
Broken Fingers:
On the Usage of the

Fingerprint API in Android

Network and Distributed System
Security Symposium (NDSS)

February 19th, 2018

Antonio Bianchi

Yanick Fratantonio

Aravind Machiry

Christopher Kruegel

Giovanni Vigna

Simon Pak Ho Chung

Wenke Lee

University of California, Santa Barbara

EURECOM

University of California, Santa Barbara

University of California, Santa Barbara

University of California, Santa Barbara

Georgia Institute of Technology

Georgia Institute of Technology

2Broken Fingers: On the Usage of the Fingerprint API in Android

Authentication Schemas in Mobile Apps
Username/Password authentication is problematic,
especially on mobile

Inserting long passwords
Remembering passwords → Password reuse

We want safer and more usable solutions
Google Sign-In
Smart Lock
…
Fingerprint

3Broken Fingers: On the Usage of the Fingerprint API in Android

Universal 2 Factor

 Universal 2 Factor (U2F)

4Broken Fingers: On the Usage of the Fingerprint API in Android

Authentication Schemas in Mobile Apps

Can we have the same on mobile devices?

In theory, using the fingerprint API

However, many apps use it incorrectly

YES

5Broken Fingers: On the Usage of the Fingerprint API in Android

Hardware-Protected Authentication
Modern devices have hardware capabilities to implement U2F
→ Their proper usage could defend even against powerful “root” attackers

ARM TrustZone → Trusted Execution Environment (TEE)
Securely stores and uses cryptographic keys
The keys are stored inside TrustZone (key non-exportability)
The keys are locked (cannot be used without a fingerprint touch)

Fingerprint reader sensor
It communicates directly with TrustZone
Touching the sensor with registered fingerprints unlocks a key

6Broken Fingers: On the Usage of the Fingerprint API in Android

Contributions

Systematic study
How is the fingerprint API used by Android apps?
How different usages can be exploited?

Automatic detection
Static-analysis tool to automatically detect how apps use the
fingerprint API

Propose improvements
Identify weaknesses of the current API, propose improvements

7Broken Fingers: On the Usage of the Fingerprint API in Android

Scope and Threat Model

We focus on Google’s implementation/devices
Nexus, Pixel

“Physical layer” attacks are out of scope

Assuming TrustZone code is not compromised

8Broken Fingers: On the Usage of the Fingerprint API in Android

Wait for user touch

Fingerprint API Usages

Bad Usage: Weak

Pay Chris $10

Pay Chris $10

Touch the fingerprint sensor

The user touched
the sensor

Pay Attacker $10

9Broken Fingers: On the Usage of the Fingerprint API in Android

Decrypt an “authentication cookie”

Fingerprint API Usages

Not-Ideal Usage: Decryption

Pay Chris $10

I want to pay Chris $10 Give me your
authentication cookie

Touch the fingerprint sensor

Decrypted
“authentication cookie”

“authentication cookie”

Steal the
“authentication cookie”“authentication cookie”

I want to pay Attacker $10
“authentication cookie”

10Broken Fingers: On the Usage of the Fingerprint API in Android

Sign the “Pay Chris $10” transaction

Fingerprint API Usages

Best Usage: Sign

Pay Chris $10

I want to pay Chris $10 Sign the “Pay Chris $10” transaction

Touch the fingerprint sensor

Signed “Pay Chris $10”
transaction

Signed “Pay Chris $10”
transaction →
Verify signature of
“Pay Chris $10”

11Broken Fingers: On the Usage of the Fingerprint API in Android

Attack Summary

Assuming an attacker has root

Weak
Complete bypass

Decryption
Complete bypass after the “authentication cookie” is decrypted once

Sign
Safest (confused deputy is still possible)

12Broken Fingers: On the Usage of the Fingerprint API in Android

Static Analysis

Static analysis → Detect how apps use the fingerprint API
Weak/Decryption/Sign

The analysis is based on
Call-graph reconstruction
Data-flow analysis

APK → IR (Soot) → Feature Extraction → Classification

13Broken Fingers: On the Usage of the Fingerprint API in Android

API Details

Functionality API Features

Key Generation KeyGenParameterSpec$Builder DecryptionKey
SigningKey

Key Locking setKeyAuthenticationRequired LockedKey
UnlockedKey

Key Unlocking authenticate(<key>, ...) Null
NotNull

Callback onAuthenticationSucceded NoCrypto
Constant
Decryption
SignWeak

14Broken Fingers: On the Usage of the Fingerprint API in Android

Results
501 apps (out of 30,459) can potentially use the fingerprint API
(declare the USE_FINGERPRINT permission)

Classified as follow

Errors Not Used Weak Decryption Sign

5 (1.00%) 72 (14.37%) 269 (53.59%) 146 (29.14%) 9 (1.80%)

80% (16/20) should have used
cryptographic checks

15Broken Fingers: On the Usage of the Fingerprint API in Android

Results

Verification
On a subset of 39 apps
Dynamically (simulating an attacker)
Reverse engineering

Accuracy
2 misclassifications (~5%)

Errors Not Used Weak Decryption Sign

5 (1.00%) 72 (14.37%) 269 (53.59%) 146 (29.14%) 9 (1.80%)

16Broken Fingers: On the Usage of the Fingerprint API in Android

Case Study – Google Play Store

The Android “Market” app from Google

Configurable to require fingerprint touch to approve purchases

Weak implementation
No cryptographic checks

Against guidelines from Google itself
Guidelines suggest to use Sign for
“authenticating online transactions”

17Broken Fingers: On the Usage of the Fingerprint API in Android

Case Study – Unlocking Unlocked Keys

A cryptographic key is unlocked by the fingerprint only if the
setUserAuthenticationRequired API is called

Otherwise, the key is usable without the user
touching the sensor

We found 15 apps (4 manually verified) that
Use the fingerprint API to unlock a cryptographic key
“Forget” to lock it in the first place!

18Broken Fingers: On the Usage of the Fingerprint API in Android

Current API Weaknesses

The current API has some intrinsic weaknesses
(even assuming Sign usage)

No Secure UI
The user has no reliable way to know what is signed by
touching the sensor

TrustZone could be used to implement Secure UI

19Broken Fingers: On the Usage of the Fingerprint API in Android

Current API Weaknesses

If an attacker has root when the public/private key pair
is generated:

the attacker can send to the remote backend a public key
for which the attacker knows the corresponding private key

Key Attestation mitigates this issue
Verify that the provided key has been generated by TrustZone
Not commonly used

No app using it in our dataset from Feb 2017

20Broken Fingers: On the Usage of the Fingerprint API in Android

?

Questions?

Antonio Bianchi

 antoniob@cs.ucsb.edu

mailto:antoniob@cs.ucsb.edu

