

NDSS Symposium 2018

VulDeePecker : A Deep Learning-Based System for Vulnerability Detection

Zhen Li¹, Deqing Zou¹, Shouhuai Xu², Xinyu Ou¹, Hai Jin¹, Sujuan Wang¹, Zhijun Deng¹, Yuyi Zhong¹

¹Huazhong University of Science and Technology (HUST), Wuhan, China

²University of Texas at San Antonio (UTSA), San Antonio, USA

Automatic Software Vulnerability Detection

Automatic detection of software vulnerabilities is an important research problem

 \diamond Static vulnerability detection tools and studies

Flawfinder	RATS		
COVERITY	FORTIFY	Cobot	
ReDeBug	VUDDY (SP'17)	VulDeePecker (ACSAC'16)	

Drawbacks of Existing Approaches

 \diamond First, imposing intense labor of human experts

- ✓ Define features
- **Second**, incurring high false negative rates
 - ✓ Two most recent vulnerability detection systems
 - VUDDY (SP'17): false negative rate = 18.2% for Apache HTTPD 2.4.23
 - VulPecker (ACSAC'16): false negative rate = 38% with respect to 455 vulnerability samples

Research Problem

 Given the source code of a target program, how can we determine whether or not the target program is vulnerable and if so, where are the vulnerabilities?

Without asking human experts to manually define features

Without incurring a high false negative rate or false positive rate

Vulnerability Deep Pecker (VulDeePecker):

A deep learning-based system for automatically detecting vulnerabilities in programs (source code)

Outline

- ♦ Guiding Principles
- \diamond Design of VulDeePecker
- \diamond Experiments and Results
- \diamond Limitations
- \diamond Conclusion

Outline

\diamond Guiding Principles

 \diamond Design of VulDeePecker

 \diamond Experiments and Results

 \diamond Limitations

 \diamond Conclusion

Guiding Principles: three questions

Q1: How to represent software programs for deep learning-based vulnerability detection?

Q2: What is the appropriate granularity for deep learning-based vulnerability detection?

Q3: How to select a specific neural network for vulnerability detection?

Guiding Principles

Q1: How to represent software programs for deep learning-based vulnerability detection?

Preserve the semantic relationships between the programs' elements (e.g., data-flow and control-flow information).

Guiding Principles

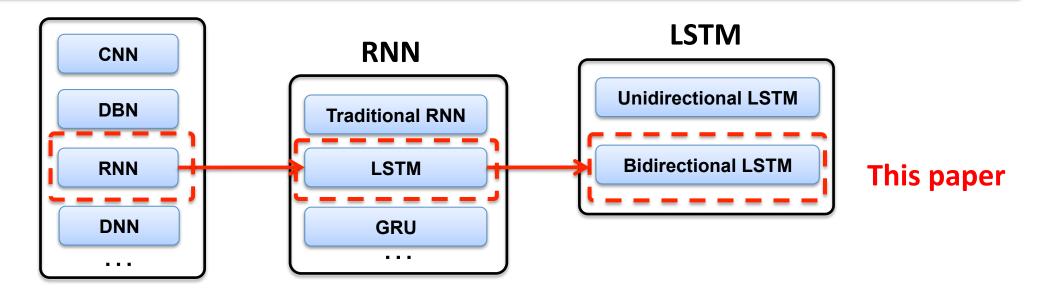
Q2: What is the appropriate granularity for deep learning-based vulnerability detection?

Represented at a finer granularity than treating a program or a function as a unit.

Guiding Principles

Q3: How to select a specific neural network for vulnerability detection?

Neural networks that can cope with contexts may be suitable for vulnerability detection.



Outline

\diamond Guiding Principles

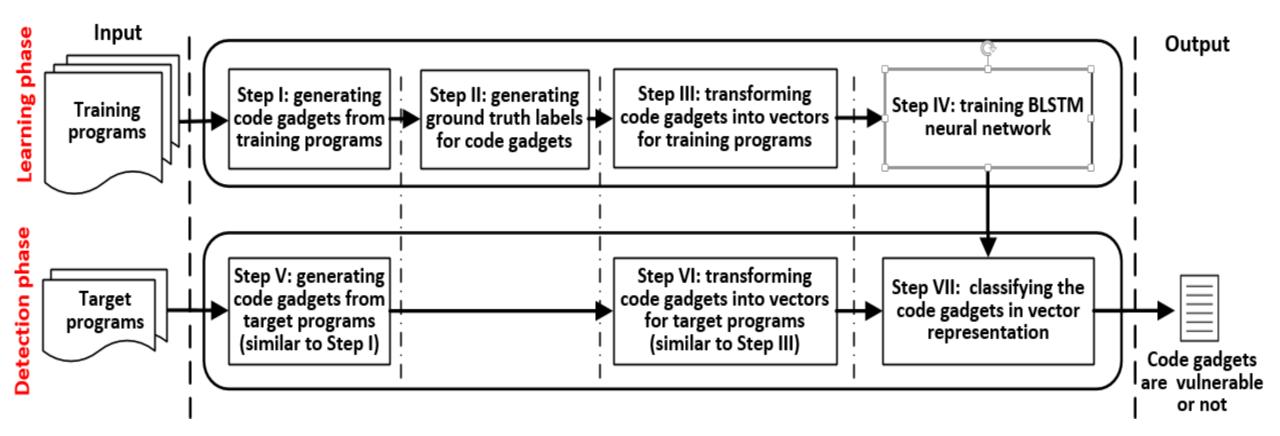
Oesign of VulDeePecker

 \diamond Experiments and Results

 \diamond Limitations

 \diamond Conclusion

Overview of VulDeePecker



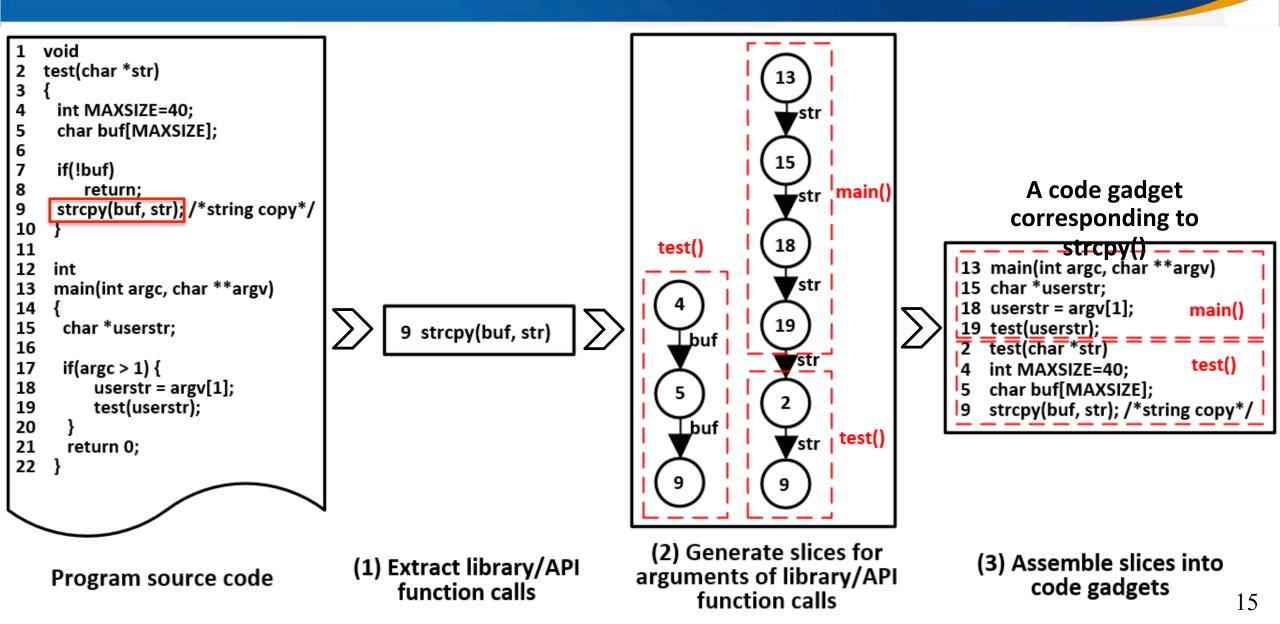
The Concept of Code Gadget

\diamond A unit for vulnerability detection

 A number of program statements that are semantically related to each other in terms of data dependency or control dependency

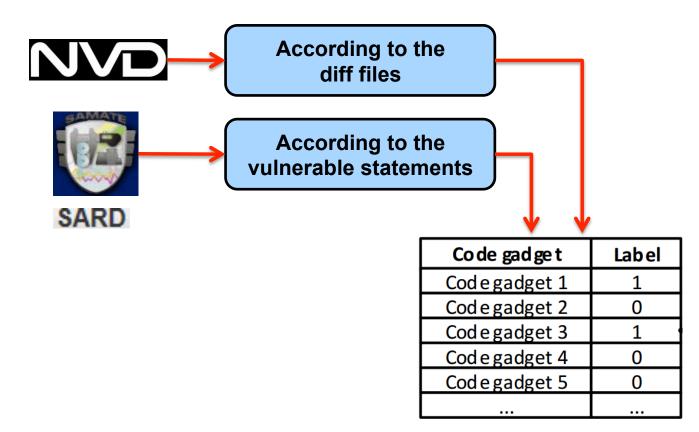
Example: vulnerabilities related to library/API function calls

Step I: Generating Code Gadgets



Step II: Generating Ground Truth Labels

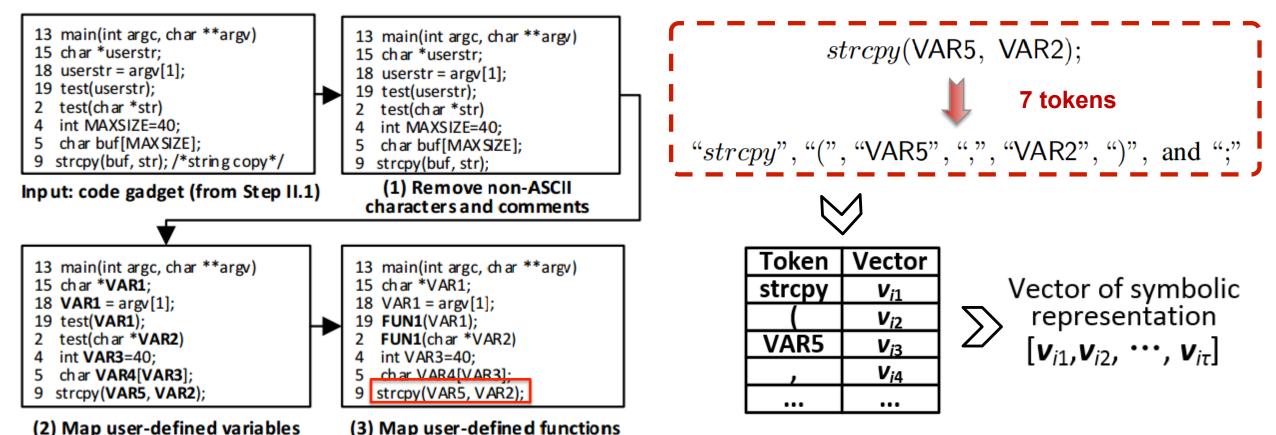
Each code gadget is labeled as "1" (i.e., vulnerable) or "0" (i.e., not vulnerable).



Step III: Transforming Code Gadgets into Vectors

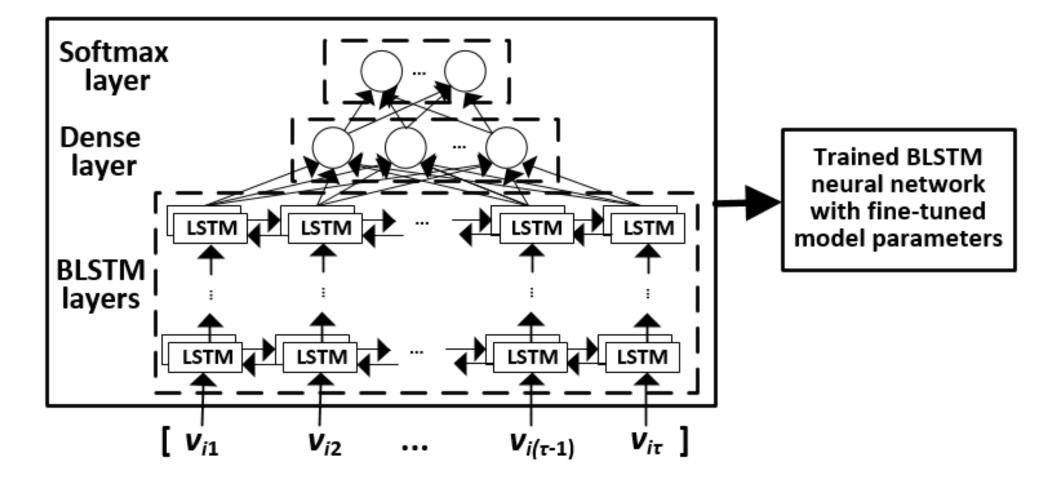
Transform code gadgets into their symbolic representations

\diamond Encode the symbolic representations into vectors

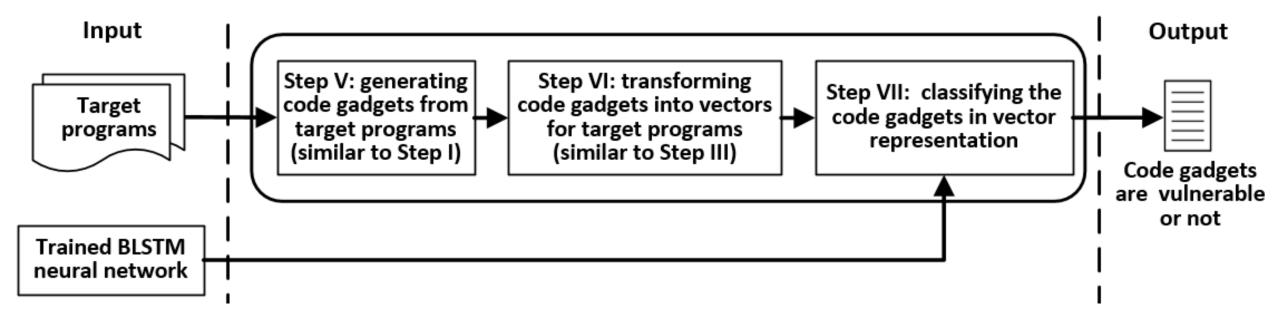


Step IV: Training the BLSTM Neural Network

\diamond Training process for learning the BLSTM neural network is standard



Steps V-VII: Detection Phase



- **\diamond** Guiding Principles
- \diamond Design of VulDeePecker
- **Experiments and Results**
- \diamond Limitations
- \diamond Conclusion

Research Questions

RQ1: Can VulDeePecker deal with multiple types of vulnerabilities at the same time?

RQ2: Can human intelligence (other than defining features) improve the effectiveness of VulDeePecker?

RQ3: How effective is VulDeePecker when compared with other approaches?

♦ Metrics for evaluation

✓ False positive rate (FPR), false negative rate (FNR), recall, precision, F-measure

Preparing Input to VulDeePecker

\diamond Programs collection for answering the RQs

- ✓ Two sources of vulnerability data
 - 19 C/C++ open source products which vulnerabilities are described in NVD, and C/C++ test cases in SARD
- ✓ Collect 520 open source software program files and 8,122 test cases for the buffer error vulnerability (i.e., CWE-119), and 320 open source software program files and 1,729 test cases for the resource management error vulnerability (i.e., CWE-399)
- Training programs vs. target programs
 - ✓ Randomly choose 80% of the programs we collect as training programs and the rest 20% as target programs

Learning BLSTM Neural Networks

$\diamond\,$ Datasets for answering the RQs

✓ Code Gadget Database (CGD): 61,638 code gadgets

✓ Six datasets of CGD

Da	taset	#Code gadgets	#Vulnerable code gadgets	#Not vulnerable code gadgets		
BE-	ALL	39,753	10,440	29,313		
RM	ALL	21,885	7,285	14,600		
HY-	ALL	61,638	17,725	43,913		
BE	SEL	26,720	8,119	18,601		
RM	SEL	16,198	6,573	9,625		
HY	SEL	42,918	14,692	28,226		
Tab	Table I. DATASETS FOR ANSWERING THE RQS					

BE: Buffer error vulnerabilities
RM: Resource management vulnerabilities
HY: Hybrid of the above two types of vulnerabilities

ALL: All library/API function calls SEL: Manually selected library/ API function calls

RQ1: Can VulDeePecker deal with multiple types of vulnerabilities at the same time?

Insight: VulDeePecker can detect multiple types of vulnerabilities, but the effectiveness is sensitive to the amount of data (which is common to deep learning).

Dataset	FPR(%)	FNR(%)	TPR(%)	P(%)	F1(%)
BE-ALL	2.9	18.0	82.0	91.7	86.6
RM-ALL	2.8	4.7	95.3	94.6	95.0
HY-ALL	5.1	16.1	83.9	86.9	85.4

RM: 16 function calls related to vulnerabilities **BE:** 124 function calls related to vulnerabilities

RQ2: Can human intelligence (other than defining features) improve the effectiveness of VulDeePecker?

Insight: Human expertise can be used to select function calls to improve the effectiveness of VulDeePecker.

Dataset	FPR(%)	FNR(%)	TPR(%)	P(%)	F1(%)
HY-ALL	5.1	16.1	83.9	86.9	85.4
HY-SEL	4.9	6.1	93.9	91.9	92.9

RQ3: VulDeePecker vs. Static Analysis Tools

RQ3: How effective is VulDeePecker when compared with other approaches?

Insight: A deep learningbased vulnerability detection system can be more effective by taking advantage of the data-flow information.

	System	Dataset	FPR (%)	FNR (%)	TPR (%)	P (%)	F1 (%)	
1	VulDeePeck	er vs. Other pattern-						
•	Flawfinder	BE-SEL	44.7	69.0	31.0	25.0	27.7	
•	RATS	BE-SEL	42.2	78.9	21.1	19.4	20.2	
•	Checkmarx	BE-SEL	43.1	41.1	58.9	39.6	47.3	
1	VulDeePecker	BE-SEL	5.7	7.0	93.0	88.1	90.5	
-	VulDeePecker vs. Code similarity-based vulnerability detection systems							
	VUDDY	BE-SEL-NVD	0	95.1	4.9	100	9.3	
	VulPecker	BE-SEL-NVD	1.9	89.8	10.2	84.3	18.2	
	VulDeePecker	BE-SEL-NVD	22.9	16.9	83.1	78.6	80.8	
	VUDDY	BE-SEL-SARD	N/C	N/C	N/C	N/C	N/C	
	VulPecker	BE-SEL-SARD	N/C	N/C	N/C	N/C	N/C	
	VulDeePecker	BE-SEL-SARD	3.4	5.1	94.9	92.0	93.4	

RQ3: VulDeePecker vs. Code Similarity-Based Approaches

RQ3: How effective is VulDeePecker when compared with other approaches?

Insight: VulDeePecker is more effective than code similarity-based approaches

System	Dataset	FPR	FNR	TPR	Р	F1	
, , , , , , , , , , , , , , , , , , ,		(%)	(%)	(%)	(%)	(%)	
VulDeePeck	VulDeePecker vs. Other pattern-based vulnerability detection systems						
Flawfinder	BE-SEL	44.7	69.0	31.0	25.0	27.7	
RATS	BE-SEL	42.2	78.9	21.1	19.4	20.2	
Checkmarx	BE-SEL	43.1	41.1	58.9	39.6	47.3	
VulDeePecker	BE-SEL	5.7	7.0	93.0	88.1	90.5	
VulDeePecke	r vs. Code similarity	y-based v	ulnerabil	ity detec	tion syste	ems	
VUDDY	BE-SEL-NVD	0	95.1	4.9	100	9.3	
VulPecker	BE-SEL-NVD	1.9	89.8	10.2	84.3	18.2	
VulDeePecker	BE-SEL-NVD	22.9	16.9	83.1	78.6	80.8	
VUDDY	BE-SEL-SARD	N/C	N/C	N/C	N/C	N/C	
VulPecker	BE-SEL-SARD	N/C	N/C	N/C	N/C	N/C	
VulDeePecker	BE-SEL-SARD	3.4	5.1	94.9	92.0	93.4	

Using VulDeePecker in Practice

VulDeePecker detected 4 vulnerabilities, which were not reported in the NVD, but were "silently" patched by the vendors.

These vulnerabilities are missed by most of the other vulnerability detection systems mentioned above

Target product CVE ID	CVE ID	Vulnerable product	Vulnerable file in target product		Library/API	1st patched version
inger product		published in the NVD	publish time	and an anger product	function call	of target product
Libav 10.1	CVE-2013-0851	FFmpeg	12/07/2013	libavcodec/eamad.c	memset	Libav 10.3
Seamonkey	CVE-2015-4517	Firefox	09/24/2015	/dom/system/gonk/NetworkUtils.cpp	snprintf	Seamonkey 2.38
2.31	CVE-2015-4513	Firefox	11/05/2015	/netwerk/protocol/http/Http2Stream.cpp	memset	Seamonkey 2.39
Xen 4.6.0	CVE-2016-9104	Qemu	12/09/2016	tools/qemu-xen/hw/9pfs/virtio-9p.c	memcpy	Xen 4.9.0

Outline

\diamond Guiding Principles

- \diamond Design of VulDeePecker
- \diamond Experiments and Results

\diamond Limitations

 \diamond Conclusion

Limitations and Open Problems

\diamond Present design

- ✓ Assuming source code is available
- ✓ Only dealing with C/C++ programs
- ✓ Only dealing with vulnerabilities related to library/API function calls
- ✓ Only accommodating data-flow information, but not control-flow information
- ✓ Using some heuristics
- \diamond Present implementation
 - ✓ Limit to the BLSTM neural network

\diamond Present evaluation

The dataset only contains vulnerabilities about buffer errors and resource management errors

Outline

\diamond Guiding Principles

- \diamond Design of VulDeePecker
- \diamond Experiments and Results
- \diamond Limitations

\diamond Conclusion

- We initiate the study of using deep learning for vulnerability detection, and discuss some preliminary guiding principles
- We present VulDeePecker, and evaluate it from 3 perspectives
- We present the first dataset for evaluating deep learningbased vulnerability detection systems
 - https://github.com/CGCL-codes/VulDeePecker

New Results (after finishing the paper; in submission)

Cope with all kinds of vulnerabilities (including library/API function calls related ones)

Accommodate both data dependency and control dependency

Oetect 7 (potential) 0-day vulnerabilities and 8 silently patched vulnerabilities from 4 software products

 \diamond Some deep neural networks are more powerful than others

- The first deep learning-based vulnerability detection system using a finer-granularity unit code gadget
- Guiding principles for deep learning-based vulnerability detection
- The first dataset for evaluating deep learning-based vulnerability detection systems

Thanks!

lizhen_hust@hust.edu.cn Data available at: https://github.com/CGCL-codes/VulDeePecker