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• Compartmentalization
• Each SparkContext on untrusted data user’s side and trusted point

• Trusted point and distributed nodes protected by AMD SEV-SNP

• Pattern-matching based policy check
• Policy language defined on top of regular expression

• Spark plans matched against the policies based on Regex matching
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• Security Evaluation
• Enforced 7 custom-defined policies and checked correctness 

on 22 queries from TPC-H benchmark

• Example Policies
I. Personally identifiable information (e.g., name) must not be revealed
II. Private information (e.g., account balance) must not be obtained after filtering on PII
III. Sensitive identifiers (i.e., primary keys) can only be used for joining tables 
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• Performance Evaluation
• TPC-H, BDB benchmark and Spark ML applications

• 35% latency & 25% throughput overheads on average
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• We propose a new secure data 

analytics framework on Spark.

• Our framework can be used for 

data owners to share their data 

without concerning the 

regulatory violation.

Spark Application

apache.spark

trusted relay

Attested nodes

Confidential Computing

S1

S3

•

•Isolated

Execution

Pattern-matching  

Policy check
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Thank you


