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Many Static Rewriters Have Been Developed Over the Past Decades

Systems Year RL DSHSHPHCHDIN PROPHACFRU

ETCH [RVL+97] 1997 X X 7 7 7 7 X X X 7 7 7

SASI [ES99] 1999 7 7 X X X X 7 7 7 X 7 7

PLTO [SDAL01] 2001 7 7 X X X X X X X 7 7 7

VULCAN [SEV01] 2001 X 7 X X X X X X X 7 7 7

DIABLO [PCB+05] 2005 7 7 X X X X X X X 7 7 7

CFI [ABEL09] 2005 X 7 X X X X 7 7 7 X X 7

XFI [EAV+06] 2006 X 7 X X X X 7 7 7 X 7 7

PITTSFIELD [MM06] 2006 7 7 X X X X 7 7 7 X 7 7

BIRD [NLLC06] 2006 X X 7 X X 7 X X X X 7 7

NACL [YSD+09] 2009 7 7 X X X X 7 7 7 X 7 7

PEBIL [LTCS10] 2010 7 7 X X X X X X X 7 7 7

SECONDWRITE [OAK+11] 2011 X X X 7 7 7 X X X X 7 7

DYNINST [BM11] 2011 X X 7 7 X 7 X X X X X 7

STIR/REINS [WMHL12b, WMHL12a] 2012 X X X 7 7 X 7 7 7 X X 7

CCFIR [ZWC+13] 2013 7 X X X 7 7 7 7 7 X X 7

BISTRO [DZX13] 2013 X X X 7 7 7 7 7 7 X 7 X
BINCFI [ZS13] 2013 X X X X X 7 7 7 7 X X 7

PSI [ZQHS14] 2014 X X X X X 7 X X X X X 7

UROBOROS [WWW16] 2016 X X 7 7 7 7 X X X X X X
RAMBLR [WSB+17] 2017 X X X 7 7 7 X X X X X X
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These tools rely on various
assumptions and heuristics!
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MULTIVERSE: the first heuristic-free static binary rewriter

“Everything that can happen does happen.” [CF12]
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Fundamental Challenges

1 Recognizing and relocating static memory addresses
2 Handling dynamically computed memory addresses
3 Differentiating code and data
4 Handling function pointer arguments (e.g., callbacks)
5 Handling PIC
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C1: Recognizing and relocating static memory addresses

Data may contain function pointers
Must identify pointers to transformed code
Difficult to reliably distinguish pointer-like integers from pointers

Keeping original data space intact
No need to modify data addresses if data unchanged
Keep read-only copy of code for inline data in original code
section [OAK+11, ZS13, WMHL12b, WMHL12a]
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C2: Handling dynamically computed memory addresses
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C2: Handling dynamically computed memory addresses

Indirect control flow transfer (iCFT) targets computed at runtime
May use base+offset or arbitrary arithmetic
Difficult to predict iCFT targets statically

Creating mapping from old code space to rewritten code space
Do not attempt to identify original addresses to rewrite
Ignore how address is computed; only focus on final target
Rewrite all iCFTs to use mapping to dynamically translate address on use [PCC+04]
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C3: Differentiating code and data

Code and data can be freely interleaved
Found in hand-written assembly and optimizing compilers
Linear sweep fails on inline data
Recursive traversal lacks full coverage

Brute force disassembling of all possible code
Disassemble every offset [KRVV04, WZHK14, LVP+15]
All intended code will be within resulting superset
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C4: Handling function pointer arguments (e.g., callbacks)
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C4: Handling function pointer arguments (e.g., callbacks)

Callbacks will fail if function pointer not updated
Library code uses callbacks
Difficult to identify function pointer arguments

Rewriting all user level code including libraries
Hard to automatically identify all function pointer arguments
Instead, rewrite everything [ZS13]
Use mapping (from Solution ·) to translate callback upon use
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C5: Handling PIC

Position-independent code (PIC) can be loaded at arbitrary address
Dynamically calculates relative offsets
Offsets different for modified code

Rewriting all call instructions
For x86-32 instructions, only call reveals instruction pointer
Rewrite call to push/jmp and push old return address [ZS13, CBG17]
Offsets computed based on old address
From Solution ·, rewritten ret instructions translate return address with mapping
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Superset Disassembly

The Algorithm
1 Start disassembly at first byte

2 Disassemble until encounters one of:
I Invalid instruction encoding
I Already disassembled offset
I End of byte sequence

3 If offset in previous sequence, jump to
the sequence

4 If not at end of byte sequence, start
disassembly from next byte

5 Go to ·
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Optimizations

Lack of assumptions increases overhead
For well-behaved binaries it is safe to relax constraints

Optimization 1: Only Rewrite Main Binary
If only the main binary is of interest
Requires list of library callback functions

Optimization 2: No Generic PIC
Assume only PIC is via get_pc_thunk

True for many binaries
Significant performance increase for compatible binaries
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Instrumentation Evaluation

Instruction Counting
Ultimate purpose of a rewriter is to insert instrumentation code

Created straightforward instrumentation API
For evaluation created instruction counting instrumentation in MULTIVERSE

Compared with instruction counting Pintools
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Security Applications Evaluation

Shadow Stack
An appealing application of rewriters is binary hardening

Shadow stacks implement a form of backward-edge CFI
Implemented a simple shadow stack in MULTIVERSE

Compared with same type of shadow stack using PIN
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Limitations and Future Work

x86-64 Support
Paper only covers 32-bit support
MULTIVERSE now supports 64-bit applications

Optimization
MULTIVERSE focuses on generality
Overhead in some cases is high
Still room for performance improvements in future

Instrumentation API
For paper, used simple instruction-level API
Currently working on more robust API
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