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“Style	expressed	in	code
can	be	

quantified	and	characterized.”
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Usenix 2015

De-anonymizing	Programmers	via	Code	Stylometry.	24th	Usenix Security	Symposium.
Aylin	Caliskan-Islam,	 Richard	Harang,	Andrew	Liu,	Arvind	Narayanan,	Clare	Voss,	 Fabian	Yamaguchi,	and	Rachel	Greenstadt.
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What	about	executable	binaries?

Compiled	code	looks	cryptic
00100000	00000000	00001000	00000000	00101000	00000000			
00000000	00000000	00110100	00000000	00000000	00000000		
00000100	00001000	00000000	00000001	00000000	00000000		
00000000	00000001	00000000	00000000	00000101	00000000		
00000000	00000000	00000100	00000000	00000000	00000000		
00000011	00000000	00000000	00000000	00110100	00000001		
00000000	00000000	00110100	10000001	00000100	00001000		
00000000	00000000	00010011	00000000	00000000	00000000		
00000100	00000000	00000000	00000000	00000001	00000000		
00000000	00000000	00000001	00000000	00000000	00000000		
00000000	00000000	00000000	00000000	00000000	10000000		
00000100	00001000	00000000	10000000	00000100	00001000		
11001000	00010111	00000000	00000000	11001000	00010111		
00000000	00000000	00000101	00000000	00000000	00000000		
00000000	00010000	00000000	00000000	00000001	00000000		
00000000	00000000	11001000	00010111	00000000	00000000		
11001000	10100111	00000100	00001000	11001000	10100111		
00000100	00001000	00101100	00000001	00000000	00000000		
00000000	00000000	00000000	00010000	00000000	00000000		
00000010	00000000	00000000	00000000	11011100	00010111		

Source	Code
#include	 <cstdio>
#include	 <algorithm>
using	namespace	 std;
#define For(i,a,b)	for(int i	=	a;	i	<	b;	i++)
#define FOR(i,a,b)	for(int i	=	b-1;	i	>=	a;	i--)
double	 nextDouble()	 {

double	 x;
scanf("%lf",	 &x);
return x;}

int nextInt()	{
int x;
scanf("%d",	 &x);
return	x;	}

int n;
double	 a1[1001],	a2[1001];
int main()	{

freopen("D-small-attempt0.in",	 "r",	stdin);
freopen("D-small.out",	 "w",	stdout);
int tt	=	nextInt();
For(t,1,tt+1)	{

int n	=	nextInt();

. . . . . .
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Why	de-anonymize	programmers?
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Related	work
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Comparison	to	related	work
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RelatedWork Number	of	
Programmers

Number	of	Training	
Samples

Classifier Accuracy

Rosenblum	et	al. 20 8-16 SVM 77%

This	work 20 8 SVM 90%

This	work 20 8 Random forest 99%

Rosenblum	et	al. 191 8-16 SVM 51%

This	work 191 8 Random forest 92%

This	work 600 8 Random forest 83%



Comparison	to	related	work

preprocessing

extract features

majority vote

A          B      C        D

random forest

fuzzy AST parser600 contestants – C++

de-anonymized programmers
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Features:	Assembly
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Disassembly                    Assembly Features

Assembly unigrams

Assembly bigrams

Assembly trigrams    

Two consecutive assembly lines



Features:	Syntactic
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Features:	Control	flow
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Dimensionality	Reduction

– Information	gain	criterion
• Keep	features	with	 low	entropy	– see	(a)
• Reduce	dimension	from	~700,000	to	~2,000.
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Dimensionality	Reduction

– Information	gain	criterion
• Keep	features	with	 low	entropy	– see	(a)
• Reduce	dimension	from	~700,000	to	~2,000.
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– Correlation	based	feature	selection
• Keep	features	with	 low	inter-class	correlation
• Reduce	dimension	from	~2,000	to	53.



Predictive	features
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Authorship	attribution

• 96%	accuracy	in	identifying	100	authors	of	900	anonymous	
program	files.
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Train on 100 authors
identify authors of 900 files train

test

96% accuracy



Large	scale	programmer	de-anonymization
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Real	world	applications

1) Optimized	binaries
2) Obfuscated	binaries
3) GitHub binaries
4) Nulled.IO and	malware	binaries
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Optimizations	and	stripping	symbols
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Number	of	programmers Number	of	training	samples Compiler	optimization	level Accuracy

100 8 None 96%

100 8 1 93%

100 8 2 89%

100 8 3 89%

100 8 Stripped	symbols 72%



Obfuscation

1.	Bogus	control	flow	insertion 2.	Instruction	substitution	
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3.	Control	flow	flattening



Obfuscation

1.	Bogus	control	flow	insertion 2.	Instruction	substitution	
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3.	Control	flow	Flattening

Open-LLVM	obfuscations	reduce
de-anonymization accuracy	of

100	programmers	from	96%	to	88%.



GitHub and	Nulled.IO

• De-anonymizing	50	GitHub programmers	
– with	65%	accuracy.

• De-anonymizing	6	malicious	programmers
– Nulled.IO hackers	and	malware	authors
– with	100%	accuracy.
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Programmer	De-anonymization	in	the	wild
ü Single	authored	GitHub repositories
ü The	repository	has	at	least	500	lines	of	code

Compile	
repositories
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3,438

161
439

2 - 8
2 - 344

50 542
45050

65%
97%



Amount	of	Training	Data	Required	for	
De-anonymizing	100	Programmers
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Future	work

• Anonymizing	executable	binaries
– optimizations	do	not	anonymize

• De-anonymizing	collaborative	binaries
– Group	vs	individual	fingerprint

• Malware	actor	attribution
– If	you	have	a	malware	dataset	with	known	authors:
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Future	work

• Anonymizing	executable	binaries
– optimizations	do	not	anonymize

• De-anonymizing	collaborative	binaries
– Group	vs	individual	fingerprint

• Malware	actor	attribution
– If	you	have	a	malware	dataset	with	known	authors:

GET	IN	TOUCH	WITH	ME:	aylinc@princeton.edu
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Aylin	Caliskan
@aylin_cim													aylinc@princeton.edu

www.princeton.edu/~aylinc	 																				www.github.com/calaylin
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Open	world:	
Classification	thresholds	for	verification
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Reducing	Suspect	Set	Size:	Top-n	Classification
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Reconstructing	original	features
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• Original	vs	decompiled	features
– Average	cos	similarity:	0.35



Reconstructing	original	features
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• Original	vs predicted	features
– Average	cos	similarity:	0.81

• Original	vs	decompiled	features
– Average	cos	similarity:	0.35



Reconstructing	original	features
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• Original	vs predicted	features
– Average	cos	similarity:	0.81

• Original	vs	decompiled	features
– Average	cos	similarity:	0.35

This	suggests	that	original	
features	are	transformed	but	
not	entirely	lost	in	compilation.



Features

Source code Abstract Syntax Tree
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Dataset:	Development	and	validation	sets
• Obtain	a	dataset	in	CPP	

– Ground	truth	in	authorship	
– Scraped	Google	Code	Jam	to	build	a	corpus	
– Compile	code	with	the	same	settings

• Take	two	disjoint	sets	of	100	programmers
– Develop	method	on	first	set	– controlled	setting
– Validate	method	on	second	set

• Google	Code	Jam:
– Everyone	implements	the	same	algorithmic	functionality
– Complete	task	in	a	limited	 time
– Problems	get	harder
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Obfuscation	2:	Bogus	Flow	Insertion
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Obfuscation	3:	Control	Flow	Flattening
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Original	CF													Flattened	CFG



Obfuscation	3:	Control	Flow	Flattening
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Original	CFG						Flattened	CFG


