

## **De-anonymization of Mobility Trajectories: Dissecting the Gaps between Theory and Practice**

Huandong Wang<sup>1</sup>, Chen Gao<sup>1</sup>, Yong Li<sup>1</sup>, Gang Wang<sup>2</sup>, Depeng Jin<sup>1</sup>, Jingbo Sun<sup>3</sup>

<sup>1</sup>Tsinghua University, China

<sup>2</sup>Virginia Tech

<sup>3</sup>China Telecom Beijing Research Institute

## **Increasing Concern on Privacy/Security**

#### Anonymized user trajectories are increasingly collected by ISPs

High research and business value

## Growing privacy concern

ISPs are motivated to monetize or share user trajectory data

#### De-anonymization attack

How likely users can be de-anonymized in the shared ISP trajectory dataset?



Now Those Privacy Rules Are Gone, This Is How ISPs Will Actually Sell Your Personal Data

#### 🖾 🕤 💟 间 🚱



Thomas Fox-Brewster, FORBES STAFF I revealed to the second second





## **De-anonymization Attack: Theory and Practice**

#### Appalling Theoretical Privacy Bound

➢4 location points uniquely re-identify 95% users [Scientific Report 2013]

## Is this true in practice?

## Practical Challenge: Lack of large real-world ground-truth datasets

Small datasets

✓1717 users in [WWW 2016]

Synthetized datasets

✓ Parts of the same dataset [TON 2011]

## **Our Approach: Collect Three Real-world Ground-truth Datasets**

## **Ground-Truth: Traces from the same set of users**

| Dataset                       | Total# Users | Total# Records |
|-------------------------------|--------------|----------------|
| ISP                           | 2,161,500    | 134,033,750    |
| Weibo App-level               | 56,683       | 239,289        |
| Weibo Check-in (Historical)   | 10,750       | 141,131        |
| Weibo Check-in (One-<br>week) | 506          | 873            |
| Dianping App-level            | 45,790       | 107,543        |



#### ■ISP Dataset

- Shanghai, 4/19-4/26, 2016 (victim dataset)
- ≥2 million users
- $\succ$ Access logs to cellular tower  $\rightarrow$  Location traces
- **Weibo Dataset:** One of the largest social networks in China (external information)

Dianping Dataset: "Chinese Yelp" (external information)

## How to Obtain the Ground-Truth?



## Ethical approval obtained from We'

## **De-anonymization Attack: Threat Model**

#### Anonymized Trajectory Data Published by ISP

>Anonymization: Replace user identity with the pseudonym

## Adversary

- Match the anonymized traces (e.g., ISP traces) and external traces (e.g., Weibo/Dianping traces)
- $\succ$ Social network has PII  $\rightarrow$  real-world identifier



## **De-anonymization: Theoretical Bound based on Uniqueness**

- Number of points sufficient to uniquely identify a trajectory
- ■*T*↓*p* : Randomly sampled *p* points
- ■ $A(T\downarrow p)$ : find all trajectories containing the p points of  $T\downarrow p$

**Uniqueness**:  $|A(T\downarrow p)|=1$ ?



5 points are sufficient to uniquely identify 75% Haja determination of trajectories to be de-anonymized!

## **De-anonymization Attack: Actual Performance**

#### **Implement 7 state-of-the-art algorithms**

"Encountering" event

➢POIS [WWW 2016]

► ME [AIHC 2016]

#### Individual user's mobility patterns

**HMM** [IEEE SP 2011]

- **WYCI** [WOSN 2014]
- **≻HIST** [TIFS 2016]

Tolerating temporal/spatial mismatches
 > NFLX [IEEE SP 2008]

► **MSQ** [TON 2013]

**Hit-precision**  $h(x) = \begin{cases} \frac{k-(x-1)}{k}, & \text{if } k \ge x \ge 1, \\ 0, & \text{if } x > k. \end{cases}$ 



## Maximum hit-precision is only 25%! Far from the privacy bound!

## **Reasons Behind Underperformance**



Existing algorithms tolerating spatio-temporal mismatches have the best performance

## **Reasons Behind Underperformance:** Large Spatio-Temporal Mismatches



## **Potential Reasons behind the Mismatches**

#### GPS errors

GPS unreachable locations (Indoor, underground)
 Lazy GPS updating mechanisms [UbiComp 2007]

#### Deployment of base stations

 $\succ$ Lower density  $\rightarrow$  larger mismatches

#### User behavior

39.9% remote (fake) check-ins [ICWSM 2016]
 Earn virtual rewords, compete with their friends





## **Reasons Behind Underperformance: Data Sparsity**



Cunspartsee lasetiontreagedsctro Warse performance

# Can we bridge this gap?

## **Our De-anonymization Method**



■1) Modelling Spatio-Temporal Mismatches: Gaussian Mixture Model (GMM)
 PS(t) L = ∑p=-H↓l↑H↓u mπ(p)·N(S(t)|L(t-p),σ12(p))
 Parameters chosen by empirical values or estimated by EM algorithm

#### **2) Modelling Users' Mobility Pattern**: Markov Model

Solving the **data sparsity** issue: rare "encountering" event

Missing locations are estimated by Markov Model

## **Our De-anonymization Method**

## **3)** Use Location Context

Solve the data sparsity issue
 Use aggregated user behavior at locations
 To infer individual user behavior (location transition probability)



#### 4) Use Time Context

 "Whether the user is active" is helpful
 Modelling user inactive period (previously ignored feature)



## **Performance Evaluation**



- **7** state-of-the-art algorithms
- Our proposed algorithm: **GM-B**, **GM**
- Transferred parameters: GM-B (Trans.)

### **Our proposed algorithms outperform baselines by over 17%**

## **Summary**

#### Large-scale Ground-truth Datasets

>ISP trajectories with over 2 million users

>2 different social networks, 2 different types of external information

#### Demonstrate the Gaps between Theory and Practice

➢ High theoretical bound

>Low actual performance

#### Bridge the Gaps between Theory and Practice

➢ Considering spatio-temporal mismatches, data sparsity, location/time context
 ➢ Improve the performance → confirm our observations

## Thanks you!

For Data Sample and Code, Please Contact whd14@mails.tsinghua.edu.cn liyong07@tsinghua.edu.cn

## Reference

[Scientific Report 2013] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, "Unique in the crowd: The privacy bounds of human mobility," Scientific reports, vol. 3, p. 1376, 2013.

[WWW 2016] C. Riederer, Y. Kim, A. Chaintreau, N. Korula, and S. Lattanzi, "Linking users across domains with location data: Theory and validation," in Proc. WWW, 2016.

[AIHC 2016] A. Cecaj, M. Mamei, and F. Zambonelli, "Re-identification and information fusion between anonymized cdr and social network data," Journal of Ambient Intelligence and Humanized Computing, vol. 7, no. 1, pp. 83–96, 2016.

**[WOSN 2014]** L. Rossi and M. Musolesi, "It's the way you check-in: identifying users in location-based social networks," in Proc. ACM WOSN, 2014.

**[TIFS 2016]** F. M. Naini, J. Unnikrishnan, P. Thiran, and M. Vetterli, "Where you are is who you are: User identification by matching statistics," IEEE Transactions on Information Forensics and Security (TIFS), vol. 11, no. 2, pp. 358–372, 2016.

[IEEE SP 2008] A. Narayanan and V. Shmatikov, "Robust de-anonymization of large sparse datasets," in Proc. IEEE SP, 2008.

**[IEEE SP 2011]** R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux, "Quantifying location privacy," in Proc. IEEE SP, 2011.

**[TON 2013]** C. Y. Ma, D. K. Yau, N. K. Yip, and N. S. Rao, "Privacy vulnerability of published anonymous mobility traces," IEEE/ACM Transactions on Networking (TON), vol. 21, no. 3, pp. 720–733, 2013.

[UbiComp 2007] N. Banerjee, A. Rahmati, M. Corner, S. Rollins, and L. Zhong, "Users and batteries: interactions and adaptive energy management in mobile systems," Proc. ACM UbiComp, 2007.

**[ICWSM 2016]** G. Wang, S. Y. Schoenebeck, H. Zheng, and B. Y. Zhao, ""will checkin for badges": Understanding bias and misbehavior on location-based social networks." in Proc. ICWSM, 2016.

## **Metric of the ranking**

Hit-precision:

$$h(x) = \begin{cases} \frac{k - (x - 1)}{k}, & \text{if } k \ge x \ge 1, \\ 0, & \text{if } x > k. \end{cases}$$

If the right one rank 1 in candidate trajectories, h(x)=1.
If the right one rank 3 in candidate trajectories, h(x)=(k-2)/k.

## **Performance Evaluation: Parameter Study**

#### Impact of Maximum Tolerant Delay



#### Larger Tolerant Delay=>Better Performance

- >0->1: Significant improvement
- >12->24: Little improvement

#### **Impact of Parameters in GMM**



#### Comparable Performance

- Empirical vs. Estimated
- Robust to parameter

settings.

## **Our De-anonymization Method**

#### **Use Location Context**:

Solve the **sparsity** issue (inaccurate mobility modelling)



Use the aggregate user behavior at locations!

Marginal distribution

$$E(r) := p(L(t) = r) = \frac{\sum_{t \in \mathcal{T}} I(L(t) = r) + \alpha(r)}{\sum_{t \in \mathcal{T}} I(L(t) \neq \emptyset) + \sum_{r \in \mathcal{R}} \alpha(r)}.$$
$$\alpha(r) = \alpha_0 \cdot \sum_{\upsilon \in \mathcal{V}} \sum_{t \in \mathcal{T}} I(L_\upsilon(T) = r),$$
$$T(u_{\upsilon}(t) = u(t_{\upsilon}(t) = t_{\upsilon})$$

Transition matrix

$$T(r_{1}, r_{2}) := p(L(t) = r, L(t + 1) = r),$$

$$= \frac{\sum_{t \in \mathcal{T}} I(L(t) = r_{1})I(L(t + 1) = r_{2}) + \beta(r_{1}, r_{2})}{\sum_{t \in \mathcal{T}} I(L(t) \neq \emptyset)I(L(t + 1) \neq \emptyset) + \sum_{r_{2}, r_{2} \in \mathcal{R}} \beta(r_{1}, r_{2})}.$$

$$\beta(r_{1}, r_{2}) = \beta_{0} \cdot \sum_{\upsilon \in \mathcal{V}} \sum_{t \in \mathcal{T}} I(L_{\upsilon}(t) = r_{1}) \cdot I(L_{\upsilon}(t + 1) = r_{2}),$$

22

## **Our De-anonymization Method**

$$p(S|L) = \prod_{S(t) \neq \emptyset} p(S(t)|L).$$

## Use Time Context

>Whether there is record in each time bin is also an important information (previously ignored feature).

