ldentifying Cross-origin Resource
Status Using Application Cache

2015 Network and Distributed System Security Symposium

Sangho Lee, Hyungsub Kim, and Jong Kim
POSTECH, Korea

February 9, 2015

POSTELCH

Web, HTML5, and Threats

*Web and HTML5

* The most popular distributed application platform
* Rich functionality introduced by HTML5

* Security and privacy threats
* Popularity attracts a lot of adversaries.
* Rich functionality opens security and privacy holes.

* Discovering unrevealed threats of the Web and
HTMLS5 is important.

POSTELCH

HTML5 Application Cache (AppCache)

 Enabling technology to offline web applications
» Specify resources to be cached in a web browser
* Allow fast and offline access to the cached resources

* Potential threats of AppCache

* Arbitrary cross-origin resources are cacheable.
* Neither server- nor client-side control
* Error handing can breach user privacy.
 Recognize whether a user can cache specific resources

POSTELCH

Motivation and Goal

* Motivation

* In-depth security analysis of new web functionalities
IS necessary.

* Security analysis of AppCache is insufficient despite
its wide deployment.

* Research goal

* Analyze and solve security problems of AppCache
* Discover security problems of AppCache

* Suggest an effective countermeasure against the
security problems

POSTELCH

Contents

* AppCache Details
* Declaration

* Procedure and Failure
* Non-cacheable URLs

POSTELCH

AppCache Declaration

<html

manifest="example.appcache”>

</html>

HTML document declaring AppCache

POSTELCH

NDSS 2015

CACHE MANIFEST

CACHE:

/logo.png
https://example.cdn.com/
external.jpg

NETWORK:

*

FALLBACK:

[[offline.html

AppCache manifest

AppCache Procedure

web browser sitel.com site2.com

o

Visit a web page declaring AppCache

‘Fetch and decode the manifest

:Download the resources listed in the mgnifest

Re-fetch the manifest to check changes

A 4 v v

POSTECH NDSS 2015 7

When Does AppCache Fail?

Web browser sitel.com site2.com

VI,Any failure rolls back AppCache to maintain
content consistency.

Fetch and decode the manifest
invalid or erroneous manifest
X:Download the resources listed in the mgnifest

N

Non-cacheable resources

¥ Re-fetch the manifest to check changes |
v Changed manifest v v

POSTELCH NDSS 2015 8

Non-cacheable URLs

* Invalid URL

* No content to be cached

* Dynamic URL
 Caching dynamic content is less meaningful.
» Cache-Control: no-store or no Content-Length

« URL with redirections
* Final URL can be dynamically changed.

* Violation of the same-origin policy is possible.

* Refer a cached resource with the URL specified in a
manifest

POSTELCH

Contents

* URL Status Identification
* Basics and Advantages
 Attack Procedure
» Concurrent Attack
* Application: Determining Login Status

POSTELCH

URL Status Identification

* Basics
* Specify a target URL in an AppCache manifest
* Check whether AppCache succeeds or fails

* Advantages
 Deterministic identification: Don’t measure timing
* Identification of URL redirections
* Scriptless attack

POSTELCH

Attack Procedure:; Cacheable URL

web browser
. Q ‘ \ =N

Visit a web page declaring AppCache

attack.com target.com

‘Fetch and decode the manifest

A 4

Record browser

Refresh | Re-fetch the manifest to check changes

info.
Download the target resource
‘Re-fetch the manifest to check changes | |dentify
o] sSUccess V

(optional)

/

Page refreshing lets AppCache
check the manifest’s changes.

\ 4

POSTELCH

NDSS 2015

12

Attack Procedure: Non-cacheable URL

web browser attack.com target.com

W

IRecord browser

A browser don't re-fetch the manifest when |nfo.
the target URL is non-cacheable.

>

Re-fetch the ma&ifest to check changes | Identify
: ” failure

Refresh |Visit a web page declaring AppCache
(option{™—

Page refreshing initiates an AppCache v
procedure from the beginning.

rPOSTEPCH NDSS 2015 13

Concurrent Attack

Concurrently inspecting multiple target URLs with
multiple iframe tags, web pages, & manifests

<html> <htm] CACHE MANIFEST

<iframe manifest="manifest.php? CACHE:

src="attack_each.php? 7.target=http://target1.com”>——-’http://targetl-com

target=http://targeti.com”/ | </html> NETWORK:

</iframe> *

<iframe <html CACHE MANIFEST

src="attack_each.php? manifest="manifest.php? CACHE:

ta.rget=http://targetz.com’L-a»target:http://targetz.com”>_ ttp://target2.com

</iframe> </html> NETWORK:

. N

</html> :
attach_all.php attach_each.php manifest.php

POSTELCH

Application: Determining Login Status

Determine login status by inspecting URLs with
conditional redirections or errors

‘amazon.com/gp/yourstore/home — amazon.com/ap/signin?.. |
- tumblr.com/dashboard — tumblr.com/login?redirect_to=/dashboard
. youtube.com/feed/subscriptions — accounts.google.com/ServicelLogin?...

bitbucket.org/account/user/<user-id> |
. github.com/<user-id>/<repository-name>/settings
- <blog-id>.wordpress.com/wp-admin ’

Private URLs returning errors to unauthorized browsers

POSTELCH

Contents

* Discussion
* Problematic Countermeasures
» Countermeasure: Cache-Origin
* Service Worker

e Conclusion

POSTELCH

Problematic Countermeasures

* Ask user permission for AppCache
* Vulnerable to careless users

* Always/never check changes in manifests

* Vulnerable to page refreshing attacks
 Content inconsistency problem

* Eliminate web pages having conditional
behaviors

* Detection and modification of all vulnerable web
pages are challenging.

POSTELCH

Countermeasure: Cache-Origin

* Attach a Cache-Origin header when requesting
resources during AppCache
* Contain the manifest’s origin

* Notify a web application of who initiate an AppCache
procedure

« Resemble the Origin header of CORS

* Abort suspicious AppCache procedures by
returning no-store or error code
 Cache sensitive resources
* Be initiated by doubtful servers

POSTELCH

Service Worker

* Provide scriptable caches as an alternative to
AppCache

e Intercept and respond to network requests from
certain web pages

* Have the same policy to handle URL
redirections and errors with AppCache
* Also vulnerable to our attacks

POSTELCH

Conclusion

*We introduced a new web privacy attack using
HTML5 AppCache.
* Identify the status of cross-origin resources
* Do not rely on client-side scripts
* Can attack major web browsers

*We suggested a Cache-Origin request-header
field to mitigate our attacks.
« Minor variation of the Origin header
* Easy deployment

POSTELCH

