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The Costs of an Unnecessarily Stringent Federal Data Privacy Law
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Security Requirements for Protecting Data

Spark Application

et maingy ¢ Data analysis procedure of Spark application
val spark = SparkSession

“builder() « User’s code interacting with Spark Libraries
For simplifying distributed computation

val slices =
val x = rand

1. Spark plan is internally constructed by the
library.

2. Tasks are constructed from the plan and
executed on the data in distributed nodes.

3. Analysis result is returned.
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Security Requirements for Protecting Data

Spark Application

object doSpark {
def main() {
val spark = SparkSession

puilder()
val slice
val x = rars

apache.spark

spark.parall

kmeans

1. Ensure the confidentiality and integrity

of the entire data analysis pipeline
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Spark Application

object doSpark {

ot nainGy ¢ | . Ensure the confidentiality and integrity

val spark = SparkSession

Y | of the entire data analysis pipeline

apache. spark
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@

}

Ensure the Spark plans by data users
respect the owner-defined policies
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Defense 1. Securing the Data Analysis Pipeline

Spark Application

object do
def mai apache.spark

g « Compartmentalization

Separate the address space and isolate
Spark core components from user’'s code

Enforce the Spark plans to be relayed to a
trusted point to be actually executed on data

 Distributed Confidential Computing
Entire Spark plan execution is protected by
the confidential computing environment

Attested nodes

Confidential Computing 23



Attack 2. Building Malicious Spark Plan

spark Application * Spark application is tully controlled by
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Attack 2. Building Malicious Spark Plan

spark Application * Spark application is tully controlled by
e it data users and cloud providers

val spark = SparkSession

.builder()
val slices =

val x = ranc_ gpache.spark :
sparicparalll 1 Possible Attack Vectors, when
-prOJect

Data Users and Cloud Providers are compromised

3. Building a policy violating Spark plan
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Defense 2. Enforcing Policy on Spark Plans

spark Application « New policy check mechgnlsm
ohject dospart | based on pattern-matching

def main() {
val spark = SparkSession
.builder()
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O]
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Defense 2. Enforcing Policy on Spark Plans

spark Application « New policy check mechgnlsm
ohject dospart | based on pattern-matching

def main() {
val spark = SparkSession
.builder()
val slices =

vl x = rone.gpache.spark * Provide a policy language for data owners

spark.parall
e to define their expectations into policies
&

@— 00 = 26



Motivating Scenario: Targeted Clinical Trials

* Hospital wants to share medical dataset to pharmaceutical company

Patient
ID Diag
Name —L. ID
Age Diag ID
SocialCare Disease
Address HeartRate
Consent BloodPressure

(a) DB schema of the medical dataset.
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Motivating Scenario: Targeted Clinical Trials

* Hospital wants to share medical dataset to pharmaceutical company

« Goal of pharmaceutical company (i.e., data user)
« Get the Name and Address of patients for their targeted drug testing

« Expectation of hospital (i.e., data owner)

 who has been diagnosed with which disease should not be revealed
Patient

D —L, Diag
NoTiE ID Example policies
Age LTI P; Only the records of the patients who have consented can be used in machine learning.
Soclalcara Disease P, Patient’s social care status and name must not be used in machine learning.
Address HeartRate P3 When the patient and diag tables are joined, the patients’ disease must not be revealed.
Consent M SR (b) Policies that the hospital wants to enforce.

(a) DB schema of the medical dataset. 27
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« Benign Spark plan

Benign Spark plan
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!

[ Kmeans (heart rate)

Join (id)

filter

(disease == cancer)
patients

U.

Policy breaking plan

Policy preventing this case

diagnosed with cancer!

For table

Disallow
0*530*510* | 0*510*530*

<filter, {disease}>
<join, {id}»>

e

Owner defined policy

)

cancer) first, join, and then project name

@ ........... (e ]

kmeans ]. ......... .l °

diag.

Pattern-matching

29



Motivating Scenario: Targeted Clinical Trials

« Policy violating Spark plan
* Filter diag on disease (== cancer) first, join, and then project name

Exposing who has been
diagnosed with cancer!

project (hame)

!

[ Kmeans (heart rate)

Disallow

Policy preventing this case
Fortablediag. |  [project frer=esrunse [ﬂ
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Join (id)
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Security Requirements for Protecting Data

Spark Application

object doSpark {
def main() { /
val spark = SparkSession

Ensure the confidentiality and integrity

a sicff of the entire data analysis pipeline

= rane
spark.parall apaChe.Spark

1 x
if W
}.red _
| h}

}

o v" Ensure the Spark plans by data users
respect the owner-defined policies
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Implementation

« Compartmentalization
« Each SparkContext on untrusted data user’s side and trusted point
« Trusted point and distributed nodes protected by AMD SEV-SNP
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Implementation

« Compartmentalization
« Each SparkContext on untrusted data user’s side and trusted point
« Trusted point and distributed nodes protected by AMD SEV-SNP

« Pattern-matching based policy check
* Policy language defined on top of regular expression
« Spark plans matched against the policies based on Regex matching
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Evaluation

« Security Evaluation
« Enforced 7 custom-defined policies and checked correctness
on 22 queries from TPC-H benchmark

« Example Policies
. Personally identifiable information (e.qg., name) must not be revealed
Il.  Private information (e.qg., account balance) must not be obtained after filtering on PII
lll. Sensitive identifiers (i.e., primary keys) can only be used for joining tables

32
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« Performance Evaluation
« TPC-H, BDB benchmark and Spark ML applications
« 35% latency & 25% throughput overheads on average
ill ¢

TPC-H benchmark
Figure 9: Increased latency on TPC-H benchmark.
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BDB benchmark
(a) Increased latency.
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GRecommendation Clustering

ML model
(a) Increased latency.
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Conclusion

* We propose a new secure data
analytics framework on Spark.

 QOur framework can be used for
data owners to share their data
without concerning the
regulatory violation.

Spark Application

ﬂapache.spark

w £

] ""[;]
Isolated )

Execution

Attested nodes

Confidential Computing
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