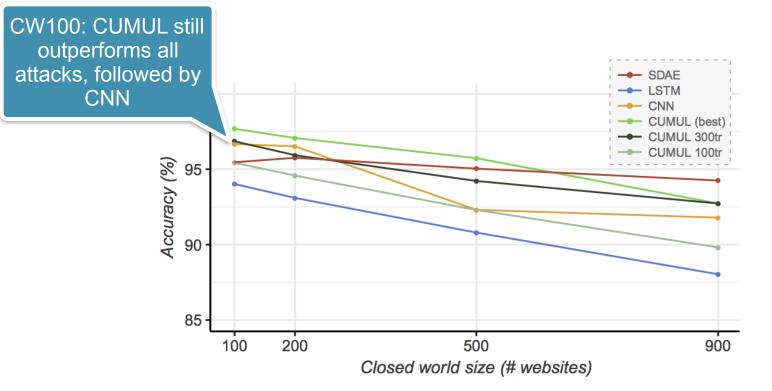
85·

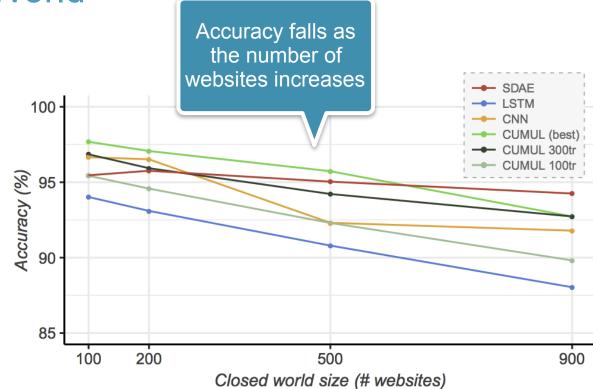
100

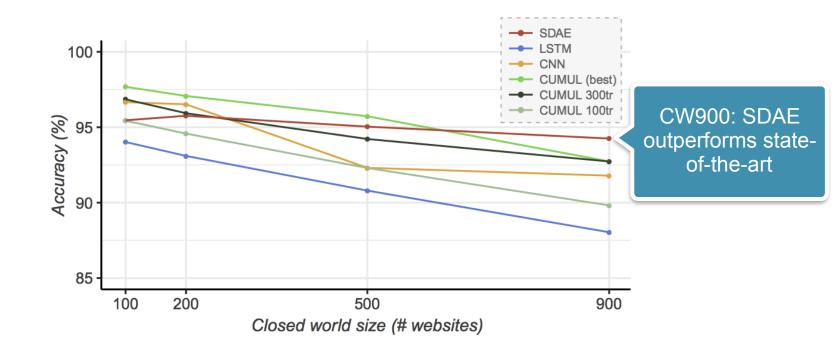


- SDAE

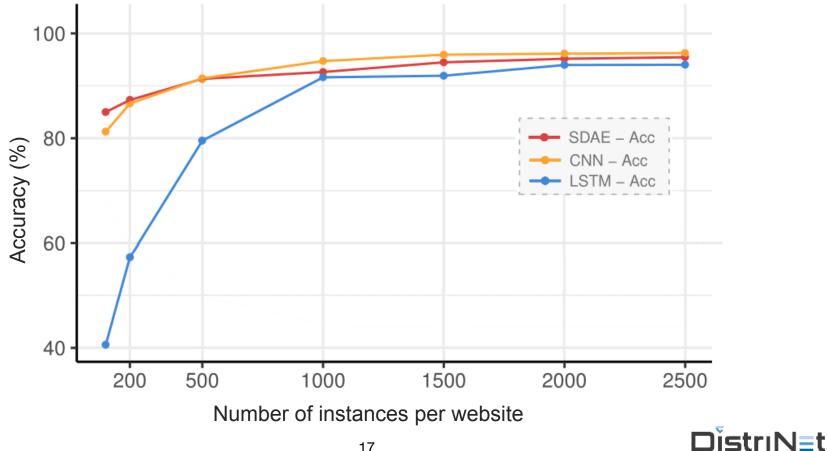
LSTM



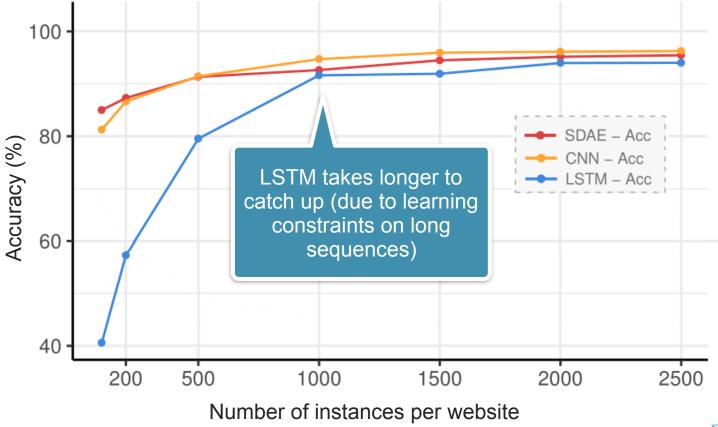




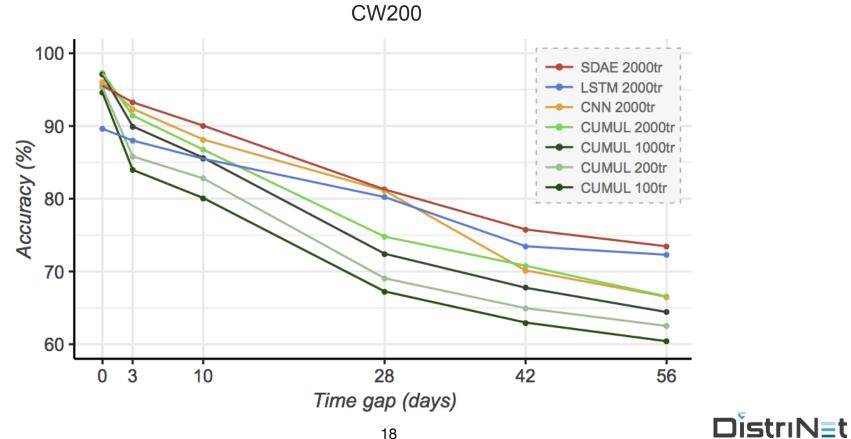
Number of Traces per Website



Number of Traces per Website

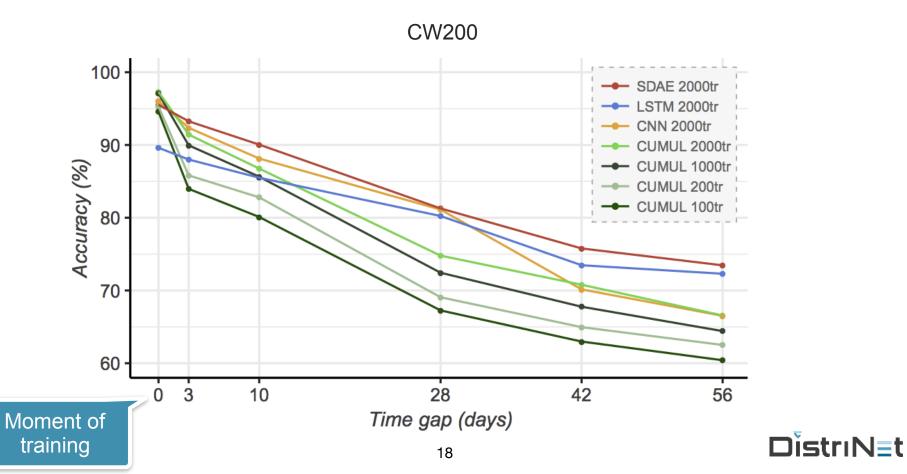


Concept Drift

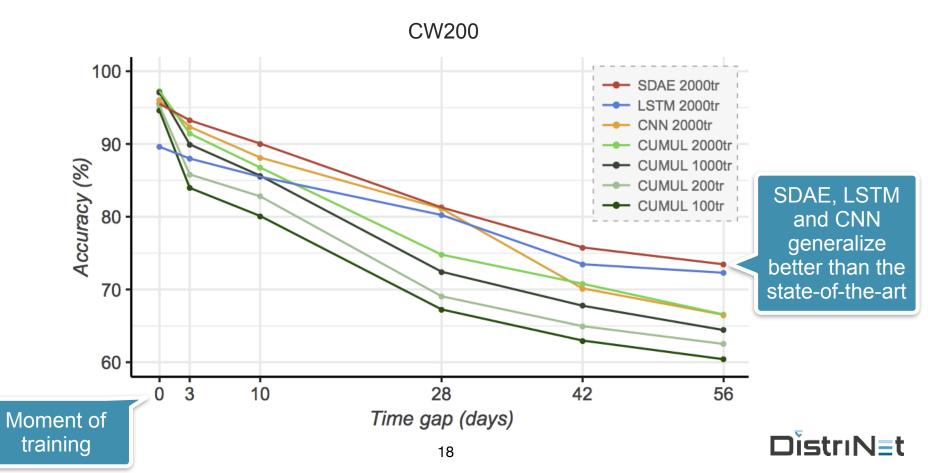


18

Concept Drift



Concept Drift



Implications and Take-aways

Implications and Take-aways

- > First thorough evaluation of DL for WF
 - > Powerful and robust attack (accuracy: 96% for CW100, 94% for CW900)
 - > Each DNN has its strengths and weaknesses
- > Game-changer for the WF arms-race:
 - > Automated feature learning (vs. the burden of manual feature engineering)
 - > Harder to defend against (due to non-trivial interpretability of features)
- > Data collection and model selection are crucial to the performance
 - > Evaluated by collecting the largest dataset for WF

DistriNEt Thank you!

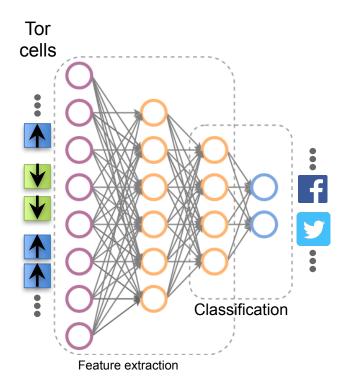
WEBSITE FINGERPRINTING THROUGH DEEP LEARNING https://distrinet.cs.kuleuven.be/software/tor-wf-dl

References

- 1. T. Wang and I. Goldberg, "Improved Website Fingerprinting on Tor," in ACM Workshop on Privacy in the Electronic Society (WPES). ACM, 2013, pp. 201–212.
- 2. T. Wang and I. Goldberg, "On realistically attacking tor with website fingerprinting," in Proceedings on Privacy Enhancing Technologies (PoPETs). De Gruyter Open, 2016, pp. 21–36.
- 3. T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, "Effective Attacks and Provable Defenses for Website Fingerprinting," in USENIX Security Symposium. USENIX Association, 2014, pp. 143–157.
- 4. A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle, and T. Engel, "Website fingerprinting at internet scale," in Network & Distributed System Security Symposium (NDSS). IEEE Computer Society, 2016, pp. 1–15.
- 5. J. Hayes and G. Danezis, "k-fingerprinting: a Robust Scalable Website Fingerprinting Technique," in USENIX Security Symposium. USENIX Association, 2016, pp. 1–17.
- 6. K. Abe and S. Goto, "Fingerprinting attack on tor anonymity using deep learning," Proceedings of the Asia-Pacific Advanced Network, vol. 42, pp. 15–20, 2016.
- 7. M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, "A critical evaluation of website fingerprinting attacks," in ACM Conference on Computer and Communications Security (CCS). ACM, 2014, pp. 263–274.

SDAE

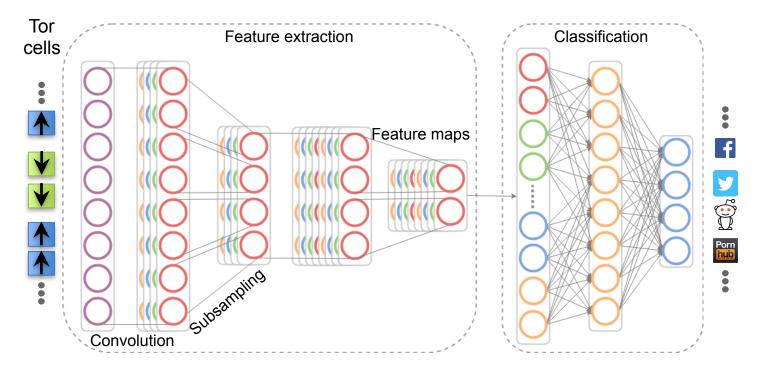
representation



Autoencoder

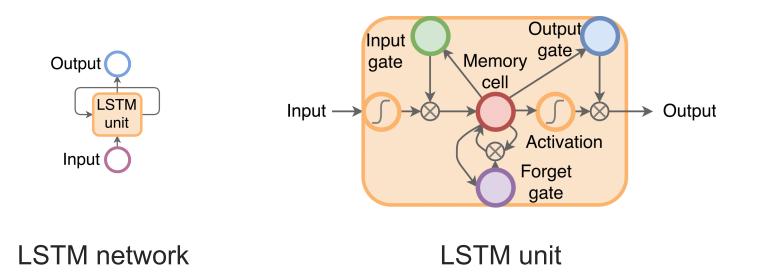
SDAE classifier

CNN

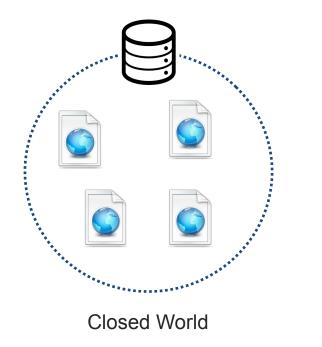


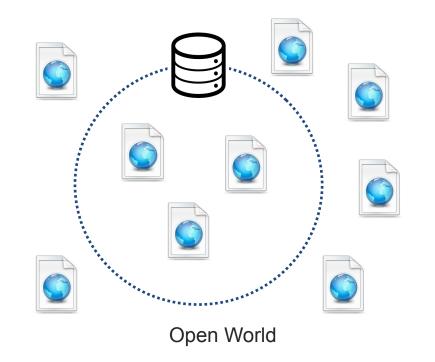
CNN classifier

LSTM



Closed World vs Open World

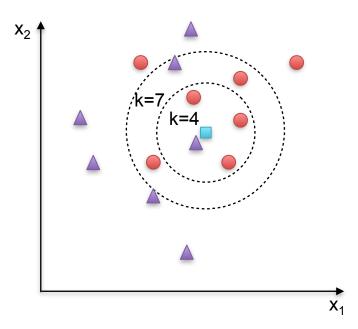




State-of-the-Art Attacks

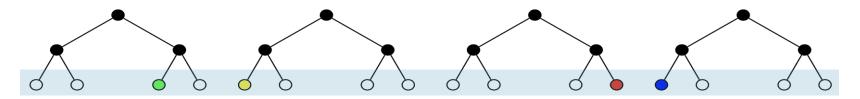
> kNN (Wang et al., 2014)

- > Features
 - > 3,000 (picked through heuristics)
 - total size, total time, number of packets, packet ordering, traffic bursts...
- > Classifier
 - k-Nearest Neighbors (k-NN)
- > Accuracy
 - > 92% (100 websites)



State-of-the-Art Attacks

> k-Fingerprinting (Hayes et al, 2016)



- > Features
 - > 150 (selected from Wang's through analysis of feature importance)
- > Classifier
 - > Random Forest + k-NN

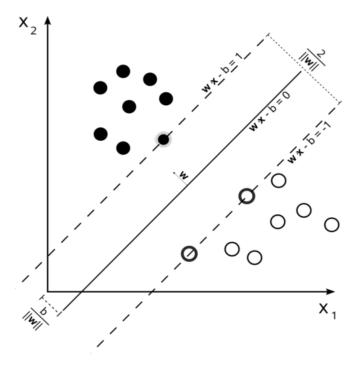
- > Accuracy
 - > 93% (100 websites)

State-of-the-Art Attacks

> CUMUL (Panchenko et al, 2016)

> Features

- 100 (derived as interpolation points of the cumulative sum of packet lengths)
- > Classifier
 - > Support Vector Machine (SVM)
- > Accuracy
 - > From 97% (100 websites)



Open World: ROC Curve



Open World: ROC Curve

