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Problem Statement

• The issues in container security

• Weak isolation 

• Heavy overhead

• Large TCB in the highest privilege



Security Insight

• Isolation between containers in both userspace and kernel space

• Minimizing the highest-privilege code

• Scalable security features



ARM Confidential Compute Architecture (CCA)

• Confidential computing introduced in ARMv9-A

• Four physical address spaces (PAS): 

• Normal PAS=>Normal World

• Secure PAS =>Secure World 

• Realm PAS =>Realm World (New added in CCA)

• Root PAS =>Root World (EL3)

• Granule Protection Check (GPC)

• Granule Protection Table (GPT)

• GPTBR_EL3



Granule Protection Table

• Fine-grained memory protection by defining access permissions for 

physical memory granules 

• Maintained by firmware in EL3

• The GPT check occurs after the MMU check, and its result takes 

precedence over the MMU



Challenge

• C1: Containers are not really suitable for deployment in Realm World

• (1) Multiple containers in one realm OS • (2) One container in one realm OS

Sharing OS leads to weak isolation Mirroring hypervisor-based solutions leads to
heavy overhead and large TCB



Challenge

• C2: How to achieve tamper-proof protection of the TCB when only a 
small portion of the TCB is running with the highest privilege

• (1) Deploy TCB in Secure or Realm World • (2) Deploy TCB in Normal World by pagetable control

Frequent cross-world interaction and large TCB Frequent flush TLB



Threat Model

• System is initially benign but may be compromised after system boot

• Container, OS, hypervisor, SPM, RMM in Normal/Secure/Realm World 

may be compromised

• Physical/Side-channel/denial-of-service attacks are out of scope

• Partial DoS can be considered, e.g., memory-related DoS



RContainer Architecture

• New secure container architecure protecting 

containers on OS while enforcing strong isolation 

among containers with minimal TCB

• A mini-OS in EL1 to deprivilege OS

• Shim-style isolation (multiple con-shims) to 

limit the impact of containers on the kernel



Mini-OS

• A compact and basic OS running in EL1 alongside the deprivileged OS

• Mixed-pagetable for tamper-proof protection

• Memory management and control flow protection



Mixed-pagetable

• Same MMU pagetable but different GPTs: Priv-GPT and OS-GPT



Security Capabilities of Mini-OS

• Memory management

• Maintenance of GPTs at the software level

• Lightweight memory allocator

• Control flow protection

• Exception interposing

• Responsible for switching between OS and different containers



Shim-style Isolation

• Isolation between containers in both userspace and kernel space

• Observation:

• While most attacks originate in the control plane, they ultimately impact the data plane

• The data plane requires stronger isolation for containers

• Containers are instantiated within the kernel’s data plane through multiple com-shims

• Kernel boundary points, e.g., system call entry/exit point

• Container-specific private data structures, e.g., task_struct

• Shared global variables, e.g., nr_files



Shim-style Isolation

• Each com-shim has a separate shim-GPT

• Each con-shim/container is limited to accessing only its own memory

Self
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Other system software



Container Lifecycle Protection

• Boot integrity

• The deprivileged OS is loaded and measured by the EL3 secure monitor, then 

boots normally until launching the mini-OS

• The mini-OS allocates memory for the con-shim and records the system call 

stack, shared memory, and private data

• Create a shim-GPT and set these memory to be inaccessible within the OS-GPT



Container Lifecycle Protection

• Task

• When creating tasks, mini-OS validates and logs the addresses of the new task 

structure and pagetable

• When terminating tasks, mini-OS removes the task structure from the container’s 

con-shim and clears the corresponding physical memory



Container Lifecycle Protection

• Memory—pagefault handling

Fast pagefault workflow Slow pagefault workflow



Container Lifecycle Protection

• I/O

• Disk I/O relies on encryption and decryption

• A global SMMU-GPT for the deprivileged OS defaults all memory attributes to No-

access, preventing arbitrary DMA memory access

• Network I/O relies on secure network transmission protocols

• IPC

• Shared memory is allocated and tracked by the mini-OS

• File description related IPC is encrypted by the mini-OS



Implementation

• FVP prototype for security evaluation

• ARM64v9.4-A Fixed Virtual Platform

• Linux 6.2-rc2, Trusted Firmware-A v2.8.0, Docker-1.5

• Hardware prototype for performance evaluation

• Firefly-RK3399 ARMv8 SoC development board

• Linux-firefly-4.4.149, Trusted Firmware-A-1.3, Docker 25.0.0-beta.1



Security Evaluation

• Simulated and evaluated 30 CVEs

• Most attacks occur at runtime



Native ATF Analysis

• Security functions should belong to 

runtime code

• The runtime code proportion in the native 

ATF is relatively small

• About 2.7% (11k SLoC/421k SLoC)



TCB Complexity

• RContainer introduces an additional 2,647 SLoC of TCB

• 133 SLoC in EL0

• 2,384 SLoC in EL1

• 130 SLoC in EL3 (ATF)

• TCB in EL3 comparison with Shelter

• 130 SLoC (basically stable) vs 2k SLoC (continuously growing)

• Even with new security features, RContainer won't greatly increase EL3's runtime TCB



Application Workloads

• ＜10% overhead on real-world application workloads

• Much better than virtualization solutions

• Overhead on Hackbench is the worst in RContainer



Performance Comparison with Shelter

• The average overhead in RContainer is reduced by 5.7% compared to Shelter



Container Lifecycle Cost

• ＜10% overhead on busybox:1.36.1-glibc



Concurrent Overhead

• ＜1% overhead on kernel build (Linux-4.19.309) with allnoconfig

number



Conclusion

• A new secure container architecture via extending ARM CCA

• Protect containers on untrusted OS

• Enforce strong isolation among containers both in userspace and kernel space

• Lower performance overhead without container modification

• Minimal TCB in highest privilege/exception level



THANKS!

Q&A
Contact us: zhouqihang@iie.ac.cn
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