
Secure Data Analytics in Apache Spark

with Fine-grained Policy Enforcement and Isolated Execution

Byeongwook Kim*, Jaewon Hur*,
Adil Ahmad, and Byoungyoung Lee

1

Cloud-based Spark: Collaborative Big Data Analytics

2

Cloud-based Spark: Collaborative Big Data Analytics

2

• Cloud based Spark platform

Tempting approach for

Collaborative big data analytics

Cloud Providers

Cloud-based Spark: Collaborative Big Data Analytics

2

• Cloud based Spark platform

Data Owners Tempting approach for

Collaborative big data analytics

• Data owners

Easy deployment and management

Cloud Providers

Cloud-based Spark: Collaborative Big Data Analytics

2

• Cloud based Spark platform

Data Owners

Data Users

Tempting approach for

Collaborative big data analytics

• Data owners

Easy deployment and management

• Data users

Easy access and data analysisCloud Providers

Cloud Providers

Cloud-based Spark: Collaborative Big Data Analytics

3

• Cloud based Spark platform

Data Owners

Data Users

Tempting approach for

Collaborative big data analytics

• Data owners

Easy deployment and management

• Data users

Easy access and data analysis

Cloud Providers

Cloud-based Spark: Collaborative Big Data Analytics

3

• Cloud based Spark platform

Data Owners

Data Users

Tempting approach for

Collaborative big data analytics

• Data owners

Easy deployment and management

• Data users

Easy access and data analysis

Cloud Providers

Cloud-based Spark: Collaborative Big Data Analytics

3

• Cloud based Spark platform

Data Owners

Data Users

Tempting approach for

Collaborative big data analytics

• Data owners

Easy deployment and management

• Data users

Easy access and data analysis

Cloud Providers

Problem: Possible Data Breach while Analysis

4

Data Owners

Data Users

• Risk of violating

data owner’s expectation

Cloud Providers

Problem: Possible Data Breach while Analysis

5

Data Owners

Data Users

• Risk of violating

data owner’s expectation

Untrusted cloud providers

Problem: Possible Data Breach while Analysis

6

Untrusted cloud providers

Untrusted data users

Data Owners

Data Users

• Risk of violating

data owner’s expectation

Cloud Providers

Problem: Possible Data Breach while Analysis

6

Untrusted cloud providers

Untrusted data users

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Cloud Providers

Problem: Possible Data Breach while Analysis

6

Untrusted cloud providers

Untrusted data users

Clinical data
• genome, medication history, …

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Financial data
• Credit history, transactions, …

Cloud Providers

Problem: Possible Data Breach while Analysis

6

Untrusted cloud providers

Untrusted data users

Clinical data
• genome, medication history, …

GDPR, CCPA, HIPAA

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Financial data
• Credit history, transactions, …

Cloud Providers

Problem: Possible Data Breach while Analysis

7

Untrusted cloud providers

Untrusted data users

Clinical data
• genome, medication history, …

GDPR, CCPA, HIPAA

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Financial data
• Credit history, transactions, …

Cloud Providers

Problem: Possible Data Breach while Analysis

7

Untrusted cloud providers

Untrusted data users

Clinical data
• genome, medication history, …

GDPR, CCPA, HIPAA

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Financial data
• Credit history, transactions, …

Cloud Providers

Problem: Possible Data Breach while Analysis

7

Untrusted cloud providers

Untrusted data users

Clinical data
• genome, medication history, …

GDPR, CCPA, HIPAA

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Financial data
• Credit history, transactions, …

Cloud Providers

Problem: Possible Data Breach while Analysis

7

Untrusted cloud providers

Untrusted data users

Clinical data
• genome, medication history, …

GDPR, CCPA, HIPAA

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Financial data
• Credit history, transactions, …

Cloud Providers

Problem: Possible Data Breach while Analysis

8

Untrusted cloud providers

Untrusted data users

Clinical data
• genome, medication history, …

GDPR, CCPA, HIPAA

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Financial data
• Credit history, transactions, …

Cloud Providers

Problem: Possible Data Breach while Analysis

8

Untrusted cloud providers

Untrusted data users

Clinical data
• genome, medication history, …

GDPR, CCPA, HIPAA

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Financial data
• Credit history, transactions, …

Cloud Providers

Problem: Possible Data Breach while Analysis

8

Untrusted cloud providers

Untrusted data users

Clinical data
• genome, medication history, …

GDPR, CCPA, HIPAA

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Financial data
• Credit history, transactions, …

Cloud Providers

Problem: Possible Data Breach while Analysis

9

Untrusted cloud providers

Untrusted data users

Clinical data
• genome, medication history, …

GDPR, CCPA, HIPAA

Data Owners

Data Users

• Risk of violating

data owner’s expectation

• Data under privacy regulations

Financial data
• Credit history, transactions, …

Cloud Providers

What We Want

Allow the data owners to avoid regulatory
violations while sharing their data

So, we propose a New Architecture of

Cloud-based Spark for Secure Data Analytics

10

Rearchitecting Spark for Secure Data Analytics

11

Cloud Providers

Data OwnersData Users

Rearchitecting Spark for Secure Data Analytics

11

• Usability: We keep data to be analyzed as before

Cloud Providers

Data OwnersData Users

dataAnalysis result

Rearchitecting Spark for Secure Data Analytics

12

• Usability: We keep data to be analyzed as before

• Security: but, prevent data breach or violating data policies

Cloud Providers

Data OwnersData Users

No data breach

or policy violation

data policies

defined by data owners

Security Requirements for Protecting Data

13

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

Data analysis procedure of Spark application

• User’s code interacting with Spark Libraries

Invoke
functions

Security Requirements for Protecting Data

13

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

Data analysis procedure of Spark application

• User’s code interacting with Spark Libraries

For simplifying distributed computation

Invoke
functions

Security Requirements for Protecting Data

14

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

diag.

patients
filter

join

kmeans

project

Spark
plan

Data analysis procedure of Spark application

• User’s code interacting with Spark Libraries

For simplifying distributed computation

1. Spark plan is internally constructed by the

library.

Security Requirements for Protecting Data

14

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

diag.

patients
filter

join

kmeans

project

Spark
plan

Task

Data analysis procedure of Spark application

• User’s code interacting with Spark Libraries

For simplifying distributed computation

1. Spark plan is internally constructed by the

library.

2. Tasks are constructed from the plan and

executed on the data in distributed nodes.

Security Requirements for Protecting Data

14

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

diag.

patients
filter

join

kmeans

project

Spark
plan

Task

Data analysis procedure of Spark application

• User’s code interacting with Spark Libraries

For simplifying distributed computation

1. Spark plan is internally constructed by the

library.

2. Tasks are constructed from the plan and

executed on the data in distributed nodes.

3. Analysis result is returned.

Security Requirements for Protecting Data

15

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

diag.

patients
filter

join

kmeans

project

Spark
plan

Task

1
1. Ensure the confidentiality and integrity

of the entire data analysis pipeline

Security Requirements for Protecting Data

16

2. Ensure the Spark plans by data users

respect the owner-defined policies

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

diag.

patients
filter

join

kmeans

project

Spark
plan

Task

1
2

1. Ensure the confidentiality and integrity

of the entire data analysis pipeline

Attack 1. Compromising Data Analysis Pipeline

17

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

• Spark application is fully controlled by

data users and cloud providers

diag.

patients

join

kmeans

project

Spark
plan

Task

Attack 1. Compromising Data Analysis Pipeline

18

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

• Spark application is fully controlled by

data users and cloud providers

diag.

patients

join

kmeans

project

Spark
plan

Task

Possible Attack Vectors, when

Data Users and Cloud Providers are compromised

Data Users

Cloud Providers

Attack 1. Compromising Data Analysis Pipeline

19

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

diag.

patients

join

kmeans

project

Spark
plan

Task

1

1. Compromising Spark library
Data Users

Cloud Providers

• Spark application is fully controlled by

data users and cloud providers

Possible Attack Vectors, when

Data Users and Cloud Providers are compromised

Attack 1. Compromising Data Analysis Pipeline

20

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

diag.

patients

join

kmeans

project

Spark
plan

Task

1

1. Compromising Spark library

2. Compromising the distributed nodesData Users

Cloud Providers

• Spark application is fully controlled by

data users and cloud providers

Possible Attack Vectors, when

Data Users and Cloud Providers are compromised

2

Defense 1. Securing the Data Analysis Pipeline

21

• Compartmentalization

Spark Application

object doSpark {
def main() {

val spark = Sparkon

Defense 1. Securing the Data Analysis Pipeline

21

• Compartmentalization

Spark Application

object doSpark {
def main() {

val spark = Sparkon

Defense 1. Securing the Data Analysis Pipeline

21

• Compartmentalization

Spark Application

apache.spark

object doSpark {
def main() {

val spark = Sparkon

Defense 1. Securing the Data Analysis Pipeline

21

• Compartmentalization

Spark Application

apache.spark

Compromise

object doSpark {
def main() {

val spark = Sparkon

Defense 1. Securing the Data Analysis Pipeline

22

• Compartmentalization

Spark Application

apache.spark

Separate the address space and isolate

Spark core components from user’s codeCompromise

trusted point

object doSpark {
def main() {

val spark = Sparkon

Defense 1. Securing the Data Analysis Pipeline

22

• Compartmentalization

Spark Application

apache.spark

Separate the address space and isolate

Spark core components from user’s code

Enforce the Spark plans to be relayed to a

trusted point to be actually executed on data

Compromise

trusted point

object doSpark {
def main() {

val spark = Sparkon

Defense 1. Securing the Data Analysis Pipeline

23

• Compartmentalization

• Distributed Confidential Computing
Entire Spark plan execution is protected by

the confidential computing environment

Spark Application

apache.spark

trusted point

Attested nodes

Confidential Computing

Separate the address space and isolate

Spark core components from user’s code

Enforce the Spark plans to be relayed to a

trusted point to be actually executed on data

Compromise

Attack 2. Building Malicious Spark Plan

24

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

diag.

patients

join

kmeans

project

Spark
plan

Task

Possible Attack Vectors, when

Data Users and Cloud Providers are compromised

1. Compromising Spark library

2. Compromising the distributed nodes

• Spark application is fully controlled by

data users and cloud providers

Attack 2. Building Malicious Spark Plan

25

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

diag.

patients

join

kmeans

project

Spark
plan

Task
Data Users

Possible Attack Vectors, when

Data Users and Cloud Providers are compromised

1. Compromising Spark library

2. Compromising the distributed nodes

3. Building a policy violating Spark plan

• Spark application is fully controlled by

data users and cloud providers

filter

Defense 2. Enforcing Policy on Spark Plans

26

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

• New policy check mechanism

based on pattern-matching

diag.

patients
filter

join

kmeans

project

Spark
plan

Task

Defense 2. Enforcing Policy on Spark Plans

26

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

• New policy check mechanism

based on pattern-matching

• Provide a policy language for data owners

to define their expectations into policies

diag.

patients
filter

join

kmeans

project

Spark
plan

Task

Motivating Scenario: Targeted Clinical Trials

27

• Hospital wants to share medical dataset to pharmaceutical company

Motivating Scenario: Targeted Clinical Trials

27

• Hospital wants to share medical dataset to pharmaceutical company

• Goal of pharmaceutical company (i.e., data user)
• Get the Name and Address of patients for their targeted drug testing

Motivating Scenario: Targeted Clinical Trials

27

• Hospital wants to share medical dataset to pharmaceutical company

• Goal of pharmaceutical company (i.e., data user)
• Get the Name and Address of patients for their targeted drug testing

• Expectation of hospital (i.e., data owner)
• who has been diagnosed with which disease should not be revealed

Motivating Scenario: Targeted Clinical Trials

28

• Benign Spark plan

diag.

patients

Join (id)

Kmeans (heart rate)

project (name)

Benign Spark plan

Motivating Scenario: Targeted Clinical Trials

29

• Policy violating Spark plan
• Filter diag on disease (== cancer) first, join, and then project name

diag.

patients

filter
(disease == cancer)

Join (id)

Kmeans (heart rate)

project (name)

Policy breaking plan

Motivating Scenario: Targeted Clinical Trials

29

• Policy violating Spark plan
• Filter diag on disease (== cancer) first, join, and then project name

diag.

patients

filter
(disease == cancer)

Join (id)

Kmeans (heart rate)

project (name)

Exposing who has been

diagnosed with cancer!

Policy breaking plan

Motivating Scenario: Targeted Clinical Trials

29

• Policy violating Spark plan
• Filter diag on disease (== cancer) first, join, and then project name

diag.

patients

filter
(disease == cancer)

Join (id)

Kmeans (heart rate)

project (name)

Exposing who has been

diagnosed with cancer!

For table diag.

Disallow
•*s3•*s1•*|•*s1•*s3•*

S3 = <filter, {disease}>
S1 = <join, {id}>

Owner defined policyPolicy breaking plan

Policy preventing this case

Motivating Scenario: Targeted Clinical Trials

29

• Policy violating Spark plan
• Filter diag on disease (== cancer) first, join, and then project name

diag.

patients

filter
(disease == cancer)

Join (id)

Kmeans (heart rate)

project (name)

Exposing who has been

diagnosed with cancer!

For table diag.

Disallow
•*s3•*s1•*|•*s1•*s3•*

S3 = <filter, {disease}>
S1 = <join, {id}>

Owner defined policyPolicy breaking plan

diag.

filter

join

kmeans

project

S1

S3

•

•

Pattern-matching

Policy preventing this case

Motivating Scenario: Targeted Clinical Trials

29

• Policy violating Spark plan
• Filter diag on disease (== cancer) first, join, and then project name

diag.

patients

filter
(disease == cancer)

Join (id)

Kmeans (heart rate)

project (name)

Exposing who has been

diagnosed with cancer!

For table diag.

Disallow
•*s3•*s1•*|•*s1•*s3•*

S3 = <filter, {disease}>
S1 = <join, {id}>

Owner defined policyPolicy breaking plan

diag.

filter

join

kmeans

project

S1

S3

•

•

Disallow

Pattern-matching

Policy preventing this case

Security Requirements for Protecting Data

30

✓ Ensure the Spark plans by data users

respect the owner-defined policies

Spark Application
object doSpark {
def main() {
val spark = SparkSession

.builder()
val slices = 2
val x = random() * 2 – 1
spark.parallelize(1 until n) {
if (x ^ 2 <= 1) 1 else 0

}.reduce(_ + _)
}

}

apache.spark

diag.

patients
filter

join

kmeans

project

Spark
plan

Task

1
2

✓ Ensure the confidentiality and integrity

of the entire data analysis pipeline

Implementation

31

• Compartmentalization
• Each SparkContext on untrusted data user’s side and trusted point

• Trusted point and distributed nodes protected by AMD SEV-SNP

Implementation

31

• Compartmentalization
• Each SparkContext on untrusted data user’s side and trusted point

• Trusted point and distributed nodes protected by AMD SEV-SNP

• Pattern-matching based policy check
• Policy language defined on top of regular expression

• Spark plans matched against the policies based on Regex matching

Evaluation

32

• Security Evaluation
• Enforced 7 custom-defined policies and checked correctness

on 22 queries from TPC-H benchmark

• Example Policies
I. Personally identifiable information (e.g., name) must not be revealed
II. Private information (e.g., account balance) must not be obtained after filtering on PII
III. Sensitive identifiers (i.e., primary keys) can only be used for joining tables

Evaluation

33

• Performance Evaluation
• TPC-H, BDB benchmark and Spark ML applications

• 35% latency & 25% throughput overheads on average

Conclusion

34

• We propose a new secure data

analytics framework on Spark.

• Our framework can be used for

data owners to share their data

without concerning the

regulatory violation.

Spark Application

apache.spark

trusted relay

Attested nodes

Confidential Computing

S1

S3

•

•Isolated

Execution

Pattern-matching

Policy check

35

Thank you

