

Kitsune

AN ENSEMBLE OF AUTOENCODERS FOR ONLINE NETWORK INTRUSION DETECTION

Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai

Introduction

- Neural Networks (NN) are great at detecting malicious packets
 - Great results in literature
 (NNs can learn nonlinear complex patterns and behaviors)
 - ▶ But, not so common in practice (where is my SNORT plugin?)
- Existing NN solutions use supervised learning (e.g., classification):
 - 1. Collect packets
 - 2. Label packets: malicious or normal
 - 3. Train deep NN on labeled data
 - 4. Deploy the NN model to the device
 - 5. Execute the model on each packet
 - 6. When a new attack is discovered, go to #1

Introduction

- Neural Networks (NN) are great at detecting malicious packets
 - Great results in literature (NNs can learn nonlinear complex patterns and behaviors)
 - ▶ But, not so common in practice (where is my SNORT plugin?)
- Existing NN solutions use supervised learning (e.g., classification):
 - 1. Carge storage many samples of every kind of malicious packet
 - 2. Label packets; maligious pringral
 - 3. Train deepodelle purstate land thata.
 - 4. Deploy the NN model to the device
 - 5. Execute de la control de la
 - 6. When a new attack is discovered, go to #1

Kitsune Overview

A **Kitsune**, in Japanese folklore, is a mythical fox-like creature that has a number of tails, can mimic different forms, and whose strength increases with experience.

So too, **Kitsune** has an ensemble of small neural networks (autoencoders), which are trained to mimic (reconstruct) network traffic patterns, and whose performance incrementally improves overtime.

Enables NN on network traffic

Unsupervised: Anomaly detection, no labels!

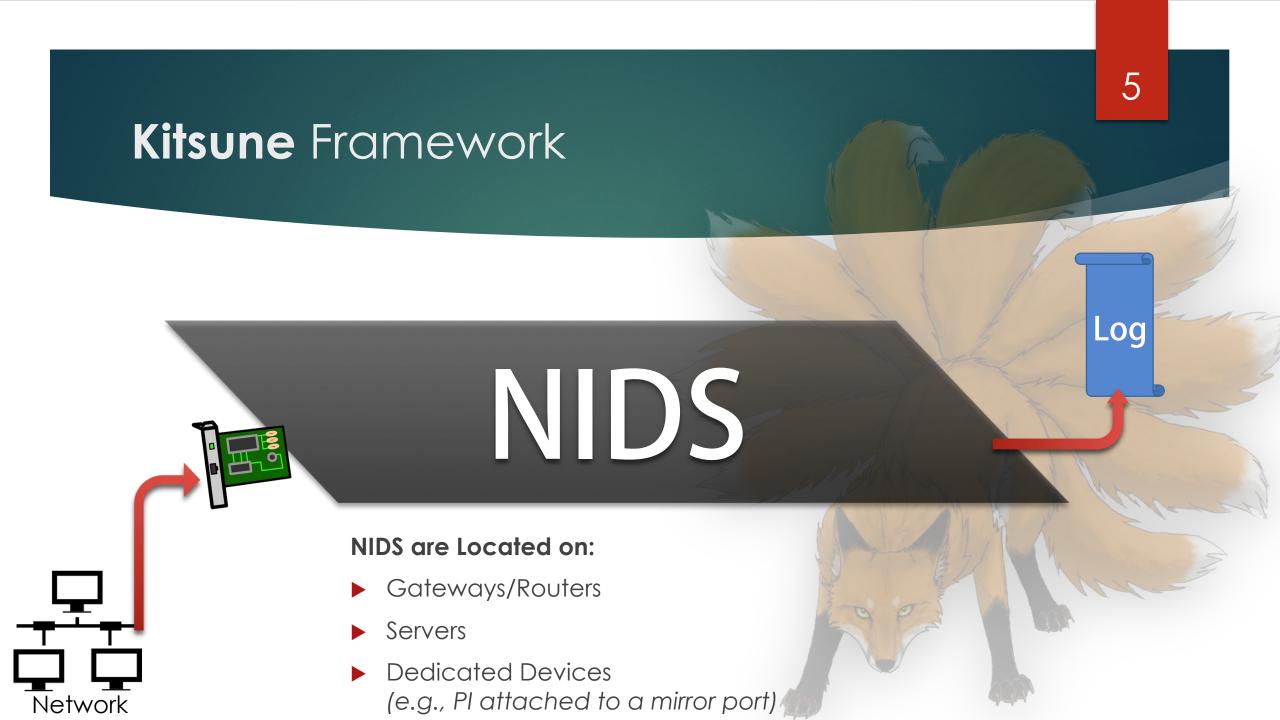
Online: Incremental learning, incremental feature extraction

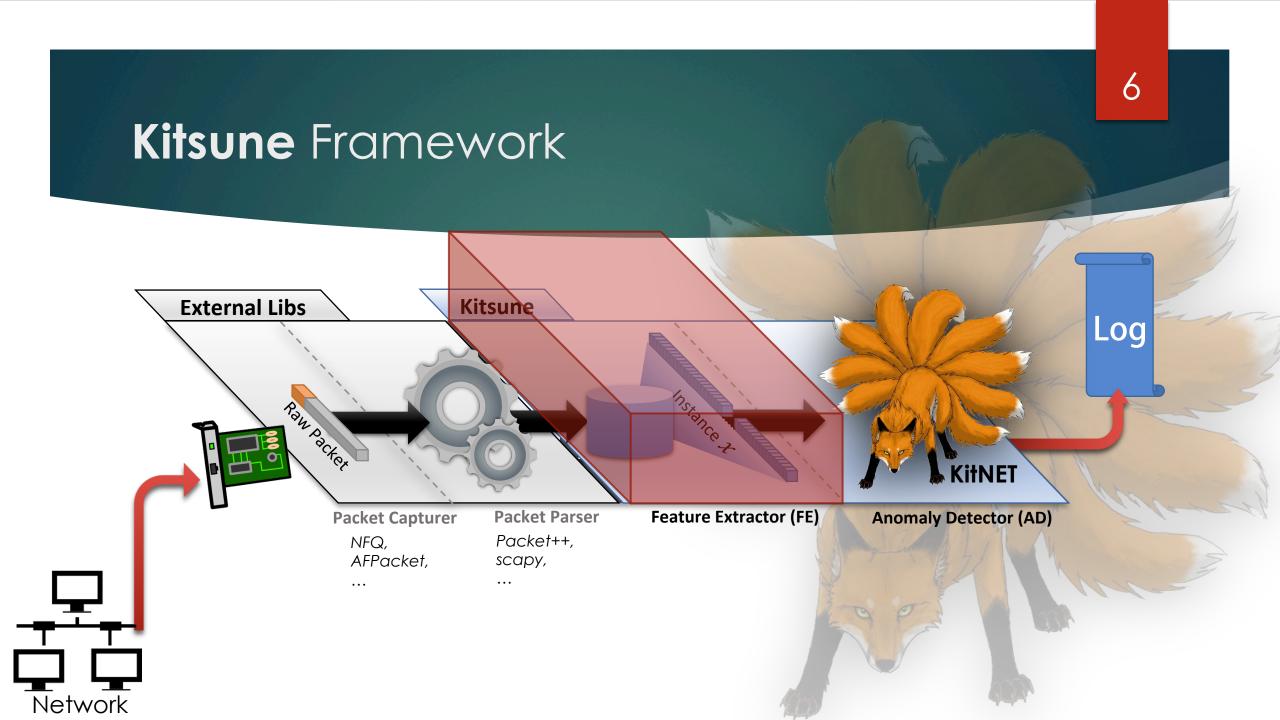
Enables realistic deployments

Plug-and-Play: On-site training, unsupervised learning

Light-weight: The NN uses a hierarchal architecture

e.g., routers





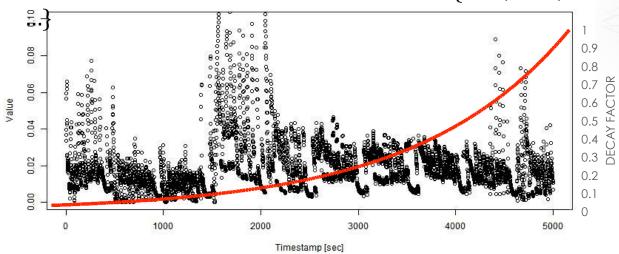
Kitsune Feature Extractor (FE)

 $\gamma \leftarrow$

IS←(

FE uses damped incremental statistics to efficiently measure recent traffic patterns

An unbounded stream of values $S=\{x\downarrow 1, x\downarrow 2,$



Objective: Compute the stats $(\mu, \sigma, ...)$ over the recent history of S, given limited memory and non-uniform sample rates (timestamps)

Decay Factor:

 $d\lambda \lambda(t)=2\uparrow-\lambda t$

Type	Statistic	Notation	Calculation		
1D	Weight	w	W		
	Mean	$\mu_{\mathcal{S}_i}$	LS/w		
	Std.	$\sigma_{\!S_i}$	$\sqrt{ SS/w - (LS/w)^2 }$		
2D	Magnitude	$ S_i, S_j $	$\sqrt{\mu_{S_i}^2 + \mu_{S_j}^2}$		
	Radius	R_{S_i,S_j}	$\sqrt{\left(\sigma_{S_i}^2\right)^2 + \left(\sigma_{S_j}^2\right)^2}$		
	Approx. Covariance	Cov_{S_i,S_j}	$\frac{SR_{ij}}{w_i + w_j}$		
	Correlation Coefficient	P_{S_i,S_j}	$\frac{Cov_{S_i,S_j}}{\sigma_{S_i}\sigma_{S_j}}$		

Kitsune Feature Extractor (FE)

Kitsune

 $x \in \mathbb{R} / 23$

5 Types of Streams:Potentially thousands of streams... 5 inc-stats each

Packet Sizes from a MAC-IP[3]

Packet Sizes from an IP [3]

TCP
Source Y

Packet Sizes from an IP [3]

Jitter of the traffic from an IP [3]

Packet Sizes between two IPs [7]

Dest. 1

Dest. 2

...between

two Sockets [7]

 $\times 5 = 115$

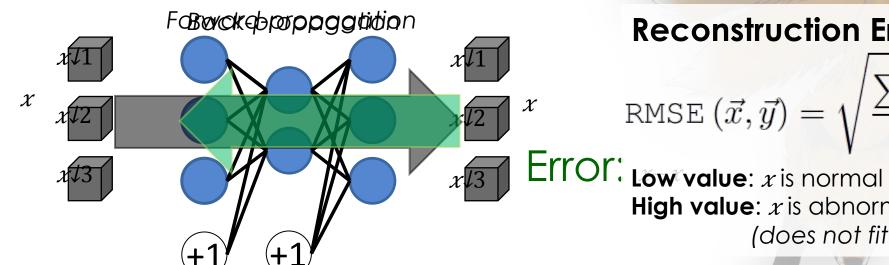
The **KitNET** Anomaly Detector

Anomaly Detection with an Autoencoder

- An Autoencoder is a NN which is trained to reproduce its input after compression
- There are two phases:

Train

Execute



Reconstruction Error

RMSE
$$(\vec{x}, \vec{y}) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - y_i)^2}{n}}$$

High value: x is abnormal

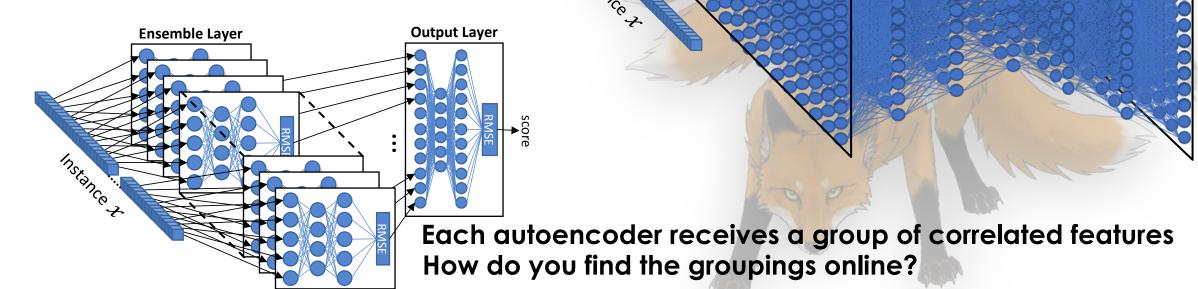
(does not fit known concepts)

The KitNET Anomaly Detector

Why not one massive deep autoencoder?

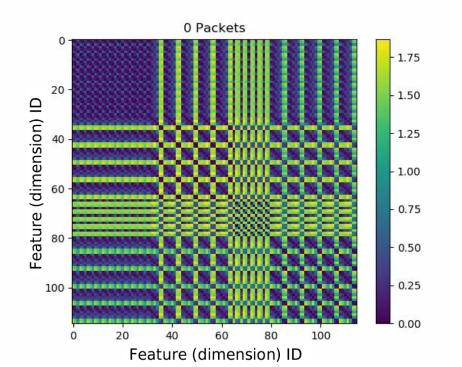
- ► Curse of dimensionality!
- ▶ Train/Execute Complexity

Our Solution:

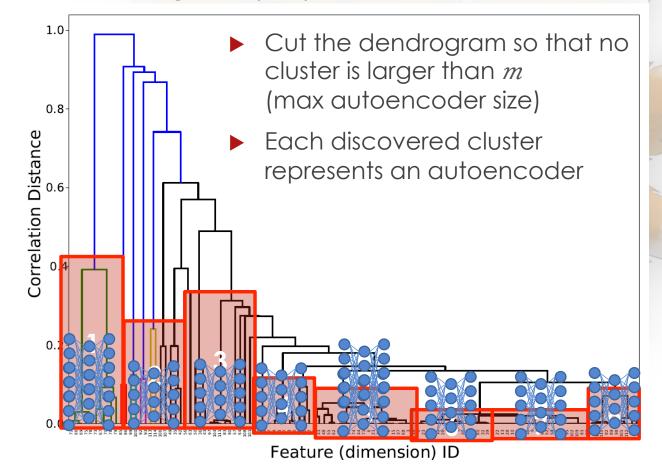


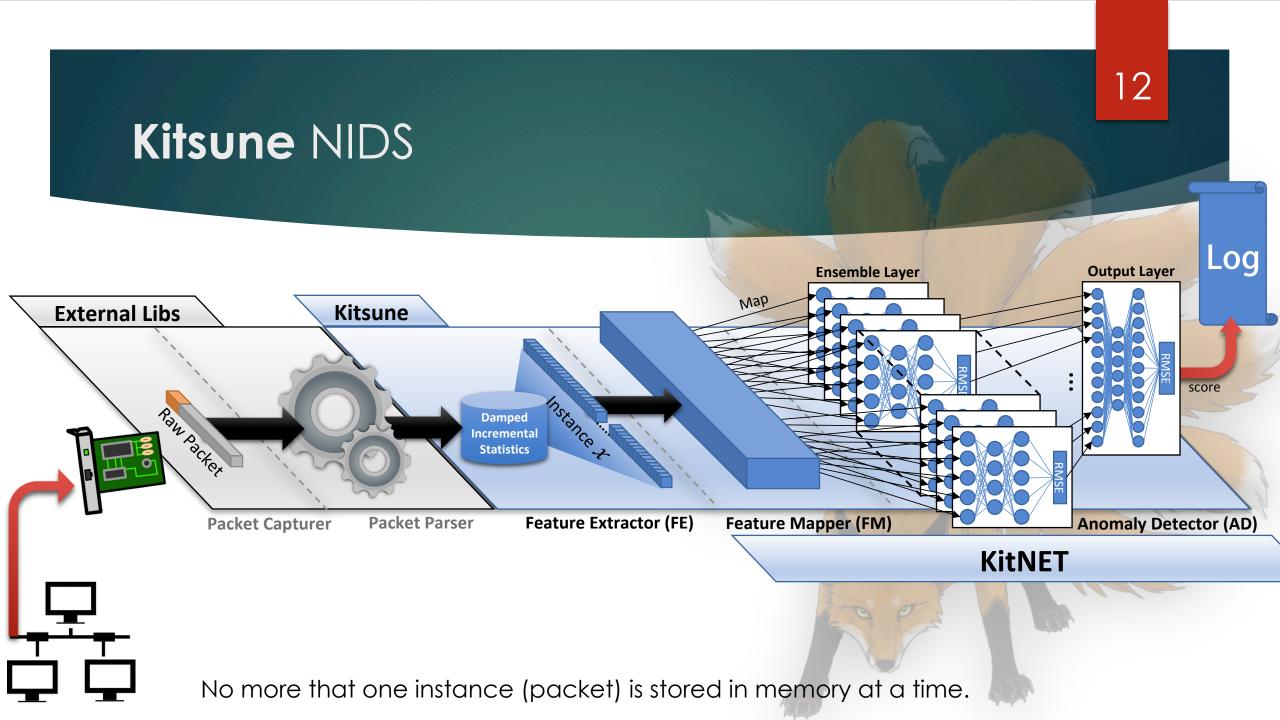
The KitNET Anomaly Detector

For the first N observations (x), incrementally update a correlation distance matrix
D=[D↓ij]=1-(x↓i-x↓i)·(x↓j-x↓j)/||(x↓i-x↓i)||↓2
||(x↓j-x↓j)||↓2

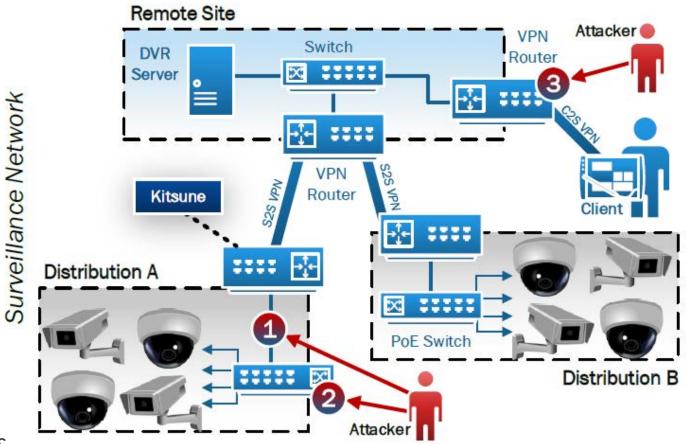


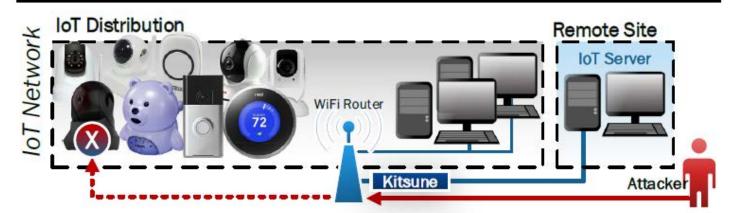
Perform one-time agglomerative hierarchal clustering on D (fast)





- ▶ Networks:
 - ▶ Surveillance
 - ▶ IoT
- ► Algorithms:
 - ► **Signature-based**: Suricata with over 13,465 emerging threat rules
 - ► Anomaly-based:
 - ▶ Batch: GMM, Isolation Forest
 - ▶ Online: pcStream & iGMM

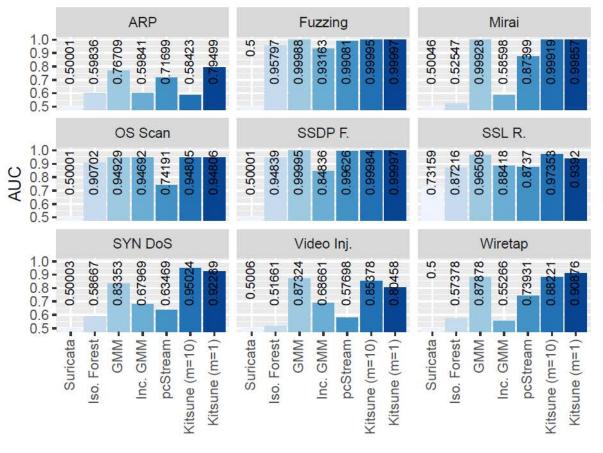




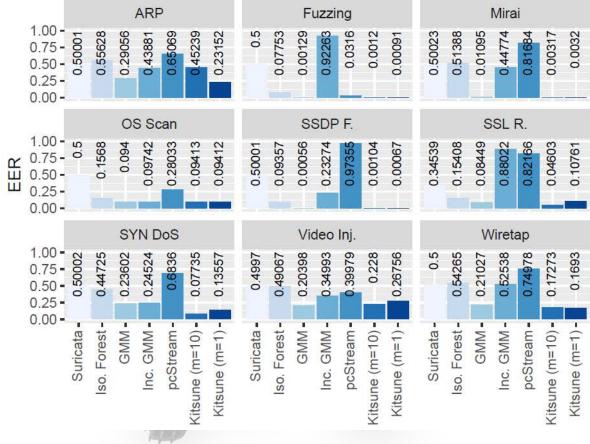
Attacks

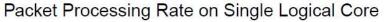
Attack Type	Attack Name	Tool	Description: The attacker	Violation	Vector	# Packets	Train [min.]	Execute [min.]
Recon.	OS Scan	Nmap	scans the network for hosts, and their operating systems, to reveal possible vulnerabilities.	С	1	1,697,851	33.3	18.9
	Fuzzing	SFuzz	searches for vulnerabilities in the camera's web servers by sending random commands to their cgis.	C	3	2,244,139	33.3	52.2
Man in the Middle	Video Injection	Video Jack	injects a recorded video clip into a live video stream.	C, I	1	2,472,401	14.2	19.2
	ARP MitM	Ettercap	intercepts all LAN traffic via an ARP poisoning attack.	C	1	2,504,267	8.05	20.1
	Active Wiretap	Raspberry PI 3B	intercepts all LAN traffic via active wiretap (network bridge) covertly installed on an exposed cable.	C	2	4,554,925	20.8	74.8
Denial of Service	SSDP Flood	Saddam	overloads the DVR by causing cameras to spam the server with UPnP advertisements.	A	1	4,077,266	14.4	26.4
	SYN DoS	Hping3	disables a camera's video stream by overloading its web server.	A	1	2,771,276	18.7	34.1
	SSL Renegotiation	THC	disables a camera's video stream by sending many SSL renegotiation packets to the camera.	A	1	6,084,492	10.7	54.9
Botnet Malware	Mirai	Telnet	infects IoT with the Mirai malware by exploiting default credentials, and then scans for new vulnerable victims network.	C, I	X	764,137	52.0	66.9

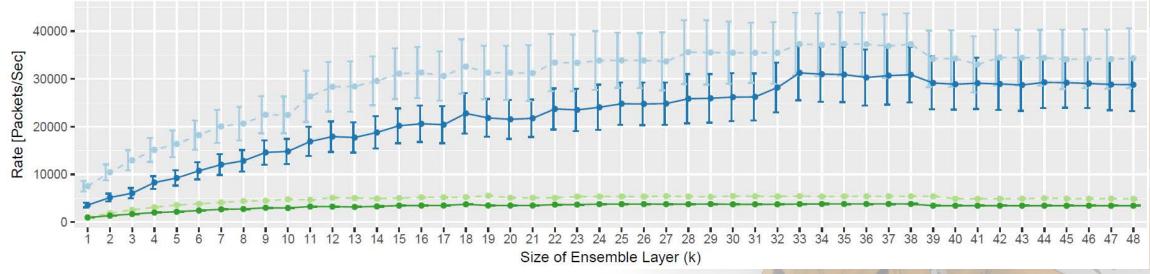
Area Under the Curve (AUC) -Higher is better



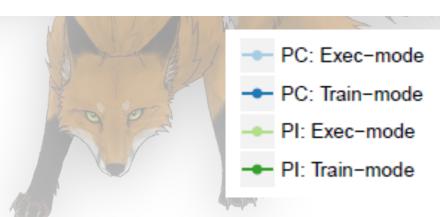
Equal Error Rate (EER) -Lower is better







- ► ~20,000 packets/sec on a PI
- ~140,000 packets/sec on a desktop PC

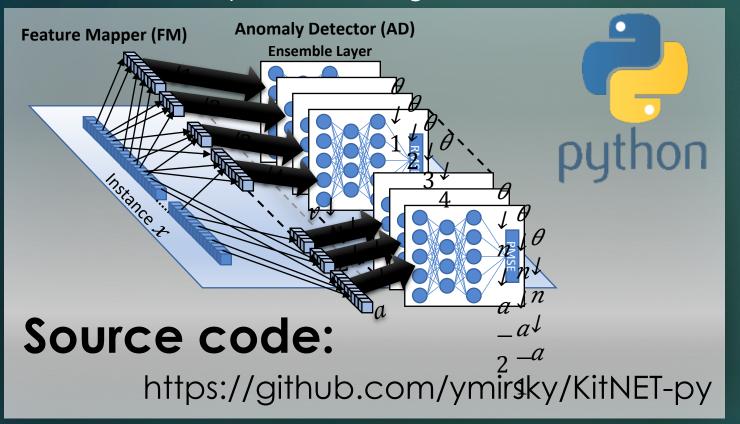


Summary

- In the past, NNs on NIDS were used for the task of classification
- ▶ We propose using NNs for the task of anomaly detection
 - ▶ Eliminates the need for labeling data (endless traffic & unknown threats)
 - ► Enables plug-and-play
- Kitsune Achieves this by,
 - ► Efficient feature extraction
 - ► Efficient anomaly detection (**KitNET**)

KitNET

The core-anomaly detection algorithm of Kitsune



Thank you!

Contact: yisroel@post.bgu.ac.il