
Superset Disassembly: Statically Rewriting x86 Binaries Without
Heuristics

Erick Bauman1, Zhiqiang Lin1,2, Kevin Hamlen1

1University of Texas at Dallas
2The Ohio State University

NDSS 2018



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Static Binary Rewriting

2 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Static Binary Rewriting

2 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Many Static Rewriters Have Been Developed Over the Past Decades

Systems Year RL DSHSHPHCHDIN PROPHACFRU

ETCH [RVL+97] 1997 X X 7 7 7 7 X X X 7 7 7

SASI [ES99] 1999 7 7 X X X X 7 7 7 X 7 7

PLTO [SDAL01] 2001 7 7 X X X X X X X 7 7 7

VULCAN [SEV01] 2001 X 7 X X X X X X X 7 7 7

DIABLO [PCB+05] 2005 7 7 X X X X X X X 7 7 7

CFI [ABEL09] 2005 X 7 X X X X 7 7 7 X X 7

XFI [EAV+06] 2006 X 7 X X X X 7 7 7 X 7 7

PITTSFIELD [MM06] 2006 7 7 X X X X 7 7 7 X 7 7

BIRD [NLLC06] 2006 X X 7 X X 7 X X X X 7 7

NACL [YSD+09] 2009 7 7 X X X X 7 7 7 X 7 7

PEBIL [LTCS10] 2010 7 7 X X X X X X X 7 7 7

SECONDWRITE [OAK+11] 2011 X X X 7 7 7 X X X X 7 7

DYNINST [BM11] 2011 X X 7 7 X 7 X X X X X 7

STIR/REINS [WMHL12b, WMHL12a] 2012 X X X 7 7 X 7 7 7 X X 7

CCFIR [ZWC+13] 2013 7 X X X 7 7 7 7 7 X X 7

BISTRO [DZX13] 2013 X X X 7 7 7 7 7 7 X 7 X
BINCFI [ZS13] 2013 X X X X X 7 7 7 7 X X 7

PSI [ZQHS14] 2014 X X X X X 7 X X X X X 7

UROBOROS [WWW16] 2016 X X 7 7 7 7 X X X X X X
RAMBLR [WSB+17] 2017 X X X 7 7 7 X X X X X X

3 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Many Static Rewriters Have Been Developed Over the Past Decades

Systems Year RL DSHSHPHCHDIN PROPHACFRU

ETCH [RVL+97] 1997 X X 7 7 7 7 X X X 7 7 7

SASI [ES99] 1999 7 7 X X X X 7 7 7 X 7 7

PLTO [SDAL01] 2001 7 7 X X X X X X X 7 7 7

VULCAN [SEV01] 2001 X 7 X X X X X X X 7 7 7

DIABLO [PCB+05] 2005 7 7 X X X X X X X 7 7 7

CFI [ABEL09] 2005 X 7 X X X X 7 7 7 X X 7

XFI [EAV+06] 2006 X 7 X X X X 7 7 7 X 7 7

PITTSFIELD [MM06] 2006 7 7 X X X X 7 7 7 X 7 7

BIRD [NLLC06] 2006 X X 7 X X 7 X X X X 7 7

NACL [YSD+09] 2009 7 7 X X X X 7 7 7 X 7 7

PEBIL [LTCS10] 2010 7 7 X X X X X X X 7 7 7

SECONDWRITE [OAK+11] 2011 X X X 7 7 7 X X X X 7 7

DYNINST [BM11] 2011 X X 7 7 X 7 X X X X X 7

STIR/REINS [WMHL12b, WMHL12a] 2012 X X X 7 7 X 7 7 7 X X 7

CCFIR [ZWC+13] 2013 7 X X X 7 7 7 7 7 X X 7

BISTRO [DZX13] 2013 X X X 7 7 7 7 7 7 X 7 X
BINCFI [ZS13] 2013 X X X X X 7 7 7 7 X X 7

PSI [ZQHS14] 2014 X X X X X 7 X X X X X 7

UROBOROS [WWW16] 2016 X X 7 7 7 7 X X X X X X
RAMBLR [WSB+17] 2017 X X X 7 7 7 X X X X X X

These tools rely on various
assumptions and heuristics!

3 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

MULTIVERSE: the first heuristic-free static binary rewriter

“Everything that can happen does happen.” [CF12]

4 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Fundamental Challenges

1 Recognizing and relocating static memory addresses
2 Handling dynamically computed memory addresses
3 Differentiating code and data
4 Handling function pointer arguments (e.g., callbacks)
5 Handling PIC

5 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Working Example

6 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Working Example

6 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Working Example

6 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Challenge (C)1: Recognizing and relocating static addresses

7 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Challenge (C)1: Recognizing and relocating static addresses

7 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C1: Recognizing and relocating static memory addresses

Data may contain function pointers
Must identify pointers to transformed code
Difficult to reliably distinguish pointer-like integers from pointers

Keeping original data space intact
No need to modify data addresses if data unchanged
Keep read-only copy of code for inline data in original code
section [OAK+11, ZS13, WMHL12b, WMHL12a]

8 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C1: Recognizing and relocating static memory addresses

Data may contain function pointers
Must identify pointers to transformed code
Difficult to reliably distinguish pointer-like integers from pointers

Keeping original data space intact
No need to modify data addresses if data unchanged
Keep read-only copy of code for inline data in original code
section [OAK+11, ZS13, WMHL12b, WMHL12a]

8 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C2: Handling dynamically computed memory addresses

9 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C2: Handling dynamically computed memory addresses

9 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C2: Handling dynamically computed memory addresses

Indirect control flow transfer (iCFT) targets computed at runtime
May use base+offset or arbitrary arithmetic
Difficult to predict iCFT targets statically

Creating mapping from old code space to rewritten code space
Do not attempt to identify original addresses to rewrite
Ignore how address is computed; only focus on final target
Rewrite all iCFTs to use mapping to dynamically translate address on use [PCC+04]

10 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C2: Handling dynamically computed memory addresses

Indirect control flow transfer (iCFT) targets computed at runtime
May use base+offset or arbitrary arithmetic
Difficult to predict iCFT targets statically

Creating mapping from old code space to rewritten code space
Do not attempt to identify original addresses to rewrite
Ignore how address is computed; only focus on final target
Rewrite all iCFTs to use mapping to dynamically translate address on use [PCC+04]

10 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C3: Differentiating code and data

11 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C3: Differentiating code and data

11 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C3: Differentiating code and data

Code and data can be freely interleaved
Found in hand-written assembly and optimizing compilers
Linear sweep fails on inline data
Recursive traversal lacks full coverage

Brute force disassembling of all possible code
Disassemble every offset [KRVV04, WZHK14, LVP+15]
All intended code will be within resulting superset

12 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C3: Differentiating code and data

Code and data can be freely interleaved
Found in hand-written assembly and optimizing compilers
Linear sweep fails on inline data
Recursive traversal lacks full coverage

Brute force disassembling of all possible code
Disassemble every offset [KRVV04, WZHK14, LVP+15]
All intended code will be within resulting superset

12 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C4: Handling function pointer arguments (e.g., callbacks)

13 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C4: Handling function pointer arguments (e.g., callbacks)

13 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C4: Handling function pointer arguments (e.g., callbacks)

Callbacks will fail if function pointer not updated
Library code uses callbacks
Difficult to identify function pointer arguments

Rewriting all user level code including libraries
Hard to automatically identify all function pointer arguments
Instead, rewrite everything [ZS13]
Use mapping (from Solution ·) to translate callback upon use

14 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C4: Handling function pointer arguments (e.g., callbacks)

Callbacks will fail if function pointer not updated
Library code uses callbacks
Difficult to identify function pointer arguments

Rewriting all user level code including libraries
Hard to automatically identify all function pointer arguments
Instead, rewrite everything [ZS13]
Use mapping (from Solution ·) to translate callback upon use

14 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C5: Handling PIC

15 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C5: Handling PIC

15 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C5: Handling PIC

Position-independent code (PIC) can be loaded at arbitrary address
Dynamically calculates relative offsets
Offsets different for modified code

Rewriting all call instructions
For x86-32 instructions, only call reveals instruction pointer
Rewrite call to push/jmp and push old return address [ZS13, CBG17]
Offsets computed based on old address
From Solution ·, rewritten ret instructions translate return address with mapping

16 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

C5: Handling PIC

Position-independent code (PIC) can be loaded at arbitrary address
Dynamically calculates relative offsets
Offsets different for modified code

Rewriting all call instructions
For x86-32 instructions, only call reveals instruction pointer
Rewrite call to push/jmp and push old return address [ZS13, CBG17]
Offsets computed based on old address
From Solution ·, rewritten ret instructions translate return address with mapping

16 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

MULTIVERSE

Instruction 
Rewriter

Superset 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

1 Mapping Phase

I Disassemble starting from
every byte

I Determine lengths of rewritten
instructions

I Create mapping from original
address to rewritten address

2 Rewriting Phase
I Translate instructions to

rewritten forms
I Use mapping to determine

final addresses

17 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

MULTIVERSE

Instruction 
Rewriter

Superset 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

1 Mapping Phase
I Disassemble starting from

every byte

I Determine lengths of rewritten
instructions

I Create mapping from original
address to rewritten address

2 Rewriting Phase
I Translate instructions to

rewritten forms
I Use mapping to determine

final addresses

17 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

MULTIVERSE

Instruction 
Rewriter

Superset 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

1 Mapping Phase
I Disassemble starting from

every byte
I Determine lengths of rewritten

instructions

I Create mapping from original
address to rewritten address

2 Rewriting Phase
I Translate instructions to

rewritten forms
I Use mapping to determine

final addresses

17 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

MULTIVERSE

Instruction 
Rewriter

Superset 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

1 Mapping Phase
I Disassemble starting from

every byte
I Determine lengths of rewritten

instructions
I Create mapping from original

address to rewritten address

2 Rewriting Phase
I Translate instructions to

rewritten forms
I Use mapping to determine

final addresses

17 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

MULTIVERSE

Instruction 
Rewriter

Superset 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

1 Mapping Phase
I Disassemble starting from

every byte
I Determine lengths of rewritten

instructions
I Create mapping from original

address to rewritten address
2 Rewriting Phase

I Translate instructions to
rewritten forms

I Use mapping to determine
final addresses

17 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

MULTIVERSE

Instruction 
Rewriter

Superset 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

1 Mapping Phase
I Disassemble starting from

every byte
I Determine lengths of rewritten

instructions
I Create mapping from original

address to rewritten address
2 Rewriting Phase

I Translate instructions to
rewritten forms

I Use mapping to determine
final addresses

17 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

MULTIVERSE

Instruction 
Rewriter

Superset 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

1 Mapping Phase
I Disassemble starting from

every byte
I Determine lengths of rewritten

instructions
I Create mapping from original

address to rewritten address
2 Rewriting Phase

I Translate instructions to
rewritten forms

I Use mapping to determine
final addresses

17 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

The Algorithm
1 Start disassembly at first byte

2 Disassemble until encounters one of:
I Invalid instruction encoding
I Already disassembled offset
I End of byte sequence

3 If offset in previous sequence, jump to
the sequence

4 If not at end of byte sequence, start
disassembly from next byte

5 Go to ·

18 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

The Algorithm
1 Start disassembly at first byte
2 Disassemble until encounters one of:

I Invalid instruction encoding
I Already disassembled offset
I End of byte sequence

3 If offset in previous sequence, jump to
the sequence

4 If not at end of byte sequence, start
disassembly from next byte

5 Go to ·

18 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

The Algorithm
1 Start disassembly at first byte
2 Disassemble until encounters one of:

I Invalid instruction encoding
I Already disassembled offset
I End of byte sequence

3 If offset in previous sequence, jump to
the sequence

4 If not at end of byte sequence, start
disassembly from next byte

5 Go to ·

18 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

The Algorithm
1 Start disassembly at first byte
2 Disassemble until encounters one of:

I Invalid instruction encoding
I Already disassembled offset
I End of byte sequence

3 If offset in previous sequence, jump to
the sequence

4 If not at end of byte sequence, start
disassembly from next byte

5 Go to ·

18 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

The Algorithm
1 Start disassembly at first byte
2 Disassemble until encounters one of:

I Invalid instruction encoding
I Already disassembled offset
I End of byte sequence

3 If offset in previous sequence, jump to
the sequence

4 If not at end of byte sequence, start
disassembly from next byte

5 Go to ·

18 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

Offset 0

19 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

Offset 0
Offset 1

19 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

Offset 0
Offset 1

Offset 2

19 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

Offset 0
Offset 1

Offset 2
Offset 3

19 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

Offset 0
Offset 1

Offset 2
Offset 3

Offset 4

19 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

Offset 0
Offset 1

Offset 2
Offset 3

Offset 4
Offset 5

19 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

Offset 0
Offset 1

Offset 2
Offset 3

Offset 4
Offset 5

Offset 6

19 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Superset Disassembly

Offset 0
Offset 1

Offset 2
Offset 3

Offset 4
Offset 5

Offset 6
...

19 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Mapping Lookups

.text

.data

.globalmapping

.newtext

.localmapping

local_lookup

global_lookup

.text (libc)

.data (libc)

.newtext (libc)

.localmapping 
(libc)

local_lookup

20 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Mapping Lookups

.text

.data

.globalmapping

.newtext

.localmapping

local_lookup

global_lookup

.text (libc)

.data (libc)

.newtext (libc)

.localmapping 
(libc)

local_lookup

1

20 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Mapping Lookups

.text

.data

.globalmapping

.newtext

.localmapping

local_lookup

global_lookup

.text (libc)

.data (libc)

.newtext (libc)

.localmapping 
(libc)

local_lookup

2
1

20 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Mapping Lookups

.text

.data

.globalmapping

.newtext

.localmapping

local_lookup

global_lookup

.text (libc)

.data (libc)

.newtext (libc)

.localmapping 
(libc)

local_lookup

2
1

3

20 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Mapping Lookups

.text

.data

.globalmapping

.newtext

.localmapping

local_lookup

global_lookup

.text (libc)

.data (libc)

.newtext (libc)

.localmapping 
(libc)

local_lookup

2
1

3
4

20 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Mapping Lookups

.text

.data

.globalmapping

.newtext

.localmapping

local_lookup

global_lookup

.text (libc)

.data (libc)

.newtext (libc)

.localmapping 
(libc)

local_lookup

2
1

3
4

5

20 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Mapping Lookups

.text

.data

.globalmapping

.newtext

.localmapping

local_lookup

global_lookup

.text (libc)

.data (libc)

.newtext (libc)

.localmapping 
(libc)

local_lookup

2
1

3
4

5

6

20 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Optimizations

Lack of assumptions increases overhead
For well-behaved binaries it is safe to relax constraints

Optimization 1: Only Rewrite Main Binary
If only the main binary is of interest
Requires list of library callback functions

Optimization 2: No Generic PIC
Assume only PIC is via get_pc_thunk

True for many binaries
Significant performance increase for compatible binaries

21 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Optimizations

Lack of assumptions increases overhead
For well-behaved binaries it is safe to relax constraints

Optimization 1: Only Rewrite Main Binary
If only the main binary is of interest
Requires list of library callback functions

Optimization 2: No Generic PIC
Assume only PIC is via get_pc_thunk

True for many binaries
Significant performance increase for compatible binaries

21 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Optimizations

Lack of assumptions increases overhead
For well-behaved binaries it is safe to relax constraints

Optimization 1: Only Rewrite Main Binary
If only the main binary is of interest
Requires list of library callback functions

Optimization 2: No Generic PIC
Assume only PIC is via get_pc_thunk

True for many binaries
Significant performance increase for compatible binaries

21 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

MULTIVERSE Overhead

40
0.p

er
lbe

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4r

ef

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

288.3% 129.9%128.2%

Binary + Libraries
Binary Only

Binary Only w/o Generic PIC

22 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Instrumentation Evaluation

Instruction Counting
Ultimate purpose of a rewriter is to insert instrumentation code

Created straightforward instrumentation API
For evaluation created instruction counting instrumentation in MULTIVERSE

Compared with instruction counting Pintools

23 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Instrumentation Evaluation

Instruction Counting
Ultimate purpose of a rewriter is to insert instrumentation code
Created straightforward instrumentation API

For evaluation created instruction counting instrumentation in MULTIVERSE

Compared with instruction counting Pintools

23 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Instrumentation Evaluation

Instruction Counting
Ultimate purpose of a rewriter is to insert instrumentation code
Created straightforward instrumentation API
For evaluation created instruction counting instrumentation in MULTIVERSE

Compared with instruction counting Pintools

23 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Instrumentation Evaluation

Instruction Counting
Ultimate purpose of a rewriter is to insert instrumentation code
Created straightforward instrumentation API
For evaluation created instruction counting instrumentation in MULTIVERSE

Compared with instruction counting Pintools

23 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Instrumentation Overhead

40
0.p

er
lbe

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4r

ef

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

0x

2x

4x

6x

8x

10x

12x

14x

16x

25.3x 24.4x 23.7x 84.8x23.7x 23.7x 20.8x 81.2x
MULTIVERSE

MULTIVERSE w/ Binary Only
MULTIVERSE w/ Binary Only w/o Generic PIC

Pintool
Pintool w/ Binary Only

24 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Security Applications Evaluation

Shadow Stack
An appealing application of rewriters is binary hardening

Shadow stacks implement a form of backward-edge CFI
Implemented a simple shadow stack in MULTIVERSE

Compared with same type of shadow stack using PIN

25 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Security Applications Evaluation

Shadow Stack
An appealing application of rewriters is binary hardening
Shadow stacks implement a form of backward-edge CFI

Implemented a simple shadow stack in MULTIVERSE

Compared with same type of shadow stack using PIN

25 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Security Applications Evaluation

Shadow Stack
An appealing application of rewriters is binary hardening
Shadow stacks implement a form of backward-edge CFI
Implemented a simple shadow stack in MULTIVERSE

Compared with same type of shadow stack using PIN

25 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Security Applications Evaluation

Shadow Stack
An appealing application of rewriters is binary hardening
Shadow stacks implement a form of backward-edge CFI
Implemented a simple shadow stack in MULTIVERSE

Compared with same type of shadow stack using PIN

25 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Shadow Stack Overhead

40
0.p

er
lbe

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4r

ef

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%
220%
240%
260%
280%
300%

2069.01% 1369.05% 1034.26% 891.91% 7190.70%

MULTIVERSE

MULTIVERSE w/ Shadow Stack
Pintool w/ Shadow Stack

26 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Limitations and Future Work

x86-64 Support
Paper only covers 32-bit support
MULTIVERSE now supports 64-bit applications

Optimization
MULTIVERSE focuses on generality
Overhead in some cases is high
Still room for performance improvements in future

Instrumentation API
For paper, used simple instruction-level API
Currently working on more robust API

27 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Limitations and Future Work

x86-64 Support
Paper only covers 32-bit support
MULTIVERSE now supports 64-bit applications

Optimization
MULTIVERSE focuses on generality
Overhead in some cases is high
Still room for performance improvements in future

Instrumentation API
For paper, used simple instruction-level API
Currently working on more robust API

27 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Limitations and Future Work

x86-64 Support
Paper only covers 32-bit support
MULTIVERSE now supports 64-bit applications

Optimization
MULTIVERSE focuses on generality
Overhead in some cases is high
Still room for performance improvements in future

Instrumentation API
For paper, used simple instruction-level API
Currently working on more robust API

27 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Conclusion

Instruction 
Rewriter

Superset 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

MULTIVERSE

Heuristic-free static rewriter
Works for x86/64 binaries
Useful for many security
applications (e.g., hardening)

MULTIVERSE Source Code
github.com/utds3lab/multiverse

28 / 34

github.com/utds3lab/multiverse


Introduction Background and Overview Design and Implementation Evaluation Conclusion References

Thank You

Instruction 
Rewriter

Superset 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

{erick.bauman,hamlen}@utdallas.edu
zlin@cse.ohio-state.edu

github.com/utds3lab/multiverse

29 / 34

github.com/utds3lab/multiverse


Introduction Background and Overview Design and Implementation Evaluation Conclusion References

References I

Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti, Control-flow integrity principles, implementations, and
applications, ACM Trans. Information and System Security (TISSEC) 13 (2009), no. 1.

Andrew R. Bernat and Barton P. Miller, Anywhere, any-time binary instrumentation, Proc. 10th ACM
SIGPLAN-SIGSOFT Work. Program Analysis for Software Tools (PASTE), 2011, pp. 9–16.

Xi Chen, Herbert Bos, and Cristiano Giuffrida, CodeArmor: Virtualizing the code space to counter disclosure attacks,
Proc. 2nd IEEE Sym. Security and Privacy (EuroS&P), 2017, pp. 514–529.

Brian Cox and Jeffrey Robert. Forshaw, The quantum universe: everything that can happen does happen, Penguin,
2012.

Zhui Deng, Xiangyu Zhang, and Dongyan Xu, Bistro: Binary component extraction and embedding for software
security applications, Proc. 18th European Sym. Research in Computer Security (ESORICS), 2013, pp. 200–218.

Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C. Necula, XFI: Software guards for system
address spaces, Proc. USENIX Sym. Operating Systems Design and Implementation (OSDI), 2006, pp. 75–88.

Úlfar Erlingsson and Fred B. Schneider, SASI enforcement of security policies: A retrospective, Proc. New Security
Paradigms Work. (NSPW), 1999, pp. 87–95.

30 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

References II

Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna, Static disassembly of obfuscated
binaries, Proc. 13th USENIX Security Sym., 2004.

Michael A. Laurenzano, Mustafa M. Tikir, Laura Carrington, and Allan Snavely, PEBIL: Efficient static binary
instrumentation for Linux, Proc. IEEE Int. Sym. Performance Analysis Systems and Software (ISPASS), 2010,
pp. 175–183.

Evangelos Ladakis, Giorgos Vasiliadis, Michalis Polychronakis, Sotiris Ioannidis, and Georgios Portokalidis,
GPU-Disasm: A GPU-based x86 disassembler, Int. Information Security Conf., 2015, pp. 472–489.

Stephen McCamant and Greg Morrisett, Evaluating SFI for a CISC architecture, Proc. 15th USENIX Security Sym.,
2006.

Susanta Nanda, Wei Li, Lap-Chung Lam, and Tzi-cker Chiueh, BIRD: Binary interpretation using runtime
disassembly, Proc. 4th IEEE/ACM Int. Sym. Code Generation and Optimization (CGO), 2006, pp. 358–370.

Pádraig O’Sullivan, Kapil Anand, Aparna Kotha, Matthew Smithson, Rajeev Barua, and Angelos D. Keromytis,
Retrofitting security in COTS software with binary rewriting, Proc. 26th IFIP TC Int. Information Security Conf. (SEC),
2011, pp. 154–172.

31 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

References III

Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De Sutter, and Koen De Bosschere, DIABLO: A reliable,
retargetable and extensible link-time rewriting framework, Proc. 5th IEEE Int. Sym. Signal Processing and Information
Technology (ISSPIT), 2005, pp. 7–12.

Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and Anand Karunanidhi, Pinpointing
representative portions of large Intel R© Itanium R© programs with dynamic instrumentation, Proc. 37th IEEE/ACM Int.
Sym. Microarchitecture (MICRO), 2004, pp. 81–92.

Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy, Brian Bershad, and Brad Chen,
Instrumentation and optimization of Win32/Intel executables using Etch, Proc. USENIX Windows NT Work., 1997,
pp. 1–7.

Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew Legendre, Plto: A link-time optimizer for the
Intel IA-32 architecture, Proc. Work. Binary Translation (WBT), 2001.

Amitabh Srivastava, Andrew Edwards, and Hoi Vo, Vulcan: Binary transformation in a distributed environment, Tech.
Report MSR-TR-2001-50, Microsoft Research, 2001.

Richard Wartell, Vishwath Mohan, Kevin Hamlen, and Zhiqiang Lin, Securing untrusted code via compiler-agnostic
binary rewriting, Proc. 28th Annual Computer Security Applications Conf. (ACSAC), 2012, pp. 299–308.

32 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

References IV

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin, Binary stirring: Self-randomizing instruction
addresses of legacy x86 binary code, Proc. 19th ACM Conf. Computer and Communications Security (CCS), 2012,
pp. 157–168.

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen, Paul Grosen, Christopher Kruegel,
and Giovanni Vigna, Ramblr: Making reassembly great again, Proc. 24th Annual Network & Distributed System
Security Sym. (NDSS), 2017.

Shuai Wang, Pei Wang, and Dinghao Wu, Reassembleable disassembling, Proc. 24th USENIX Security Sym., 2015,
pp. 627–642.

, UROBOROS: Instrumenting stripped binaries with static reassembling, Proc. IEEE 23rd Int. Conf. Software
Analysis, Evolution, and Reengineering (SANER), 2016, pp. 236–247.

Richard Wartell, Yan Zhou, Kevin W Hamlen, and Murat Kantarcioglu, Shingled graph disassembly: Finding the
undecideable path, Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD), 2014, pp. 273–285.

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha
Narula, and Nicholas Fullagar, Native Client: A sandbox for portable, untrusted x86 native code, Proc. 30th IEEE
Sym. Security & Privacy (S&P), 2009, pp. 79–93.

33 / 34



Introduction Background and Overview Design and Implementation Evaluation Conclusion References

References V

Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R. Sekar, A platform for secure static binary instrumentation, Proc.
10th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environments (VEE), 2014, pp. 129–140.

Mingwei Zhang and R. Sekar, Control flow integrity for COTS binaries, Proc. 22nd USENIX Security Sym., 2013,
pp. 337–352.

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCamant, Dong Song, and Wei Zou,
Practical control flow integrity and randomization for binary executables, Proc. 34th IEEE Sym. Security & Privacy
(S&P), 2013, pp. 559–573.

34 / 34


	Introduction
	Background and Overview
	Design and Implementation
	Evaluation
	Conclusion
	References

