
I Do and I Understand.
Not Yet True for Security APIs. So Sad

Luigi Lo Iacono and Peter Leo Gorski
Cologne University of Applied Sciences (Germany)

{luigi.lo iacono, peter.gorski}@th-koeln.de

Abstract—Usable security puts the users into the center of
cyber security developments. Software developers are a very
specific user group in this respect, since their points of contact
with security are application programming interfaces (APIs). In
contrast to APIs providing functionalities of other domains than
security, security APIs are not approachable by habitual means.
Learning by doing exploration exercises is not well supported.
Reasons for this range from missing documentation, tutorials and
examples to lacking tools and impenetrable APIs, that makes this
complex matter accessible.

In this paper we study what abstraction level of security
APIs is more suitable to meet common developers’ needs and
expectations. For this purpose, we firstly define the term security
API. Following this definition, we introduce a classification of
security APIs according to their abstraction level. We then
adopted this classification in two studies. In one we gathered
the current coverage of the distinct classes by the standard set of
security functionality provided by popular software development
kits. The other study has been an online questionnaire in which we
asked 55 software developers about their experiences and opinion
in respect of integrating security mechanisms into their coding
projects. Our findings emphasize that the right abstraction level
of a security API is one important aspect to consider in usable
security API design that has not been addressed much so far.

I. INTRODUCTION

Usability is important, especially for security technologies,
mechanisms and products, since usability problems in security
often result in serious threats for the users [1], [2], [3]. Usable
Security is a domain of active research and development
that tries to understand the correlation between usability and
security, which is not a contradiction or conflict of objectives
as commonly assumed [4]. The users’ capabilities, perceptions
and expectations are put into the center of the considerations
in the development process. This avoids making the user the
weakest link of a security system.

Since the first notable publications in the usable security
domain starting from 1996 [5], [6], [7], the main research focus
has been on end users. Only recently the focus has been drawn
to software developers, system integrators and system adminis-
trators as special user groups [8], [9]. Understanding the needs

of software developers is especially important, though, since
failures on their site triggers an avalanche, affecting all the end
users utilizing the vulnerable digital product.

The interfaces, software developers most commonly in-
teract with, are application programming interfaces (APIs).
Developers can access certain functionalities hidden behind
APIs, providing them with a strong tool from which they
can build their own software by composing it out of API
calls. Security APIs have been and still are a major hassle for
developers, though. This has been shown most critically for
TLS/SSL connection establishment in Android [10] and iOS
[11], TLS/SSL certificate validation in non-browser software
[12] and also for OAuth single-sign-on implementations [13].
This issue becomes increasingly relevant, since with the grow-
ing distribution and multi-disciplinarity of systems security is
getting pervasive for software developers. When developing
distributed services systems, e.g., software developers have to
deal with the implementation of service security measures [14]
for which a rich stack of security functionalities is available
through APIs.

Unfortunately, the common approach carried out by devel-
opers for exploring and then adopting an API seems not to
be compatible with current security APIs. For instance, the
straight forward method of searching for ready to use code
examples via community platforms like Stack Overflow does
often not lead to secure software products [15].

Learning and understanding security APIs by doing is
far from being real. There is a clear demand for a better
understanding of developers’ needs in terms of security APIs
in order to be able to provide usable programming interfaces
for security mechanisms that are equipped with basic usability
properties such as learnability and fault tolerance.

Most of the research available so far is mainly targeting
APIs for cryptographic schemes or protocols [8]. Security
APIs do encompass much more than cryptographic APIs,
though [13], [16]. A classification is required to structure this
field and as a crucial prerequisite to guide targeted research
and development activities. Such a classification can support
the systematic analysis of security APIs especially in the
light of their usability. It would allow identifying, e.g., the
targeted user group. Software developers with a specialization
in cryptography or security might be able to use any security
API, but may also prefer a certain class of APIs. On the other
hand, common developers might require a certain minimum
level of abstraction in order to fit their language and mental
models.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
EuroUSEC ’17, 29 April 2017, Paris, France
Copyright 2017 Internet Society, ISBN 1-891562-48-7
http://dx.doi.org/10.14722/eurousec.2017.23015

In this paper we introduce a classification of the various
security APIs. We consider the level of abstraction as the main
classification criteria. Our proposed classification is then part
of two studies. In the first one we performed a quantitative
analysis of the provided security APIs in the most popular
programming environments to date. This study should provide
qualitative insights on the security APIs available to developers
out of the box. In the second study we gather an opinionated
view of developers by means of a questionnaire-based online
study. The goal of this study is to determine the preferences of
software developers in terms of the adequate abstraction level
of security APIs and its implications to consider.

The rest of the paper is structured as follows. In Section II
we provide some required definitions in order to set the scenes
for this paper. Section III introduces the proposed classification
of security APIs. In order to gather first insights on the
usefulness of the introduced classification, we conducted two
studies (see Section IV). We discuss our findings in Section V
and conclude the paper in Section VI.

II. FOUNDATIONS

A classification needs to be built upon a solid foundation.
Thus, a careful definition of the term Security API is required
to be able to identify and comprehensibly outline the inherent
structure of the security API domain. As security APIs are
a particular subgroup of APIs, common constraints for a
classification are determined by a general API definition. For
the classification given in Section III a matured explanation
of this term is used, which had been proposed by Joshua
Bloch [17]:

“An application programming interface (API) spec-
ifies a component in terms of its operations, their
inputs and outputs. Its main purpose is to define a
set of functionalities that are independent of their
implementation, allowing the implementation to vary
without compromising the users of the component.
An API augments a programming language (or a set
of languages with an interoperable calling conven-
tion). Alternatively, an API may be described in an
interface definition language.” [17].

The most important concept of an API, which is also the
core reason for its ubiquitous utilization, is the abstract reuse
of functionalities offered by already available implementations.
Conceptually, applications and their functionalities can be
integrated in different ways. An overview of common styles is
given by Figure 1 which has been adapted and extended from
[18]. The file-based data exchange style is straightforward
but this software integration approach does not use interfaces
satisfying the above definition of an API. A component spec-
ifying the functionalities by its operations, inputs and outputs
is simply missing in this integration style. In fact, there is
only a general data interchange mechanism via file input and
output. The same is true for the shared database integration
strategy. There is no specific functionality available besides
generic data retrieval and storage operations. APIs according
to the above definition are deployed in the integration style
denoted as monolithic APIs. This term states the use of specific
APIs that are limited to a determined execution environment
running on a single host. This category most commonly

includes stand-alone applications that are tightly composed
by compile time API calls. These can be found as part of
libraries, toolkits, frameworks or development kits and are
synonymously referred to as API [19]. The remote procedure
call and message bus strategies also make extensive use of
APIs. In addition to monolithic APIs both enclose remote
APIs that enable the integration of functionalities provided
by external services running on distributed and potentially
heterogeneous hosts. This is e.g. required for implementing
Web Services. Modern internet-based applications which are
commonly based on the architectural style REST [20] adopt
the RPC integration strategy. These remote APIs are commonly
specified using interface definition languages.

Following the above given definition for APIs, the sub-
group of security APIs has to be determined by the offered set
of functionalities. The different scopes of available definitions
for security APIs are too limited and thus are not appropriate
for a comprehensive classification. The definition by Michael
Bond [21] is, e.g., strictly bound to cryptographic functional-
ities:

“A security API is an application programmer in-
terface that uses cryptography to enforce a security
policy on the interactions between two entities.” [21].

Focardi et. al [22] set a security API in a specific relation-
ship of trust between entities:

“A security API is an application program interface
that allows untrusted code to access sensitive re-
sources in a secure way.” [22].

And Graham Steel [23] specifies a security API by its
quality of resistance against malicious calls:

“An application program interface (API) is called
a security API if it is designed so that no matter
what sequence of function calls are made by the
possibly malicious application code, certain security
properties continue to hold.” [23].

These three formulations describe different sets of function-
alities and are thus defining distinct security API subgroups.
A definition of security APIs should follow a more general
definition, though, trying to consider the current field of ap-
plication comprehensively. Such a consolidated and expanded
definition has been provided by Gorski et al. [24]:

“A security API is an application programming inter-
face that provides developers with security function-
alities that enforces one or more security policies on
the interactions between at least two entities.” [24].

This definition is used as foundation of this paper and as
a point of reference for the proposed classification.

III. CLASSIFICATION OF SECURITY APIS

Reflecting the available definitions for the term security
API in the previous section made obvious, that early definitions
have a strong focus on cryptography while more contemporary
once broadened the scope to include compounded security
features. This emphasizes already that there are distinct classes

2

Monolithic APIsFile-based Data Exchange Shared Database Remote Procedure Call Message Bus

Fig. 1. Overview of application integration styles (adapted and extended from [18]). The three rightmost styles encompass the usage of APIs.

of APIs for implementing security mechanisms. A more pro-
found understanding of this structure is required, since it
might provide important new insights. One assumption here
is, e.g., that a classification of security APIs might drive
a more fine-grained clustering of the related user group of
software developers as well. In this respect, the distinct security
API classes could be assigned to more specifically defined
groups of developers with their particular properties, abilities,
deficiencies and mental models. Consequently, this would lead
to more tailored and henceforth usable artifacts for the distinct
groups including documentation, tooling and APIs. To obtain
this better understanding, the security API field has to be
structured in a viable manner.

A. Methodology

In order to develop an appropriate classification for the
purpose of this paper, we analyzed standards related to se-
curity mechanisms as well as various catalogs of security
patterns [25], [26], [27], [28] and security controls [29]. Based
on this input, we distilled a set of security mechanisms by
compiling a list of unique components mentioned at least once
in one of the analyzed artifacts.

B. Classification

By the means of the aforementioned methodology we
developed a classification of security APIs that is shown in
Figure 2. It is important to understand, that the indicated
classification does not provide a comprehensive picture of the
whole domain. It shows the main structure that sorts the field in
respect to the abstraction level that each individual component
addresses.

The proposed classification splits up the domain of security
APIs into two main subgroups (see Figure 2). The APIs
with a rather low level of abstraction are denoted as security
primitives APIs. The APIs with a higher level of abstraction
are denoted as security controls APIs.

The APIs providing primitive security functions include
most prominently cryptographic APIs, but also basic stegano-
graphic and watermarking schemes for information hiding.
This end of the spectrum is made up by foundational means
that can be used to realize basic security services such as con-
fidentiality, integrity, authenticity and non-repudiation. These
APIs provide a high flexibility since they allow selecting,
initialize and combine the associated primitives to specific
security controls as needed. This flexibility, however, demands

a high degree of knowledge and expertise from developers.
Otherwise they will fail developing robust and effective secu-
rity protection means.

The other end of the spectrum consists of more concrete
security controls including means for secure communication or
storage. The APIs containing to this category are less flexible
than the once belonging to the security primitives. On the
other hand they are more goal-oriented and ready to use.
When implemented correctly, they encapsulate a lot of security
expertise and knowhow to lift this burden from the shoulders
of the developers using a security controls API.

In these two first order classes of APIs several relation-
ships can be observed. Security controls are most commonly
constructed by a proper composition of security primitives. A
security controls API offering the functionality of irretrievable
deleting a file is build, e.g., upon a pseudo random generation
API so that the file can be overwritten multiple times with
junk data. This relation is unilateral and does not exist the
other way round. Moreover, it does not apply to all security
controls. There are some security controls that do not depend
on security primitives at all for performing their internal tasks.
The filtering of input is an example for those controls. No
cryptography is needed for whitelisting an input to a network
packet filter or web application. Another existing relationship
can be observed between security controls themselves. In
such a reflexive relation one control builds its functionality
on top of another one. Consider a single-sign-on API as an
example. It requires an authentication and possibly an identity
management API in order to implement its own functionality.

The presented structure with its inherent relationships
advocates for segmenting the group of software developers
into distinct sets and focus them separately. Knowledgeable
developers with the required experience in deploying security
primitives should be the primary user group accessing the
according APIs. Common developers should find their required
security controls in an appropriate packaging respecting their
mental model and providing an effective protection with secure
defaults. In cases expert users have to fulfill routine tasks
for which suitable security controls APIs are available, they
most probably will make use of these shortcuts. The more
critical path seems to be the lack of a required security
control or its low flexibility forcing a common developer to
build it based on security primitives APIs. If there exists a
sufficiently diverse coverage of security APIs to satisfy the
security needs of common software development projects and
whether developers really desire this assumed classification to

3

Security APIs

Security Primitives 
APIs

Security Controls 
APIs

Cryptography Information Hiding

Steganography

Watermarking

Level of Abstraction

Algorithms/ 
Schemes

Ciphers, 
Hash Functions, 
MACs, PRNGs,... Protocols

Challenge/Response, 
Zero-Knowledge, ...

Key Management
Generation, Agreement,
Transport, Renewal, ...

Basic
Security Services
Confidentiality, Integrity,
Authenticity, Non-repudiation

Concrete
Security Measures

Irrevocable File Deletion,
Secure File Transfer, User Login

Filtering
Whitelisting, Blacklisting,
Escaping, Sanitisation, ...

TrustAccess 
ControlFormats

XML-Security, 
CMS, JOSE, ...

AuthN
Password, PIN,

Multifactor, 
OpenID Connect, ...

AuthZ
ACL, Roles, 
Attributes,
OAuth, ...

Long-term
Signature

Copy 
ProtectionIdentity 

Management
Username, PKI, ...

Secure Storage
Data, Credentials, ...

Secure 
Communication

TLS, ...

Security Session
Management

Hardware
PC/SC, ...

Secure 
Messaging

Signal, ...

Is a composite of

Fig. 2. This classification of security APIs shows the main structure of the domain. Security Primitives APIs provide common mechanisms for implementing
basic security services such as confidentiality and integrity. Security Controls APIs instead provide more concrete security measures including user login and
secure file transfer.

be fully available have initially been assessed by the following
two studies.

IV. PERFORMED STUDIES

To evaluate whether the introduced classification of secu-
rity APIs provides a beneficial tool for further research work
we designed and performed two initial studies. One had the
goal to cross-check the classification and to obtain an overview
on what types of security APIs are available to developers in
popular programming environments (see Section IV-A). With
the other study we wanted to assess the preferences of software
developers in respect to the granularity of security APIs (see
Section IV-B).

A. Popular Programming Environments Analysis

The landscape of programming languages and software
development kits available to developers is huge. To focus our
analysis to the most relevant environments to date, we selected
the top ten programming languages listed in the IEEE Top
Programming Languages (IEEE TPL) ranking [30].

Besides a pure ranking of programming languages, the
IEEE TPL also indicates whether they are used to implement
mobile, web, embedded or enterprise applications. Amongst
the top ten, C, C++, Java, C#, and JavaScript are most promi-
nently used for developing mobile applications. Developers

of web applications do have a focus on languages including
Java, Python, C#, PHP, JavaScript, Ruby, and Go. Since a
large part of enterprise applications are nowadays developed
using modern web technologies, the set of languages used for
web programming has a large overlap with the ones used in
enterprise application development, namely C, Java, Python,
C++, R, C#, Ruby, and Go. Embedded developments are
dominated by C and C++.

Since from a conceptual and technology viewpoint enter-
prise and web software development do have a lot in common
nowadays, both types are merged for the market research study.
An equivalent pairing can be observed for the embedded and
mobile classes. Thus, the programming languages listed in both
classes are considered only once. In the embedded class C/C++
and in the mobile class Java, C# and JavaScript are considered.

In the analysis we first identified what security mechanisms
are “build-in” and can potentially be used by developers
without the need to search for appropriate components. We
then focus on externally available functions provided by third
parties.

B. Questionnaire-based Online Study

The questionnaire-based online study was conducted in
March 2017 with the main goals to (1) validate the usefulness
of the introduced classification (see Section 2, (2) gather in-

4

sights about what level of abstraction software developers wish
to have when using security APIs and (3) to identify possible
discrepancies between developers’ needs and circumstances in
practice. The full questionnaire is contained in the appendix
of this paper. The related artifacts will be published on our
website after the workshop [31].

1) Survey Design: The survey consists of 19 questions plus
three additional ones depending on the answer. We focused on
qualitative results. Thus, the survey contains eight questions in
which the study participators were asked to answer with free
text. For the question design, we orientated at related work.
Robillard conducted a survey to identify learnability issues of
APIs in general [32] and Nadi et al. conducted two surveys
with a focus on usability issues of Java cryptography APIs
[33].

Demographical data was collected in the first five questions
including (Q1) the country of residence, (Q2) occupation,
(Q3) development experience, (Q4) what types of software are
developed and (Q5) what programming languages are used.
The familiarity with the security domain was evaluated on
one hand by (Q6) asking for an educational background in
security and, if this is the case, for (Q6a) specific aspects of
this education. We also wanted to know if there is a transitive
connection between education, struggling with security APIs
and the demanded level of abstraction. On the other hand we
accessed (Q7) the frequency of security mechanisms usage.

In the questionnaire’s core we first asked (Q8) who is from
a developers point of view responsible for integrating security
mechanisms in software systems. The intention behind this
question was to understand if there is a general awareness
of the responsibility lying with developers and designers of
APIs, tools and documentation. To verify and give further
substance to the classification proposed in Section III we asked
(Q9) for currently applied security mechanisms and (Q10)
a usage ranking of prominent features offered by security
primitives APIs as well as security controls APIs. In order to
identify specific aspects of security APIs and their usability
we wanted to know (Q11) whether there are typical work
steps to implement security mechanisms and (Q12) if there
is any difference between security-related programming tasks
and non-security related tasks. Additionally to implicitly find
hints to the needed level of abstraction of security APIs we
asked (Q13) whether a developer had problems implementing
security mechanisms and, if this is the case, (Q13a and Q13b)
for specific information and reasons. With two questions we
asked directly (Q14) which level of abstraction a security API
should offer to meet development needs and (Q16) what kind
of security API is more appropriate. In addition we were
interested in (Q15) whether the participants would recommend
any API, tool or information resource to a colleague or friend
who struggles with implementing a security mechanism.

The survey concluded with (Q17) the possibility to give
further comments, thoughts or suggestions and to provide
an (Q18) email address for (Q19) receiving results and/or
invitations to further studies. The answers to these last three
questions have been stored into a separate database with
no link to the given answers and they have been not been
considered in the analysis.

2) Survey Respondents: Executives or heads of department
of various software development companies personally known
to the authors were asked to forward a survey invitation
to in-house software developers. Additionally programmers
personally known to the authors have been invited to fill the
questionnaire. We have received 59 full responses. The invalid
answers of four participants could not be evaluated so we had
to sort them out. Thus, the following analysis is based on
N = 55 answers in total.

46 of the participants (83%) came from Germany. The other
nine answers reached us sparsely from eight different countries
including Austria, France, Mexico, Netherlands, Norway, Re-
public of Korea, Switzerland and USA.

By our recruiting we were able to gain answers from 38
participants (69%) who describe themselves as industrial and
eight (15%) as freelance developers. We got also one samples
from an industrial researcher, one from an undergraduate
student, one from a graduate student and five from other
occupation groups. One participant preferred not to answer.
Furthermore, the sample is mostly represented by experienced
developers. Almost half of the participants (45%) have more
than ten years of experience in software development followed
by 25% between five and ten years, 18% between two and five
years and the remaining 11% less than two years (see Figure
3).

0 %

13 %

25 %

38 %

50 %

More than 10 years 5-10 years 2-5 years 1-2 years Less than 1 year

2 %

9 %

18 %

25 %

45 %

�1

Fig. 3. Programming experience of the study participants

Developers of all five main software domains are repre-
sented in the sample. However the participants’ focus lies with
85% on web applications as well as enterprise applications
with 58% (see Figure 4). As previously discussed in Section
IV-A the set of programming languages a developer is mainly
using depends on the types of software she is developing.
Consistently to the distribution of software types a wide range
of languages is named by the participants with a strong
emphasize on Java and JavaScript (see Figure 5).

Summarizing, the survey participators have much experi-
ence in programming various types of software with a large set
of programming languages. This gives evidence that a relevant
target group was reached. Although, the sample is mostly
limited to software developers from Germany the gained data
is appropriate to achieve the above defined objectives of this
survey. The results of both conducted studies are discussed in
the following section.

5

0 %

23 %

45 %

68 %

90 %

Web Applications Mobile Applications Desktop Applications Embedded Applications Enterprise Applications Other

2 %

58 %

20 %
27 %

40 %

85 %

�1

Fig. 4. Types of software which the participants develop

Java
JavaScript

C
Python

Ruby
PHP

C#
Go

C++
Clojure

scala
BPEL

Dart
Perl

PL/SQL
R

0 % 20 % 40 % 60 % 80 %

2 %
2 %
2 %
2 %
4 %

7 %
7 %

9 %
9 %
11 %

15 %
15 %

18 %
64 %

71 %

�1

Fig. 5. Primarily used programming languages by the participants

V. RESULTS AND DISCUSSION

The structure of this section follows the defined objectives
in Section IV-B. Beginning with the assessment of the intro-
duced classification from section III, the results give evidence
that it can be applied to structure the field of security APIs.
The given free text answers to the question (Q9) which security
mechanisms are generally implemented can almost completely
and unambiguously assigned to either security primitives APIs
or security controls APIs by using the proposed classification
(see Figure 2) for a content-related coding. Therefore mecha-
nisms like e.g. the protection against SQL injection or cross
site scripting vulnerabilities were assigned to “Escaping” or
for instance cross-origin resource sharing to “Whitelisting”.
Named end user software products have been ignored in this
process. Also the answers are mainly reflecting the determined
rating options in Q10 and thus validate their validity. Derived
from these ratings, developers have to use security mechanisms
most often for (1) filtering functionalities like input validation
(#1: 42%, #2: 22%), (2) authorization and authentication for
access control (#1: 25%, #2: 33%) and (3) mechanisms for
secure connections and communication (#1: 22%, #2: 16%).
These three groups of security control functionalities take in
total 89% of the first rank (#1) and still 71% of the second
rank (#2). This result is further strengthened by the comparison
of total ratings (see Figure 6), which takes selections for
all fifteen ranks into consideration. Most of the participants
also generally use cryptography like encryption and decryption
(67%) and have to securely store credentials like user names
and passwords (73%).

However, over 80% of the respondents are using these
rated security mechanisms just occasionally. 27 participants

Authorization /Authentication

Input validation

Secure connections and communications

Store and authenticate user names and passwords

Encryption / Decryption

API keys

Key management and generation

Signature generation and validation

Transfer files securely

Fraud prevention

Other

0 14 28 41 55

4

16

17

18

21

32

37

40

40

51

53

�1

Fig. 6. Ranking of security-related functions most commonly used by study
participants in their software projects

(49%) use security mechanisms rarely in less than 33% of their
development tasks. 19 persons (35%) use security mechanisms
occasionally in more than 33% but less than 66% of their
tasks. Only nine participators (16%) have to deal frequently
with security in more than 66% of their tasks. But, with no
exception all participants have to integrate security mecha-
nisms in their code. This indicates that most participants have
other primary programming tasks but also have to implement
security functionalities from time to time.

The results from Q9 and Q10 have a clear tendency to
security control functionalities. Also if a developer just rarely
or occasionally uses this kind of APIs she will likely make
more errors with low level designs for which a detailed
background knowledge is required. This target group has to
be considered by designing the abstraction level of security
APIs. A tendency concerning the needed level of abstraction
was examined more directly by Q14 and Q16.

The result of Q14 is shown in Figure 7. The applied dif-
ferentiation between the levels of abstraction is based on three
distinct software developer personas proposed by Clarke [34],
[35]: Opportunistic (High), Pragmatic (Medium), Systematic
(Low).

0 %

15 %

30 %

45 %

60 %

High Medium Low Other

11 %

5 %

53 %

31 %

�1

Fig. 7. Demanded security API abstraction level

Only 5% of software developers who took part in our
survey want to determine implementation details by working
with a low level API. 31% agree with not being interested in
implementation details and just want the security to work by
using a high level API. 53% prefer a medium level API, which

6

TABLE I. AVAILABLE SECURITY APIS IN POPULAR PROGRAMMING ENVIRONMENTS. THE BUILD-IN AVAILABILITY IS DENOTED AS . THIRD PARTY
SECURITY FUNCTIONALITIES ARE DENOTED AS G#. IF NO ACCORDING SECURITY APIS ARE AVAILABLE, #.

Security Primitives APIs Security Controls APIs

C
ry

pt
og

ra
ph

y

St
eg

an
og

ra
ph

y

W
at

er
m

ar
ki

ng

A
ut

he
nt

ic
at

io
n

A
ut

ho
riz

at
io

n

Se
cu

re
C

om
m

un
ic

at
io

n

Fi
lte

rin
g

...

Embedded
C/C++ G# # G# G# G# #

Mobile
Java/Android G# #
C#/Windows Phone # G# # # G# # #
JavaScript/Hybrid G# G# # G# G# G#
Objective-C/iOS G# # G# G#
Swift/iOS G# # G# G#

Enterprise
C/C++/STL G# G# # G# G#
Java/JEE G# #
Python G# # G#
R G# G# # G# G# #
C# G# G# # # G# # #
Ruby # # G# G# G#
Go G# # G# G# G# G#

Web
Java/Spring G# #
Python/Django G# # G#
C#/ASP.NET G# # G#
PHP/Symfony # G# # G#
JavaScript/Meteor G# G# # G#
Ruby/Ruby on Rails # # G#
Go/Revel G# # G#

should offer low as well as high levels of implementation de-
tails and opportunities, depending on the actual programming
task. 11% do not agree with the offered statements and gave
other wordings.

In Q16 we directly asked which kind of security API
the developers do find more appropriate for their needs. We
gave an explanation for the used terms as follows: security
APIs can be grouped into cryptographic APIs (e.g. encryption
algorithms, hash functions and digital signatures) and security
controls APIs (e.g. security protocols and mechanisms for
authentication or authorization). 53% answered both, 36%
security controls APIs, 7% cryptographic APIs and 4% none
(see Figure 8). There is an obvious tendency towards security
controls APIs. Also expert users demand for more abstract
controls. A reason might be that they appreciate the shortcuts
when developing frequent standard protections. Still, in the
answers to question Q15 the given recommendation on par-
ticular security APIs do not show such a tendency. Only nine
recommendations included security controls APIs, ten pointed
to cryptographic APIs and 11 participants would recommend
general information resources. The other participants would
need more context to answer the stated question or were not
able give any recommendation. This might be due to a lack of
sufficient security controls APIs as we observed in our market
analysis.

The outcomes from the analysis of available security

0 %

15 %

30 %

45 %

60 %

Both
Security Controls and
Cryptographic APIs

Security Controls APIs Cryptograhic APIs None

4 %
7 %

36 %

53 %

�1

Fig. 8. The participants’ needs for security APIs

APIs in popular programming environments used to date
(see Section IV-A and Table I) emphasize that the security
APIs directly available to developers as build-in functions are
dominated by security primitives APIs. The identified security
mechanisms that are “build-in” and which can potentially be
used by developers without requiring to search for appropriate
components are denoted by a filled circle (’ ’). We then
focused on externally available functions provided by third

7

parties (denoted as ’G#’). In cases, in which neither a build-
in nor an external component could have been found for the
targeted security API, the corresponding table cell contains a
non-filled circle symbol (’#’). As can be seen from Table I
developers—whether security-experienced or not—most com-
monly have to deal with basic cryptographic functionalities.
Only in application domains that do have a longer history in
terms of being distributed systems by design include some
security controls in addition. There is a clear demand to close
this gap and to expand the set of security controls APIs. This
discrepancy between the identified developers’ needs of high
and medium level security APIs and mostly offered low-level
APIs in practice lead to various problems.

34 participants (61%) encountered problems while imple-
menting security mechanisms. Seven respondents generally
state they had problems just “doing it right”. Eleven others
explained in more detail that they have struggled to understand
or use an API:

“Some security libraries are not user friendly. Hence,
people tend to just get it running due to time re-
strictions. By this they may break the actual security
mechanism, making the whole usage of the library
senseless.”

Others reported issues with their answers to Q13 in respect
to the understanding of underlying security concepts (four
times), the complexity of concepts (four times) and finding best
practices as well as safe implementations (three times). The
participants see different root causes for these problems. (1)
Themselves, as human factor, have little experience (five times)
or make insufficient efforts (three times). (2) Other developers,
as nine respondents determine the design of an API, library or
documentation as reason for their problems:

“Libraries that are not well documented (missing
documentation or very detailed documentation that
is for the praxis irrelevant, we need HowTos that for
the most common scenarios allow a fast implemen-
tation).”

(3) The organizational environment, as it is responsible
for a tight timescale (named four times) and not counting
security to business priorities (named three times). (4) The
last issue mentioned by five developers as root cause is again
the complexity of security concepts.

In this context we also tried to find a connection between
the educational security background and having problems with
the adoption of security APIs. The relation between partici-
pants who have some kind of educational security background
(58%) and those who have not (42%) is almost balanced in the
sample. Those 32 persons who answered with yes were addi-
tionally asked for concrete aspects. As expected the answers
do not contain complete handbooks of modules but indicate a
broadly based educational landscape. Most named topics range
from cryptography and encryption (20 times), network security
and security protocols (8 times), vulnerabilities and attacks
(6 times), security services (6), public key infrastructures (4
times), practical countermeasures (4 times) and best practices
and guidelines (3 times).

Although most software developers have to integrate se-
curity mechanisms in their software, a large number do not

have an educational background in security. This should be
especially considered by the design of high or medium level
APIs to lower the initial hurdle for programmers with minor
experience in security. This should be especially the case
for frequently used functionalities like input validation and
sanitation, authorization and authentication as well as for
secure connections and communications. Nevertheless we were
not able to proof a statistically significant correlation between
previous knowledge from education and having problems
when implementing security mechanisms (Chi-squared test p-
value=0.493).

As with (1) the developer himself, (2) other developers
and (3) the organizational environment different roots for
problems with security APIs have been reported, the question
arises whether who is responsible for integrating security
mechanisms in software systems in the first place (Q8). The
participants’ opinions are widely dispersed, ranging from just
“the developer” (11 times) or just “the software architect” (5
times) to “everybody” (8 times) or “the entire team” (3 times).
Others name specialists in the domain of security (3 times) or
in respect of project knowledge (“The developer or software
architect who knows the software in depth.”). 23 answers
describe multiple groups of persons. Summarizing, this diverse
groups include—in addition to software developer, software
architect and specialist—software designer, tester, operator,
customer, business analyst, quality analyst, requirements en-
gineer, group leader, software integrator as well as language
designer (named one time) and framework provider (named
two times).

As the development of complex software systems may
follow various software engineering processes involving many
stakeholders with different competences it can not be generally
stated who takes finally the responsibility for bringing security
measures into software. The results show that software de-
velopers mostly see themselves, at least partially, responsible
for the integration. But they do also rely on other entities
such as programming interfaces, e.g., which offer security
functionalities, as a telling example in the web framework
AngularJS shows:

“Each version of AngularJS 1 up to, but not in-
cluding 1.6, contained an expression sandbox, which
reduced the surface area of the vulnerability but
never removed it. In AngularJS 1.6 we removed
this sandbox as developers kept relying upon it as a
security feature even though it was always possible
to access arbitrary JavaScript code if one could
control the AngularJS templates or expressions of
applications.” [36]

This is just one prominent example which is supporting
the findings of our survey. The subsequent question (Q11)
asked in which work steps developers should be supported to
solve a security related task. The obtained answers to Q11 give
valuable insights to this. Some of the answers contained very
technically detailed descriptions, which are not suitable for
the evaluation and which have thus been excluded. The rest of
the answers could be clustered in several groups. 13 different
answers describe the need to specify requirements in the first
step. As software developers have an information need at the
beginning of the programming task, six participants would start

8

with a general research to understand a security mechanism
and get information about their current development status.
Additionally seven respondents would work out a risk or
threat model. In all steps 20 participants (36%) mentioned the
searching for best practices and available tools like libraries,
frameworks or security APIs. After creating a concept (named
7 times) and consulting other persons (named 10 times) the
measure would be implemented (named 14 times). In all steps
32 participants (58%) would write and/or perform tests like
functional unit testing or fuzzing. This is also relevant for
already existing systems which have to be analyzed (named
4 times) or tested for e.g. bug fixing or patching after release.
As a second line of validation 10 developers would request a
code audit or review after the implementation.

Different proposals consider the usability of security APIs
as special in contrast to general API usability, following
specific additional principles [24], [8]. Because there is no
empirical evidence for this yet, Q12 was meant to give more
substance to previous research results. However, the respon-
dents have controversial opinions concerning the question if
there is a difference between security-related programming
tasks and non-security related tasks. The difference is argued
mainly by the security context. Summarizing, security is
described as a non-functional requirement which brings addi-
tional complexity, requires different thinking, special domain
knowledge, more effort, attention as well as care and which
results in more serious consequences. These might be reasons
for a frequent negative perception of security-related tasks:

“Security-related tasks are not welcomed by spon-
sors, tend to have poor management attention and
often feel like a burden. They tend to require more
attention for review and quality assurance because it
is often more complex to prove that they fulfill their
purpose.”

A different perspective, which is shared by 14 participants
is relativizing the aforementioned opinion. From their point
of view all tasks are security related or require the same
conceptual approach. One respondent found the following
wording:

“I think most tasks that are involved in creating
a software system do involve security to a certain
extend. Having a strict separation between security
and non-security tasks is a reason that a lot of
systems do have security holes after their release.”

Whether there is a difference between security-related
programming tasks and non-security related tasks or not, both
described paradigms demand for a due diligence when dealing
with security related implementation tasks, because of the
special implications.

VI. CONCLUSION AND OUTLOOK

One approach to design security APIs that do not in-
corporate obvious usability problems is to adhere to general
usability heuristics [37]. The match between system and the
real world principles says that a system should speak the users’
language, with words, phrases and concepts familiar to the
user [38]. When applying this to the security API classification
introduced in this paper it follows that this can be offered more

likely by security controls APIs. Another usability principle
says that interfaces should not contain information, which
is irrelevant or rarely needed. Again, this principle can be
adhere to more easily by security controls APIs. Those APIs
provide the right level of abstraction that allows diminishing
insignificant parts behind suitable function calls. This would
not only provide inexperienced users with an effective security
control offering secure defaults, but also the expert user with an
accelerator allowing to tailor frequent actions as recommended
by the flexibility and efficiency of use heuristic.

All kinds of security APIs deserve a comprehensive re-
search and development in order to improve their usability
for software developers as has been initiated in [24], [8],
[15]. Still, according to the results obtained by our studies,
there must be a diverse look at the usable security API field.
As our introduced classification advocates for, there should
be at least a distinction of security APIs in security primi-
tives and security controls. This diverse view supports also
distinguishing various distinct groups of software developers.
For the ones being inexperienced and unknowing in respect
to security, the focus should be to develop appropriate and
sufficient security controls APIs. This class offers first of all the
demanded level of abstraction that is also closest to the users’
language and mental models. Most security controls are made
up by a composition of various security primitives and may
hide the involved complexity behind a more graspable API.
By this, security controls APIs do not interfere as much with
the primary goal of developers—i.e., finalizing the software—
as security primitives APIs do, since the latter requires an
indepth understanding of the involved concepts, algorithms
and relationships amongst the security primitives. Such a
expertise and knowledge that requires a whole lot of experience
will remain the competence of a specialized and henceforth
rather small—-in comparison with the general case—group of
developers.

With a clear lack of adequate security controls, common
developers have to continue coping with security primitives
APIs for the time being. Future work needs to continue with
general research on security API usability with all its included
aspects in order not to make developers the weakest link, ulti-
mately putting their users into risk. A specific focus on security
controls APIs shows to open the path for promising approaches
towards usable security APIs. The obtained results from this
initial contribution demand for follow-up studies. The survey
needs to be broadened in respect to internationalization and
the analysis needs to be extended as well as more intensively
systematized.

REFERENCES

[1] I. Kirlappos and M. A. Sasse, What Usable Security Really
Means: Trusting and Engaging Users. Cham: Springer International
Publishing, 2014, pp. 69–78. [Online]. Available: http://doi.org/10.
1007/978-3-319-07620-1 7

[2] A. J. DeWitt and J. Kuljis, “Aligning Usability and Security:
A Usability Study of Polaris,” in Proceedings of the Second
Symposium on Usable Privacy and Security, ser. SOUPS ’06.
New York, NY, USA: ACM, 2006, pp. 1–7. [Online]. Available:
http://doi.acm.org/10.1145/1143120.1143122

[3] M. Sasse, S. Brostoff, and D. Weirich, “Transforming the ”Weakest
Link” - a Human Computer Interaction Approach to Usable and
Effective Security,” BT Technology Journal, vol. 19, no. 3, pp. 122–131,
2001. [Online]. Available: https://doi.org/10.1023/A:1011902718709

9

http://doi.org/10.1007/978-3-319-07620-1_7
http://doi.org/10.1007/978-3-319-07620-1_7
http://doi.acm.org/10.1145/1143120.1143122
https://doi.org/10.1023/A:1011902718709

[4] M. A. Sasse and M. Smith, “The security-usability tradeoff myth,”
IEEE Security Privacy, vol. 14, no. 5, pp. 11–13, Sept 2016. [Online].
Available: https://doi.org/10.1109/MSP.2016.102

[5] M. E. Zurko and R. T. Simon, “User-centered security,” in NSPW ’96:
Proceedings of the 1996 workshop on New security paradigms. ACM,
Sep. 1996. [Online]. Available: https://doi.org/10.1145/304851.304859

[6] A. Adams and M. A. Sasse, “Users Are Not the Enemy,” Commun.
ACM, vol. 42, no. 12, pp. 40–46, Dec. 1999. [Online]. Available:
http://doi.acm.org/10.1145/322796.322806

[7] A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0,” in Proceedings of the 8th Conference on
USENIX Security Symposium - Volume 8, ser. SSYM’99. Berkeley,
CA, USA: USENIX Association, 1999, pp. 14–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251421.1251435

[8] M. Green and M. Smith, “Developers are not the enemy!: The need for
usable security apis,” IEEE Security Privacy, vol. 14, no. 5, pp. 40–46,
Sept 2016. [Online]. Available: https://doi.org/10.1109/MSP.2016.111

[9] Y. Acar, S. Fahl, and M. L. Mazurek, “You are not your
developer, either: A research agenda for usable security and
privacy research beyond end users,” in 2016 IEEE Cybersecurity
Development (SecDev), Nov 2016, pp. 3–8. [Online]. Available:
https://doi.org/10.1109/SecDev.2016.013

[10] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben,
and M. Smith, “Why eve and mallory love android: An analysis
of android ssl (in)security,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 50–61. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382205

[11] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
ssl development in an appified world,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications
Security, ser. CCS ’13. ACM, 2013, pp. 49–60. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516655

[12] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: Validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 38–49. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382204

[13] S.-T. Sun and K. Beznosov, “The devil is in the (implementation)
details: An empirical analysis of oauth sso systems,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 378–390.
[Online]. Available: http://doi.acm.org/10.1145/2382196.2382238

[14] P. L. Gorski, L. L. Iacono, H. V. Nguyen, and D. B. Torkian,
“Service security revisited,” in 2014 IEEE International Conference
on Services Computing, June 2014, pp. 464–471. [Online]. Available:
https://doi.org/10.1109/SCC.2014.68

[15] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information
sources on code security,” in 2016 IEEE Symposium on Security
and Privacy (SP), May 2016, pp. 289–305. [Online]. Available:
https://doi.org/10.1109/SP.2016.25

[16] S. Türpe, “Idea: Usable platforms for secure programming – mining
unix for insight and guidelines,” in Engineering Secure Software and
Systems: 8th International Symposium, ESSoS 2016, London, UK,
April 6-8, 2016. Proceedings, ser. LNCS, J. Caballero, E. Bodden, and
E. Athanasopoulos, Eds., vol. 9639. Cham: Springer International
Publishing, Apr. 2016, pp. 207–215. [Online]. Available: http:
//testlab.sit.fraunhofer.de/downloads/Publications/tuerpe2016idea.pdf

[17] J. Bloch, “A brief, opinionated history of the API,” Talk, 2014,
workshop on Evaluation and Usability of Programming Languages
and Tools (PLATEAU). [Online]. Available: http://2014.splashcon.org/
event/plateau2014-invited-speaker-josh-bloch

[18] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. ”big”’ web services: Making the right architectural decision,” in
Proceedings of the 17th International Conference on World Wide Web,
ser. WWW ’08. New York, NY, USA: ACM, 2008, pp. 805–814.
[Online]. Available: http://doi.acm.org/10.1145/1367497.1367606

[19] J. Stylos and B. Myers, “Mapping the space of api design decisions,”
in IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC 2007), Sept 2007, pp. 50–60. [Online]. Available:
https://doi.org/10.1109/VLHCC.2007.44

[20] R. T. Fielding, “REST: architectural styles and the design of network-
based software architectures,” Doctoral dissertation, University of
California, Irvine, 2000. [Online]. Available: http://www.ics.uci.edu/
∼fielding/pubs/dissertation/top.htm

[21] M. K. Bond, “Understanding security APIs,” Doctoral dissertation,
University of Cambridge, UK, 2004. [Online]. Available: https:
//www.cl.cam.ac.uk/∼mkb23/research/Thesis.pdf

[22] R. Focardi, F. L. Luccio, and G. Steel, An Introduction to Security API
Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 35–
65. [Online]. Available: http://doi.org/10.1007/978-3-642-23082-0 2

[23] G. Steel, Formal Analysis of Security APIs. Boston, MA: Springer US,
2011, pp. 492–494. [Online]. Available: http://doi.org/10.1007/978-1-
4419-5906-5 873

[24] P. L. Gorski and L. Lo Iacono, “Towards the usability evaluation
of security apis,” in Tenth International Symposium on Human
Aspects of Information Security & Assurance, HAISA 2016, Frankfurt,
Germany, July 19-21, 2016, Proceedings., 2016, pp. 252–265. [Online].
Available: http://www.cscan.org/openaccess/?paperid=287

[25] O. S. Architecture. Security architecture patterns. [Online]. Available:
http://www.opensecurityarchitecture.org/cms/library/patternlandscape

[26] E. Fernandez-Buglioni, Security Patterns in Practice: Designing Secure
Architectures Using Software Patterns. John Wiley & Sons, Apr. 2013.

[27] B. Blakley and C. Heath, “Security Design Patterns,” The Open
Group, Tech. Rep., 2004. [Online]. Available: http://pubs.opengroup.
org/onlinepubs/9299969899/toc.pdf

[28] J. Yoder and J. Barcalow, “Architectural patterns for enabling applica-
tion security,” in 4th Conference on Patterns Language of Programming
(PLoP’97)., 1997.

[29] O. S. Architecture. Control catalog. [Online]. Available: http:
//www.opensecurityarchitecture.org/cms/library/0802control-catalogue

[30] S. Cass. The 2016 top programming languages - c is no. 1, but big
data is still the big winner. [Online]. Available: http://spectrum.ieee.
org/computing/software/the-2016-top-programming-languages

[31] Data & Application Security Group. Research artifacts. [Online].
Available: https://das.th-koeln.de/artifacts

[32] M. P. Robillard, “What makes apis hard to learn? answers from
developers,” IEEE Software, vol. 26, no. 6, pp. 27–34, Nov 2009.
[Online]. Available: https://doi.org/10.1109/MS.2009.193

[33] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through
hoops: Why do java developers struggle with cryptography apis?”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: ACM, 2016,
pp. 935–946. [Online]. Available: http://doi.acm.org/10.1145/2884781.
2884790

[34] J. Stylos and S. Clarke, “Usability implications of requiring parameters
in objects’ constructors,” in 29th International Conference on Software
Engineering (ICSE’07), May 2007, pp. 529–539. [Online]. Available:
http://doi.acm.org/10.1109/ICSE.2007.92

[35] S. Clarke, “How usable are your APIs?” in Making software: what
really works, and why we believe it, 1st ed., ser. Theory in practice,
A. Oram and G. Wilson, Eds. O’Reilly, pp. 545 – 565.

[36] AngularJS. AngularJS: Developer guide: Security. [Online]. Available:
https://docs.angularjs.org/guide/security

[37] J. Nielsen and R. Molich, “Heuristic Evaluation of User Interfaces,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’90. New York, NY, USA: ACM, 1990,
pp. 249–256. [Online]. Available: http://doi.acm.org/10.1145/97243.
97281

[38] J. Nielsen, Usability Engineering. Morgan Kaufmann, 1994.

APPENDIX: QUESTIONNAIRE

Welcome to our survey! We are researchers from the
Cologne University of Applied Sciences (Germany) and our
goal is to improve the usability of Security APIs. The purpose
of this survey is to understand what developers do require
to integrate security functionalities into their software. The

10

https://doi.org/10.1109/MSP.2016.102
https://doi.org/10.1145/304851.304859
http://doi.acm.org/10.1145/322796.322806
http://dl.acm.org/citation.cfm?id=1251421.1251435
https://doi.org/10.1109/MSP.2016.111
https://doi.org/10.1109/SecDev.2016.013
http://doi.acm.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2508859.2516655
http://doi.acm.org/10.1145/2382196.2382204
http://doi.acm.org/10.1145/2382196.2382238
https://doi.org/10.1109/SCC.2014.68
https://doi.org/10.1109/SP.2016.25
http://testlab.sit.fraunhofer.de/downloads/Publications/tuerpe2016idea.pdf
http://testlab.sit.fraunhofer.de/downloads/Publications/tuerpe2016idea.pdf
http://2014.splashcon.org/event/plateau2014-invited-speaker-josh-bloch
http://2014.splashcon.org/event/plateau2014-invited-speaker-josh-bloch
http://doi.acm.org/10.1145/1367497.1367606
https://doi.org/10.1109/VLHCC.2007.44
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.cl.cam.ac.uk/~mkb23/research/Thesis.pdf
https://www.cl.cam.ac.uk/~mkb23/research/Thesis.pdf
http://doi.org/10.1007/978-3-642-23082-0_2
http://doi.org/10.1007/978-1-4419-5906-5_873
http://doi.org/10.1007/978-1-4419-5906-5_873
http://www.cscan.org/openaccess/?paperid=287
http://www.opensecurityarchitecture.org/cms/library/patternlandscape
http://pubs.opengroup.org/onlinepubs/9299969899/toc.pdf
http://pubs.opengroup.org/onlinepubs/9299969899/toc.pdf
http://www.opensecurityarchitecture.org/cms/library/0802control-catalogue
http://www.opensecurityarchitecture.org/cms/library/0802control-catalogue
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
https://das.th-koeln.de/artifacts
https://doi.org/10.1109/MS.2009.193
http://doi.acm.org/10.1145/2884781.2884790
http://doi.acm.org/10.1145/2884781.2884790
http://doi.acm.org/10.1109/ICSE.2007.92
https://docs.angularjs.org/guide/security
http://doi.acm.org/10.1145/97243.97281
http://doi.acm.org/10.1145/97243.97281

survey consists of 20 questions which will be answered in
approximately 15 minutes. A note on privacy: This survey
is anonymous. The record of your survey responses does
not contain any identifying information about you, unless a
specific survey question explicitly asked for it. If you have
any question, remark or comment about this survey, please
contact Peter Gorski (peter.gorski@th-koeln.de).

Q1: What country do you live in? (dropdown list)
Q2: What is your current occupation? (multiple choice):

(1) Freelance developer (2) Industrial developer (3)
Industrial researcher (4) Academic researcher (5)
Graduate student (6) Undergraduate student (7) Prefer
not to answer (8) Other (free text)

Q3: How many years of development experience do you
have? (radio list): (1) More than 10 years (2) 5-10
years (3) 2-5 years (4) 1-2 years (5) Less than 1 year
(6) Prefer not to answer

Q4: What type(s) of software do you develop? (multiple
choice): (1) Web Applications (2) Mobile Applica-
tions (3) Desktop Applications (4) Embedded Ap-
plications (5) Enterprise Applications (6) Other (free
text)

Q5: What programming language(s) do you use primar-
ily? (multiple choice): (1) C (2) Java (3) Python (4)
C++ (5) R (6) C# (7) PHP (8) JavaScript (9) Ruby
(10) Go (11) Other (free text)

Q6: Have IT security topics been part of your educational
background? (yes/no)

If the answer is yes:
a) What aspects of IT security have been part

of your education? (free text)
Q7: How often do you need to integrate security mech-

anisms in your code? (radio list): (1) Frequently - I
use security mechanisms in more than 66% of my
development tasks (2) Occasionally - I use security
mechanisms in more than 33% but less than 66%
of my development tasks (3) Rarely - I use security
mechanisms in less than 33% of my development
tasks (4) Never - I never use security mechanisms
in any of my development tasks

Q8: Who is, in your opinion, responsible for integrating
security mechanisms in software systems? (free text)

Q9: Which security mechanisms did you implement in
your code? (free text)

Q10: What are the most common security-related functions
you use in your code? Don’t rank functions you never
used. Use “Other (1)” to “Other (5)” for missing
functions as needed. (ranking): (1) API keys (2) Au-
thorization / Authentication (3) Encryption / Decryp-
tion (4) Fraud prevention (5) Input validation (6) Key
management and generation (7) Secure connections
and communications (8) Signature generation and
validation (9) Store and authenticate user names and
passwords (10) Transfer files securely (11 - 15) Other
(free text)

Q11: Assume your current task is to integrate a security
mechanism in your code (e.g. secure communication,
user login or input validation). Please list the first
work steps you would do. (multiple free text): (1) 1.
step (free text) (2) 2. step (free text) (3) 3. step (free
text) (4) 4. step (free text) (5) 5. step (free text)

Q12: What is, in your opinion, the difference between
security-related programming tasks and non-security
related tasks? (free text)

Q13: Did you ever had problems implementing security
mechanisms or integrating them into your code?
(yes/no)

If the answer is yes:
a) What were those problems? (free text)
b) What do you consider as the root cause for

these problems? (free text)
Q14: Which level of abstraction should a security API

offer to meet your development needs? (radio list):
(1) High - It should be a high level API. I am not
interested in implementation details. I just want the
security to work. (2) Medium - An API should offer
me low as well as high levels of implementation
details and opportunities, depending on my actual
programming task. (3) Low - It should be a low
level API. I want to determine implementation details
myself. (4) Other (free text)

Q15: Is there any API, tool or information resource you
would recommend a colleague or friend who strug-
gles with implementing a security mechanism? (free
text)

Q16: What do you think is more appropriate for your
needs? Security APIs can be grouped into crypto-
graphic APIs (e.g. encryption algorithms, hash func-
tions and digital signatures) and security controls
APIs (e.g. security protocols and mechanisms for
authorization or authentication). (radio list): (1) Cryp-
tographic APIs (2) Security controls APIs (3) Both
(4) None

Q17: Do you have further comments, thoughts or sugges-
tions? (free text)

Thank you for taking part in the survey! If you like to receive
the study results and/or to participate in future studies then
please provide your email address. This data will be stored
seperately from the survey and will not be published.

Q18: Check any that apply (multiple choice): (1) I would
like to receive the study results (2) You may consider
me for future studies

Q19: Please enter your email address (free text)

11

	Introduction
	Foundations
	Classification of Security APIs
	Methodology
	Classification

	Performed Studies
	Popular Programming Environments Analysis
	Questionnaire-based Online Study
	Survey Design
	Survey Respondents

	Results and Discussion
	Conclusion and Outlook
	References

