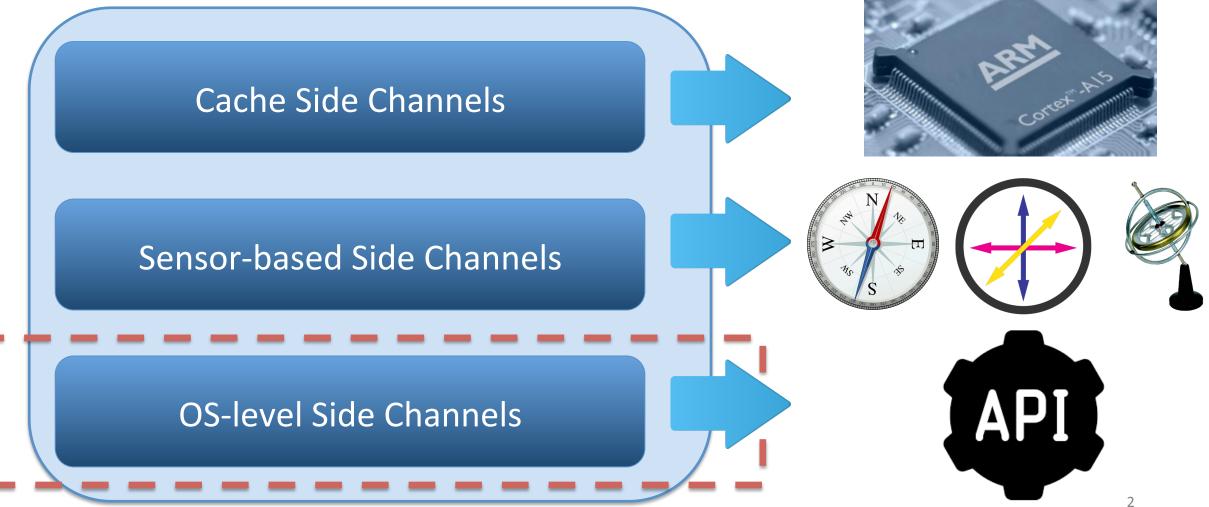
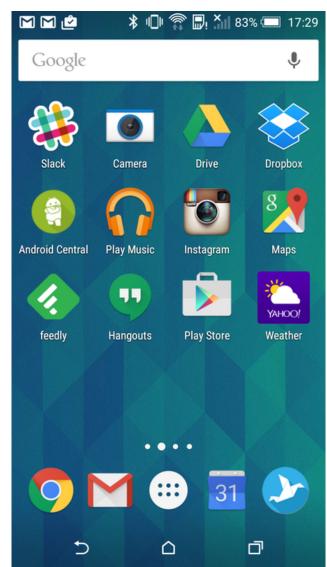
OS-level Side Channels without Procfs: Exploring Cross-App Information Leakage on iOS


Xiaokuan Zhang¹, Xueqiang Wang², Xiaolong Bai³, Yinqian Zhang¹ and XiaoFeng Wang²

¹The Ohio State University, ²Indiana University Bloomington, ³Tsinghua University

Mobile Side-Channel Attacks


 Side-channel Attack: make use of seemingly harmless information to infer sensitive information

OS-level Side-Channel Attacks on Android

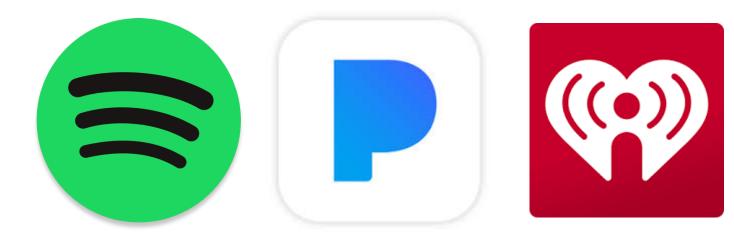
- Malicious app running in the background, calling APIs
- Procfs: system statistics
 - virtual/physical memory, network traffic, CPU usage info, ...

zxk@z	xk-Vir	tualBo	x:~\$ l	s /pro	C										
1	1498	1776	1957	2055	2226	2421	4	526	65	769	96	fb	locks	stat	
10	15	18	1961	2061	2230	2476	401	53	66	77	97	filesystems	mdstat	swaps	
1056	150	1870	1962	2064	2245	2499	47	54	67	78	acpi	fs	meminfo	sys	f
11	154	1881	1966	2090	2246	25	471	55	68	8	asound	interrupts	misc	sysrq-trigger	
1102	1542	1886	1967	2099	2251	2524	475	555	69	82	buddyinfo	iomem	modules	sysvipc	
1134	155	19	1980	21	2255	2535	48	56	693	866	bus	ioports	mounts	thread-self	
1197	156	1911	1984	2129	2271	2544	49	561	7	870	cgroups	irq	mtrr	timer_list	
12	157	1912	2	2143	2277	2545	493	57	70	877	cmdline	kallsyms	net	timer_stats	
1221	158	1913	20	2164	23	2558	5	58	71	878	consoles	kcore	pagetypeinfo	tty	
1234	16	1916	2041	2176	2364	26	50	59	714	881	cpuinfo	keys	partitions	uptime	
1286	1655	1921	2045	2189	2373	28	503	6	72	9	crypto	key-users	sched_debug	version	
13	169	1925	2046	2198	2387	29	507	60	726	938	devices	kmsg	schedstat	version_signature	
1308	17	1929	2047	22	2399	3	51	61	73	945	diskstats	kpagecgroup	scsi	vmallocinfo	
1333	170	1931	2048	2202	24	30	517	62	74	95	dma	kpagecount	self	vmstat	
14	1704	1941	2051	2205	2404	31	52	63	75	951	driver	kpageflags	slabinfo	zoneinfo	
148	1774	1954	2054	2207	2411	397	525	64	76	956	execdomains	loadavg	softirqs		

OS-level Side-Channel Attacks on iOS

• No Procfs providing system stat

No unauthorized cross-app query


Is it possible to conduct OS-level side-channel attacks on iOS?

Outline

- 1. Side-channel Attack Vectors on iOS
- 2. Attack 1: Classifying User Activities
- 3. Attack 2: Detecting Sensitive In-App Activities
- 4. Attack 3: Bypassing Sandbox Restrictions
- 5. Practical Issues
- 6. Countermeasures
- 7. Conclusion

Threat Model

- Monitoring app:
 - User downloads it from App Store
 - Audio player

New Attack Vectors

kern_return_t host_statistics64(host_t
host_priv, host_flavor_t flavor,
host_info64_t host_info64_out,

• Host_statistics64(): Gl(mach_msg_type_number_t *host_info64_outCnt);

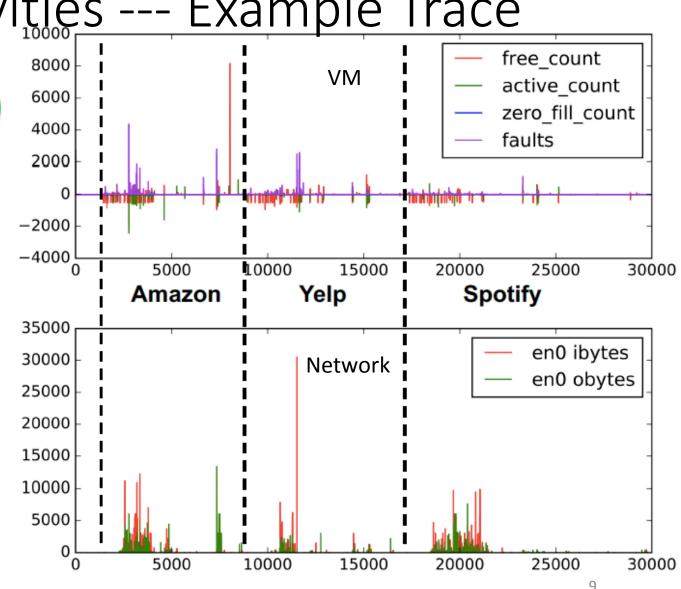
• Getifaddrs(): int getifaddrs(struct ifaddrs **ifap);

• [NSFileManager fileExistsAtPath:]: The existence of a file/directory

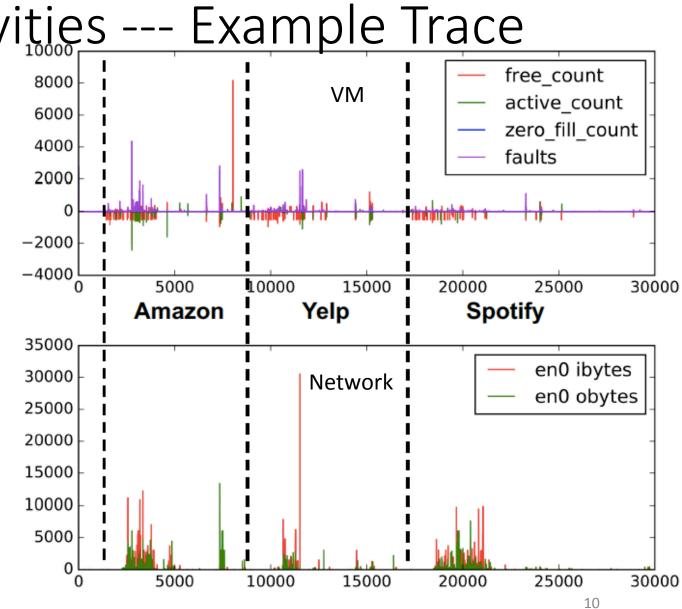
- (BOOL)fileExistsAtPath:(NSString *)path;

Outline

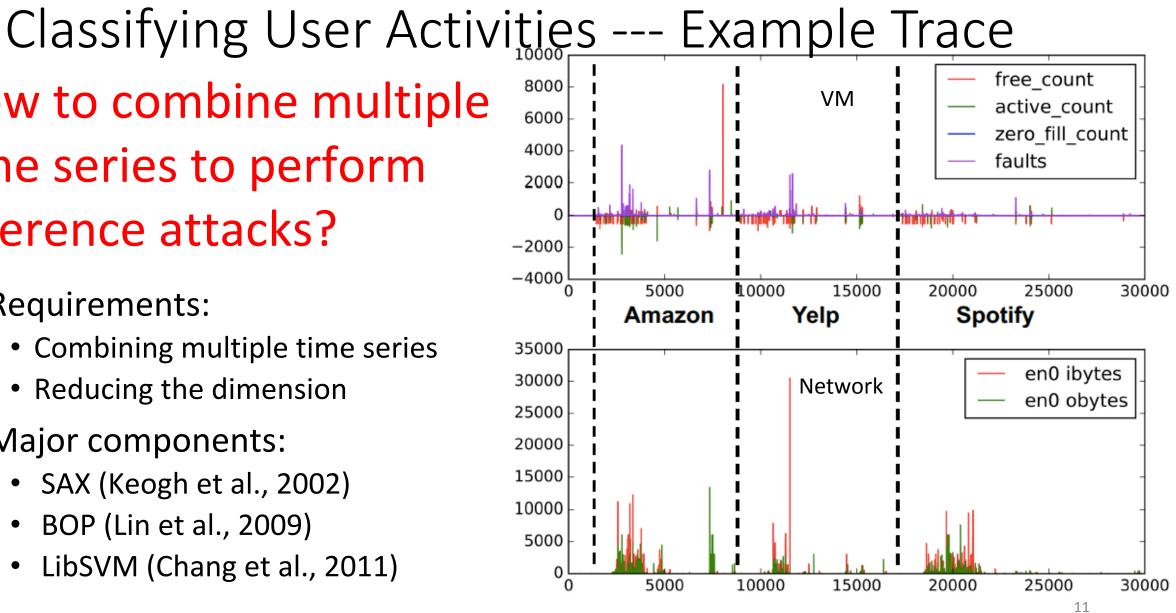
- 1. Side-channel Attack Vectors on iOS
- 2. Attack 1: Classifying User Activities
- 3. Attack 2: Detecting Sensitive In-App Activities
- 4. Attack 3: Bypassing Sandbox Restrictions
- 5. Practical Issues
- 6. Countermeasures
- 7. Conclusion


Classifying User Activițies --- Example Trace

- Calling APIs to get time series A
 - Host_statistics64()
 - Getifaddrs()
- Plotting diff series: A[i] A[i-1]



Time series leak information!!!


Classifying User Activities --- Example Trace How to combine multiple time series to perform inference attacks?

How to combine multiple time series to perform inference attacks?

- Requirements:
 - Combining multiple time series
 - Reducing the dimension
- Major components:
 - SAX (Keogh et al., 2002)
 - BOP (Lin et al., 2009)
 - LibSVM (Chang et al., 2011)

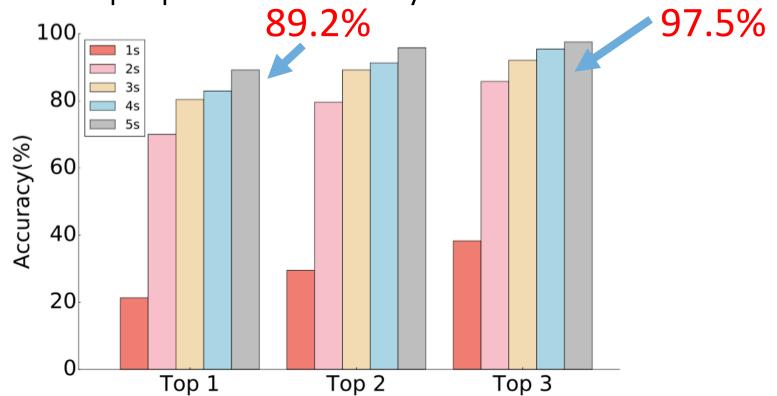
Classifying User Activities --- Case Studies

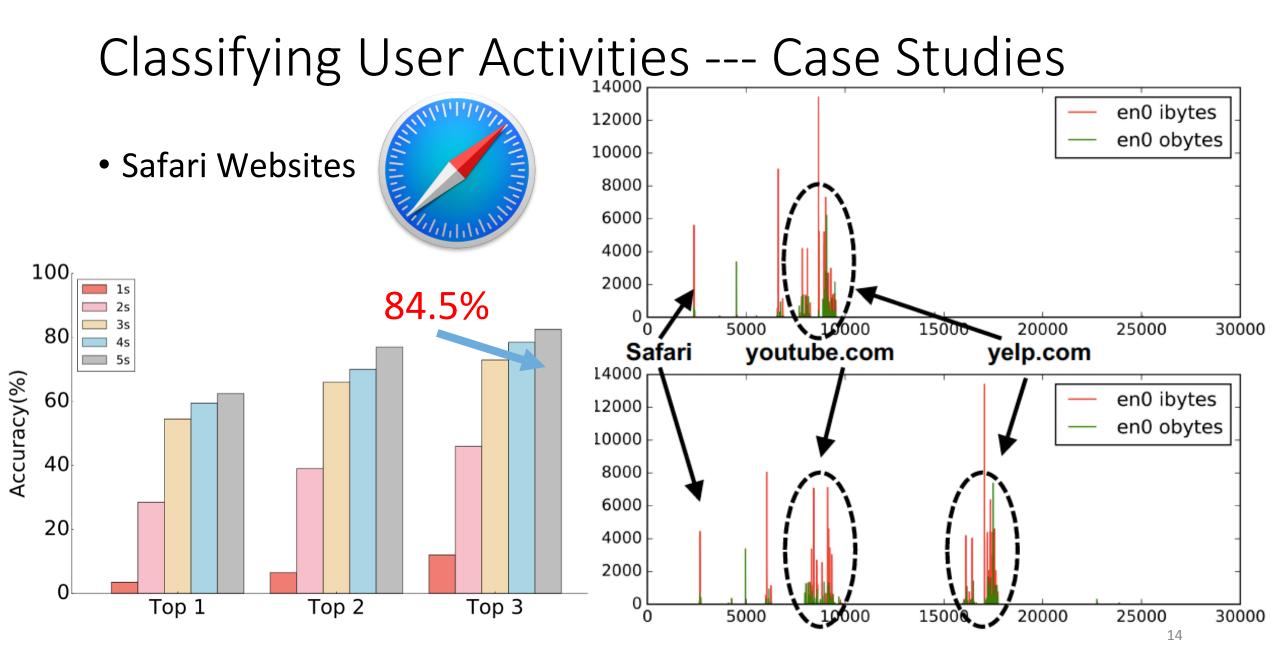
• Device: jailbroken iPhone 7 with iOS 10.1.1

• Automated using Cycript

cycript

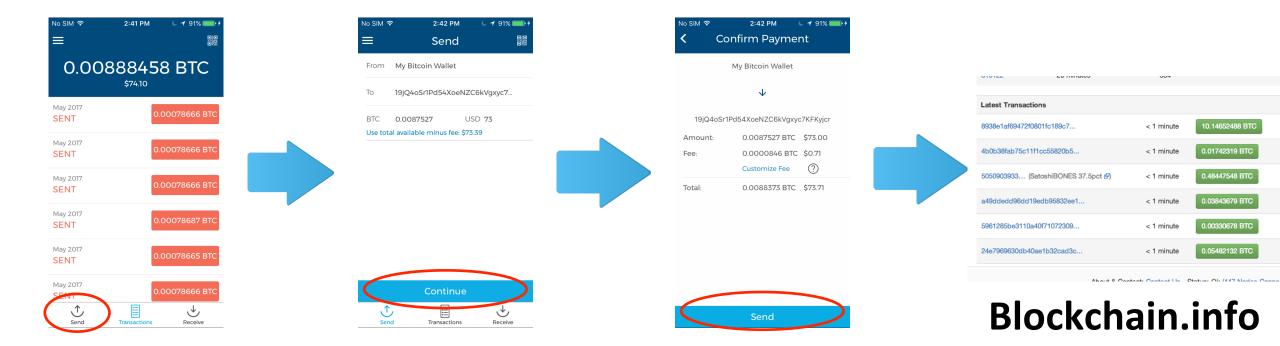
Cycript allows developers to explore and modify running applications on either iOS or Mac OS X using a hybrid of Objective-C++ and JavaScript syntax through an interactive console that features syntax highlighting and tab completion. (It also runs standalone on Android and Linux and provides access to Java, but without injection.)


current version: 0.9.594


- Monitoring app:
 - running in the background
 - calling APIs at a rate of 1000/s

Classifying User Activities --- Case Studies

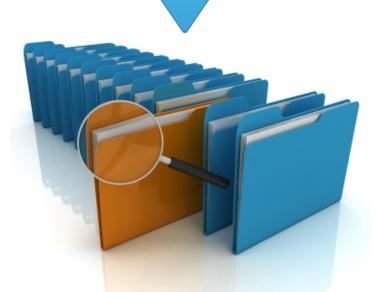
- Foreground Apps:
 - 100 apps from Top Charts + 20 pre-installed apps
 - Top N accuracy: the percentage of the test samples being correctly labeled by one of the top N predicted classes by the classifier

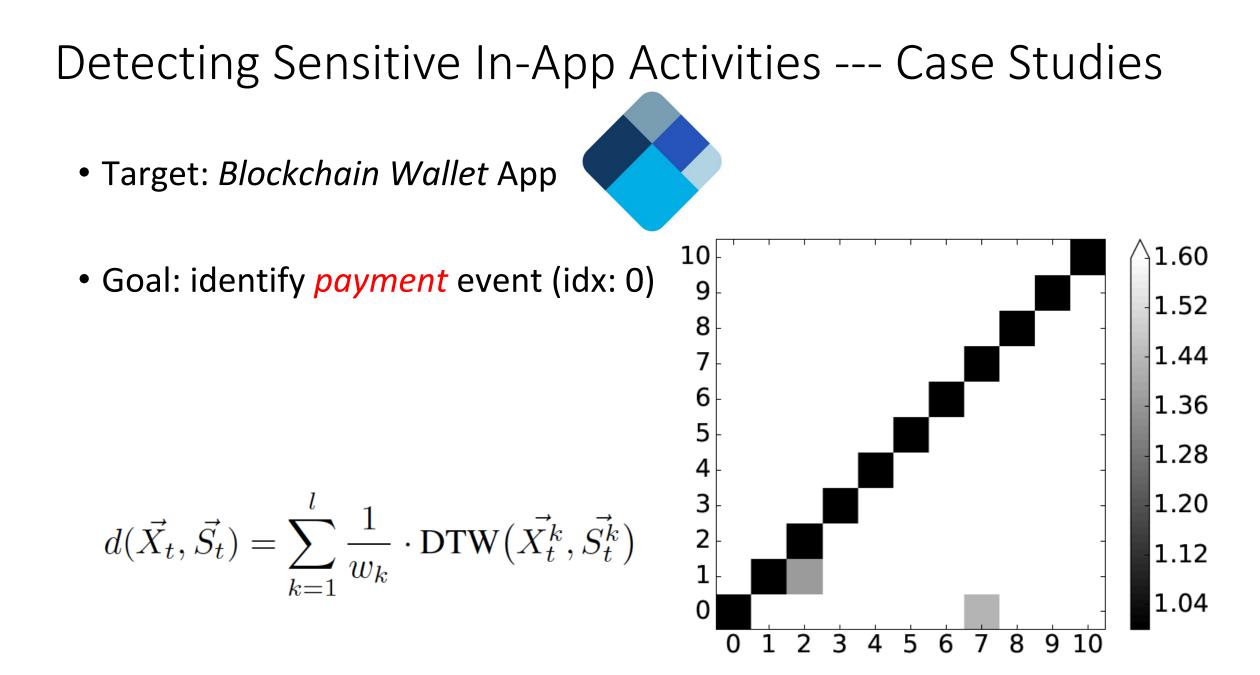


Outline

- 1. Side-channel Attack Vectors on iOS
- 2. Attack 1: Classifying User Activities
- 3. Attack 2: Detecting Sensitive In-App Activities
- 4. Attack 3: Bypassing Sandbox Restrictions
- 5. Practical Issues
- 6. Countermeasures
- 7. Conclusion

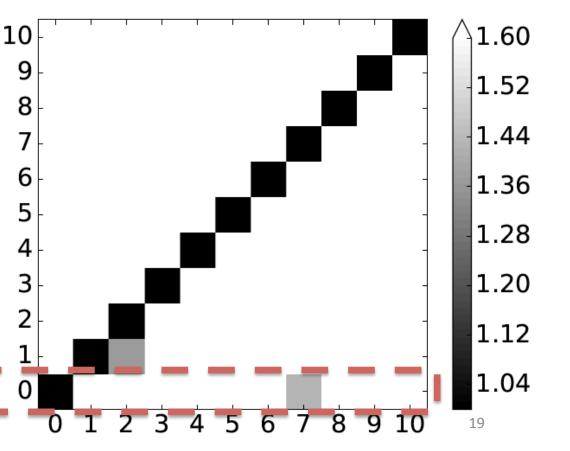
Detecting Sensitive In-App Activities

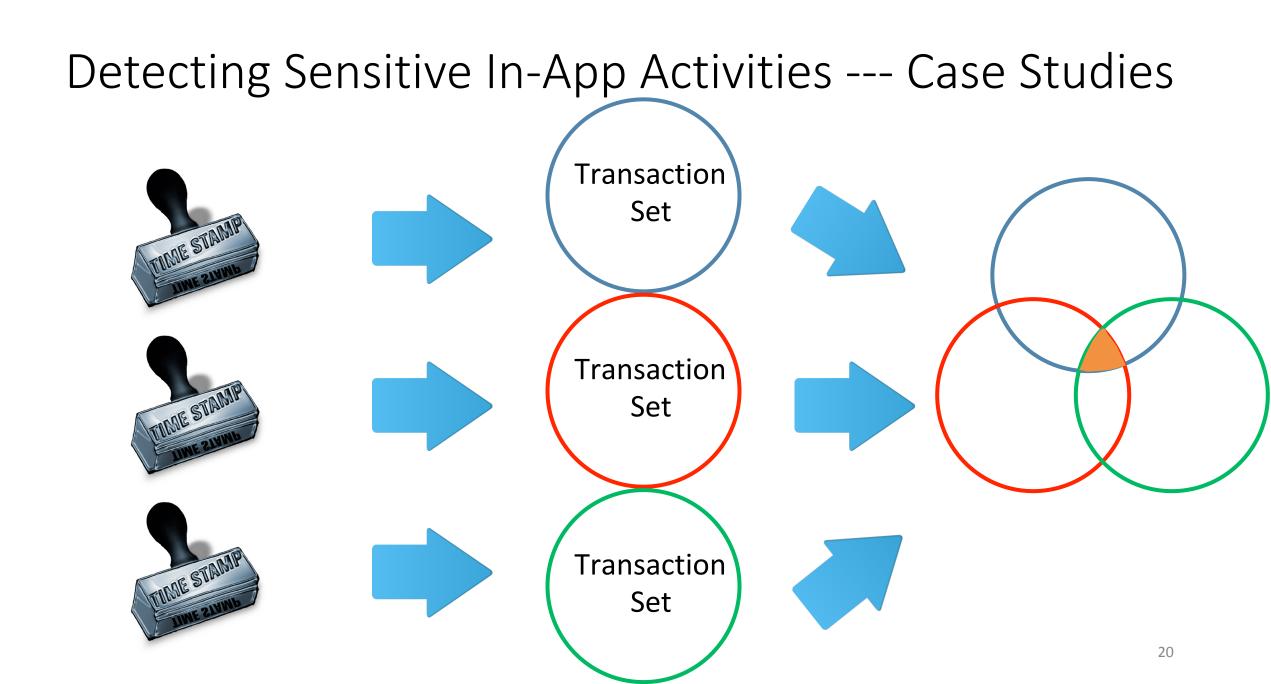



Detecting Sensitive In-App Activities --- Attack Methods

• Identify critical events

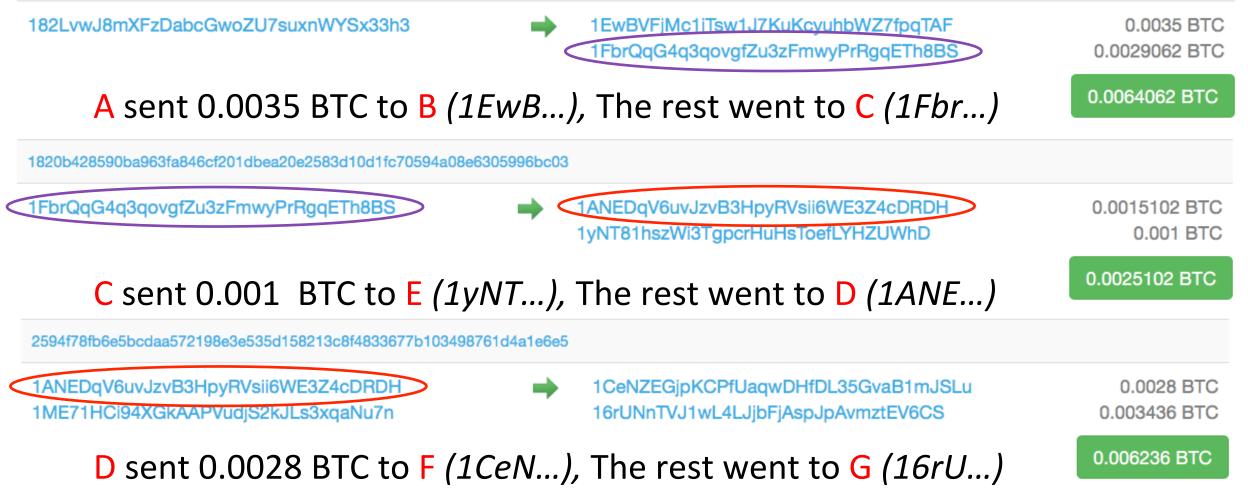
• Correlates with public records

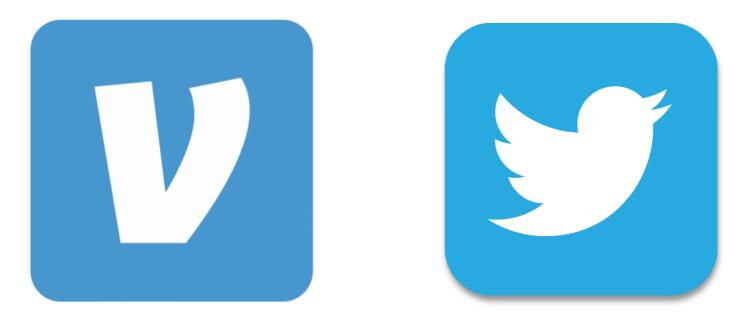




Detecting Sensitive In-App Activities --- Case Studies

- Target: Blockchain Wallet App
- Goal: identify *payment* event (idx: 0)
- Normalize the distance per row using cell(i,i) as the base (diagonal)

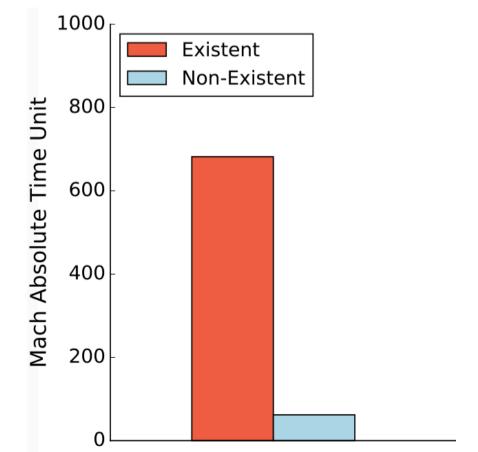

$$d(\vec{X_t}, \vec{S_t}) = \sum_{k=1}^{l} \frac{1}{w_k} \cdot \mathrm{DTW}\left(\vec{X_t^k}, \vec{S_t^k}\right)$$


Detecting Sensitive In-App Activities --- Case Studies

5ed3621674e7d248ee76cfc598cb1ba22e415ea136b9d426329e55cc3a314a1b

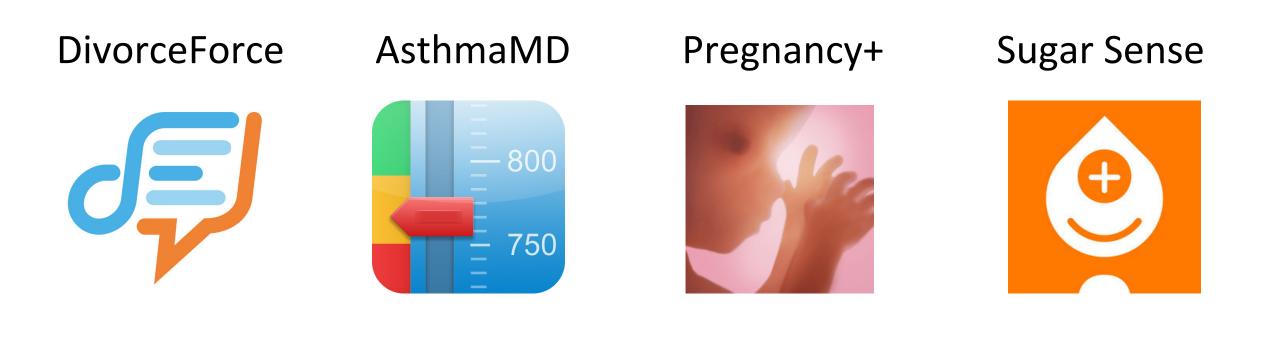
Detecting Sensitive In-App Activities --- Case Studies

• Other Targets: *Venmo / Twitter*


Outline

- 1. Side-channel Attack Vectors on iOS
- 2. Attack 1: Classifying User Activities
- 3. Attack 2: Detecting Sensitive In-App Activities
- 4. Attack 3: Bypassing Sandbox Restrictions
- 5. Practical Issues
- 6. Countermeasures
- 7. Conclusion

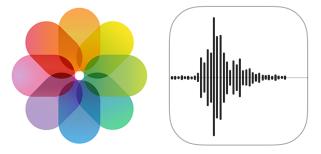
Bypassing Sandbox Restrictions --- Attack Methods


- Device: non-jailbroken iPhone 7 with iOS 10.2.1
- Execution time of FileExistAtPath

```
Huge Difference!!!
```


Bypassing Sandbox Restrictions --- Case Studies

• Detect whether an app has been installed


Bypassing Sandbox Restrictions --- Case Studies

- Push notifications:
 - .pushstore file with the bundle identifier as its name will be created in a specific directory
 - (/var/mobile/Library/SpringBoard/PushStore/com.g Gmail app)
- Dynamically registered home screen quick actio
 - .plist file with the bundle identifier as its name will b var/mobile/Library/SpringBoard/Application Shortcu Gmail app)
- Top 150 apps in App Store's "Top Charts" (Aug. 20
 - Push notification: 67 (44.7%)
 - dynamically registered home screen quick actions: 44 (31.3%)

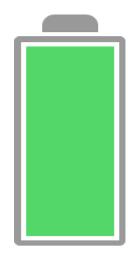
Bypassing Sandbox Restrictions --- Case Studies

• Other cases: number of photos/memos

• Generic approach to detect files

Outline

- 1. Side-channel Attack Vectors on iOS
- 2. Attack 1: Classifying User Activities
- 3. Attack 2: Detecting Sensitive In-App Activities
- 4. Attack 3: Bypassing Sandbox Restrictions
- 5. Practical Issues
- 6. Countermeasures
- 7. Conclusion

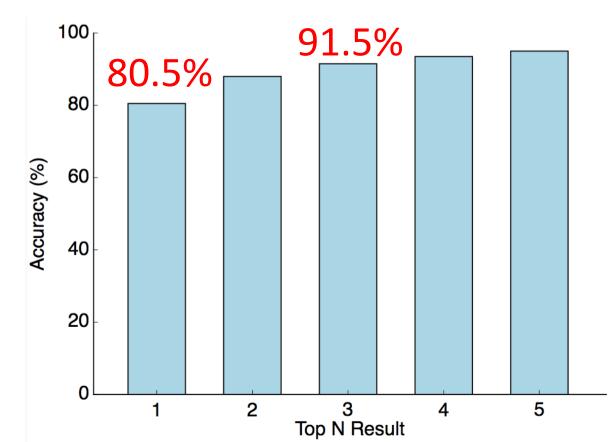

Practical Issues

- App Store Vetting
 - Disguised as an Audio Player
 - Passed the vetting

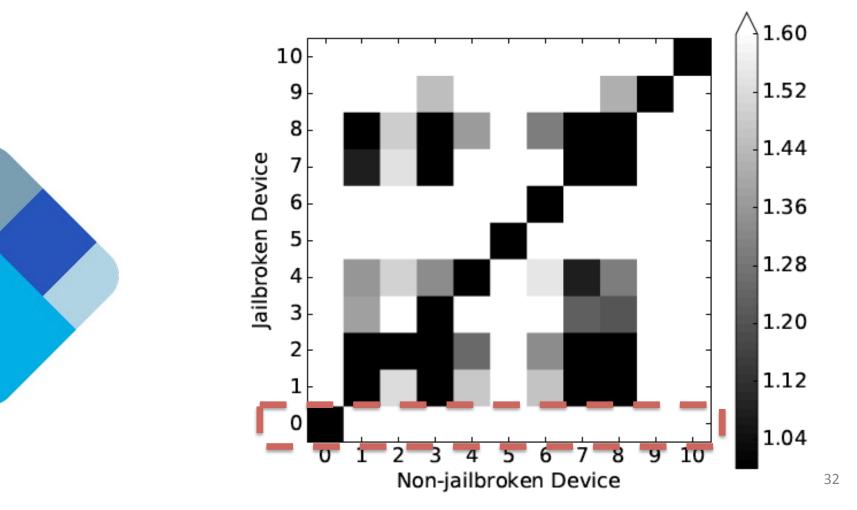
- Power Consumption
 - Device: jailbroken iPhone 7 with iOS 10.1.1
 - 60 min: 5% battery was consumed

Practical Issues --- Cross-device Attack Feasibility

training device: Device A iOS 10.1.1



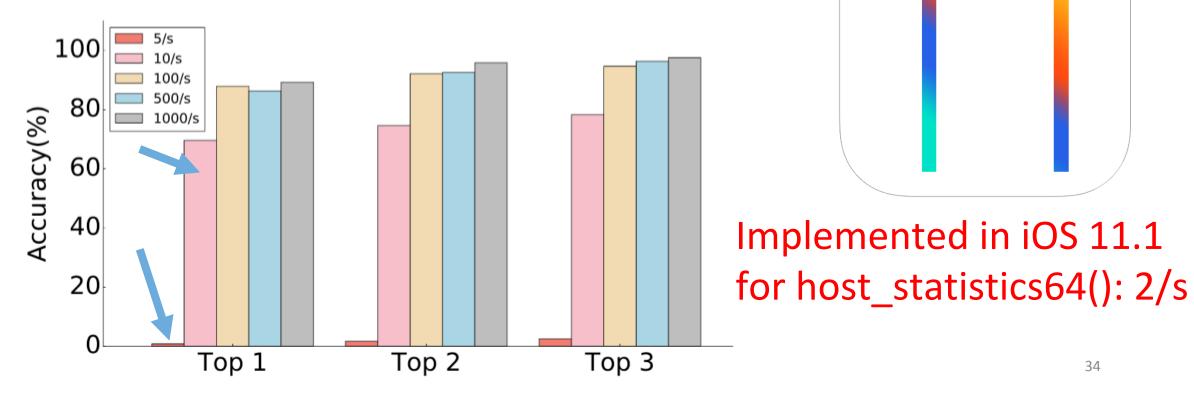
testing device: Device B Non-jailbroken iOS 10.2.1


Practical Issues --- Cross-device Attack Feasibility

- Test set: Randomly select 20 third-party apps
- Redo Foreground Apps Experiment

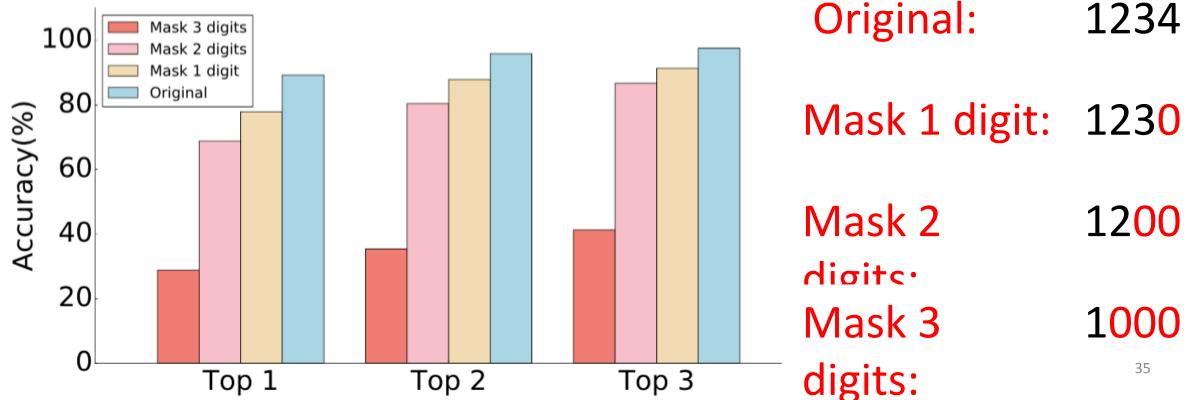
Practical Issues --- Cross-device Attack Feasibility

• Target: Blockchain Wallet

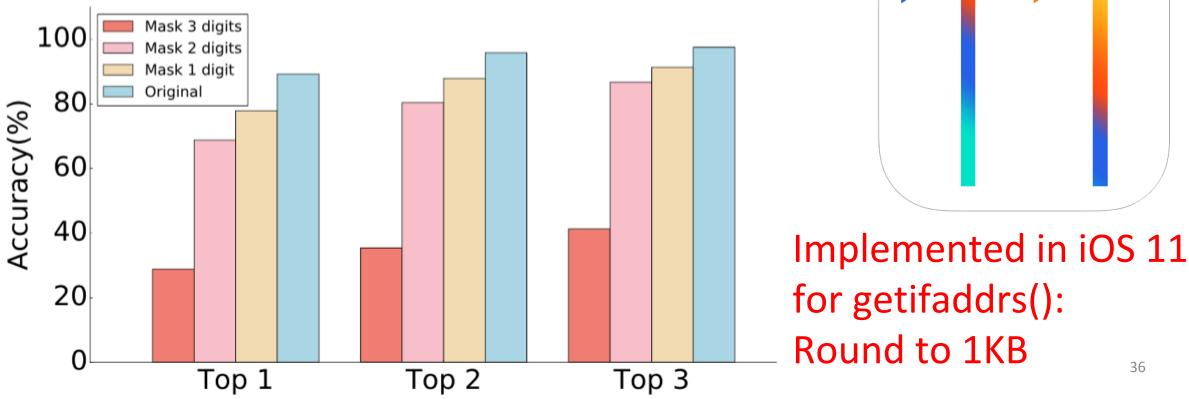


Outline

- 1. Side-channel Attack Vectors on iOS
- 2. Attack 1: Classifying User Activities
- 3. Attack 2: Detecting Sensitive In-App Activities
- 4. Attack 3: Bypassing Sandbox Restrictions
- 5. Practical Issues
- 6. Countermeasures
- 7. Conclusion


Countermeasures

- Rate Limiting: limit the sampling rate
 - Filter the data and only keep every (1000/N)th data point
 - Re-evaluate the foreground app classification


Countermeasures

- Coarse-grained return values: masking the digits of return values
 - Mask 1/2/3 digits of all 6 features
 - Re-evaluate the foreground app classification

Countermeasures

- Coarse-grained return values: masking the digits of return values
 - Mask 1/2/3 digits of all 6 features
 - Re-evaluate the foreground app classification

Countermeasures

- Eliminating the attack vectors
- Runtime detection
- Privacy-preserving statistics reporting
- Removing the fileExistsAtPath timing channel

Outline

- 1. Side-channel Attack Vectors on iOS
- 2. Attack 1: Classifying User Activities
- 3. Attack 2: Detecting Sensitive In-App Activities
- 4. Attack 3: Bypassing Sandbox Restrictions
- 5. Practical Issues
- 6. Countermeasures
- 7. Conclusion

Conclusion

- First exploration of OS-level side channels on iOS
- Three categories of side-channel attacks
- Proposed countermeasures integrated in iOS and MacOS

Xiaokuan Zhang zhang.5840@osu.edu

Detecting Sensitive In-App Activities --- Attack Methods

No SIM 🗢 🔆

- Time is short (<0.5s)
- Difference is subtle

5:55 PM

1 23% 💽 🔸

East-West Shrine Game Presents Pat Tillman Award to J.T. Barrett ohiostatebuckeyes.com

♠ 6 ♠ 102 ♥ 578 🙀

L'es TV Den service d'une no no composites fonder d'une nom productor un d'unigne police our fin et Medicals Faisai - seys ser liné composité

Detecting Sensitive In-App Activities --- Attack Methods

- Pattern Matching: compare two multi-dimensional data traces
 - Sample: $\vec{X_t} = \{\vec{X_t^1}, \vec{X_t^2}, \cdots, \vec{X_t^l}\}$, where $\vec{X_t^i} = (X_{t_1}^i, X_{t_2}^i, \cdots, X_{t_{n_i}}^i)$
 - Signature: $\vec{S_t} = \{\vec{S_t^1}, \vec{S_t^2}, \cdots, \vec{S_t^l}\}$
 - Goal: measure the distance $d(\vec{X_t}, \vec{S_t})$
 - Extended DTW (DTW_I): (w_k: normalization factor)

$$d(\vec{X_t}, \vec{S_t}) = \sum_{k=1}^{l} \frac{1}{w_k} \cdot \mathrm{DTW}\left(\vec{X_t^k}, \vec{S_t^k}\right)$$

iOS Attacks

JUN 17, 2015 @ 10:51 AM 24,925 @

JUL 28, 2016 @ 09:40 AM

JAN 17, 2018 @ 07:36 PM 19,800 @

The Little Black Book of Billionaire Secrets

Apple App Securi How Hackers (Vulnerable To 'D Photos

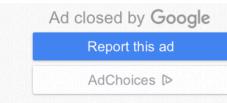
Thomas Fox-Brewste I cover crime, privacy and su forms, FULL BIO V

It's become almost axiomatic th and the apps on them are more competition. But researchers co notion and today a group of aca the security protections in Mac not only possible to create malw Store, but it's also feasible to lat using rogue software to steal the data around, from iCloud passw to dodgy selfies and more.

The attacks, known as unauthor access or XARA, expose design : to access critical pieces of data i Apple has struggled to fix the isa

NEW YORK, NY - JULY 27: The Apple

Chaos


Ewan Spence, CONTRIBUTOR

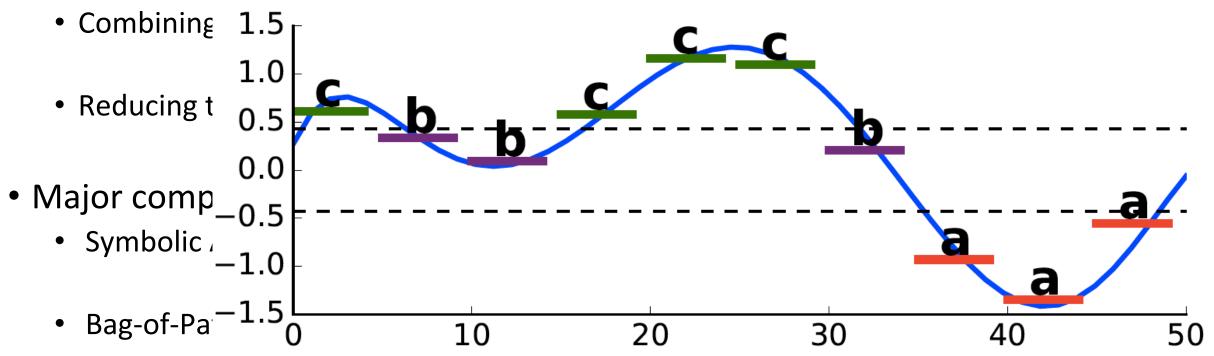
Dangerous iPhone Bug Hiding in iMessage Is Causing

Opinions expressed by Forbes Contributors are their own.

Apple is facing another blow to its reputation for security on the iPhone. A flaw in iMessage has been discovered that allows a single message to lock up and potentially crash your handset. And you don't even have to read the message for it to activate.

The bug itself is relatively easy to explain. When iMessage receives a message with a URL embedded, it will go online and generate a small thumbnail preview of the link. If the metadata is much larger than normally accepted (on the order of hundreds of thousands of characters), then iMessage will lock up the device. The hacker who announced this bug demonstrated it to BuzzFeed News through a poisoned page hosted on Github:

44


Peking University and the Georgia Institute of Technology.

released today from Indiana University Bioomington,

Paper	Vector	Impact
Chen et al., Security'14	/proc/pid/ statm	UI inference attacks (stealing login credentials, photos)
Diao et al., Oakland'16	/proc/ interrupts	Interrupt timing analysis (cracking unlock patterns)

Classifying User Activities --- Attack Methods

• Requirements:

• Support Vector Machine (LibSVM) (Chang et al., 2011)

{cbb:1, bbc:1, bcc:1, ccc:1, ccb:1, cba:1, baa:1, aaa:1}

46

• Top N Accuracy Example

Sample	True Class	SVM Pred	iction (Probabilit	ty Model)
А	1	4	2	1
В	2	2	5	4
С	3	3	1	2
D	4	1	4	2
E	5	5	2	4

• Top N Accuracy Example

Sample	True Class	SVM Pred	iction (Probabili	ty Model)
А	1	4	2	1
В	2	2	5	4
С	3	3	1	2
D	4	1	4	2
E	5	5	2	4

• Top N Accuracy Example

Sample	True Class	SVM Pred	iction (Probabilit	ty Model)
А	1	4	2	1
В	2	2	5	4
С	3	3	1	2
D	4	1	4	2
E	5	5	2	4

Top 1 Accuracy: 3/5 = 60%

• Top N Accuracy Example

Sample	True Class	SVM Pred	iction (Probabili	ty Model)
А	1	4	2	1
В	2	2	5	4
С	3	3	1	2
D	4	1	4	2
E	5	5	2	4

• Top N Accuracy Example

Sample	True Class	SVM Pred	iction (Probabili	ty Model)
А	1	4	2	1
В	2	2	5	4
С	3	3	1	2
D	4	1	4	2
E	5	5	2	4

Top 2 Accuracy: (3+1)/5 = 80%

• Top N Accuracy Example

Sample	True Class	SVM Pred	iction (Probabili	ty Model)
А	1	4	2	1
В	2	2	5	4
С	3	3	1	2
D	4	1	4	2
E	5	5	2	4

• Top N Accuracy Example

Sample	True Class	SVM Pred	iction (Probabili	ty Model)
А	1	4	2	1
В	2	2	5	4
С	3	3	1	2
D	4	1	4	2
E	5	5	2	4

Top 3 Accuracy: (2+1+2)/5 = 100%

Detecting Sensitive In-App Activities

No SIM 🤝	> 9:03 PM	🕇 100% 🔲 f	
≡	BTC Wallet	₩ 🚿	\mathbf{b}
	Sent Bitcoin To Bitcoin address	-0.010153 -\$19.90	
	Bought Bitcoin Using MasterCard *******4979	0.010153 \$20.80	
	Sent Bitcoin To Bitcoin address	-0.01108 -\$13.83	
P	Received Bitcoin From Bitcoin address	0.011 \$13.27	
	Sent Bitcoin To Bitcoin address	-0.0081068 -\$9.70	
	Sent Bitcoin To Bitcoin address	-0.010407 -\$12.51	
	Sent Bitcoin To Bitcoin address	-0.0014068 -\$1.68	
	Bought Bitcoin Using MasterCard *******4979	0.02 \$24.96	

5:55 PM

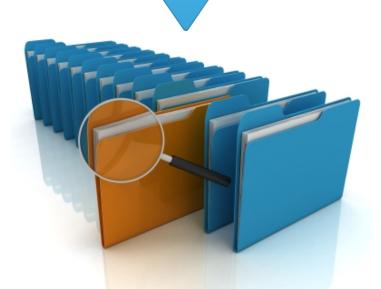
1 23%

No SIM 🗢 🔆

👏 🏅 Congrats @JT_theQB4th on being #GoBucks

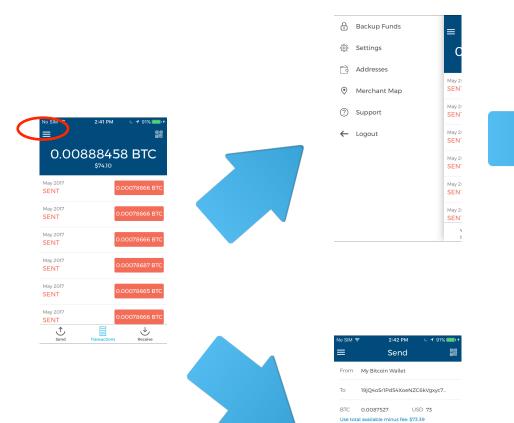
East-West Shrine Game Presents Pat Tillman Award to J.T. Barrett ohiostatebuckeyes.com

\mathbf{N} **6 1**02 578


Says and

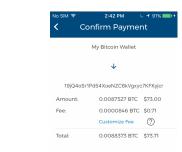
Detecting Sensitive In-App Activities --- Attack Methods

• Identify critical events


• Correlates with public records

*62*56 🗐

Detecting Sensitive In-App Activities


Setti	ngs	×
Profile		
Wallet ID acaf0298-116b-4c83-8155-	a6f71e353af7	
Email	Verifie	d >
Mobile Number	Unverifie	ed >
Preferences		
Email Notifications	C	\sum
SMS Notifications	C	\bigcirc
Local Currency	U.S. dollar (\$) >
Bitcoin Unit	Bitco	in >
Security		
2-step Verification	Disable	ed >

SIM 🛜

2:42 PM 🕓 🕈 91% 💷 🕫

Transactions

- Device: jailbroken iPhone 7 with iOS 10.1.1
- Automated using Cycript

Cycript allows developers to explore and modify running applications on either iOS or Mac OS X using a hybrid of Objective-C++ and JavaScript syntax through an interactive console that features syntax highlighting and tab completion. (It also runs standalone on Android and Linux and provides access to Java, but without injection.)

current version: 0.9.594

Read Manual

Download SDK

Cycript is an inlining, optimizing, JavaScript-to-JavaScript compiler and immediate mode console environment.

When used as an execution frontend, Cycript bridges access to Objective-C primitives using an extended syntax, providing for memory allocation, pointer indirection, and message dispatch.

With Cydget, Cycript can be used inside of HTML script elements when tagged with the special MIME type "text/cycript", allowing for seamless transitions from JavaScript to native libraries and runtime execution state.

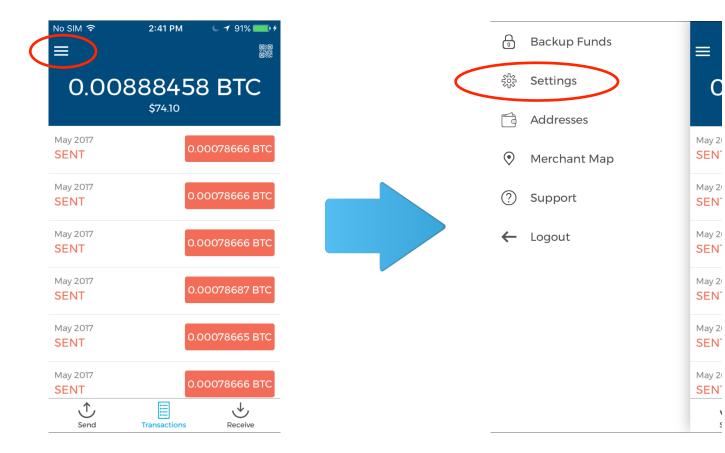
Finally, Cycript's console can inject into other processes with the -p argument, making it easier to debug and analyze running applications than ever before.

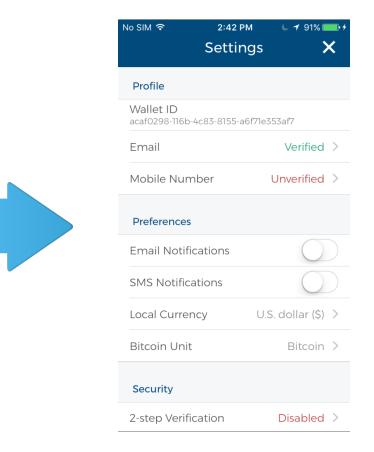
For more information on how to use Cycript, visit my new website for it at cycript.org.

INSTALLED PACKAGE

Why global stat can work?

- iOS itself suspends apps when they run in the background, unless the app specially requests background permissions
- iOS is relatively quieter than Android, which greatly facilitates sidechannel attacks


Run Background Apps on iOS


- AUDIO background mode
- [NSTimer scheduledTimerWithTimeInterval: target: selector: userInfo: repeats:]

Detecting Sensitive In-App Activities

.

S

