WAVEN: WebAssembly Memory
Virtualization for Enclaves

Weili Wang’, Honghan Ji?, Peixuan He?, Yao Zhang?, Ye Wu?, Yingian Zhang

'1—[' Jeecert
Labs

'Southern University of Science and Technology (& #3#i 4%

2ByteDance Inc. |yt Eq'_yf%cﬁ:mﬁl]

* Currently a Ph.D. student at Duke University

Trusted Execution Environments (TEES)

Secure containers immune to attacks from privileged software

ahiuld * VM-based TEEs
@ Enciave/ M snclave/Vi * AMD SEV, Intel TDX
* VM-level abstraction
* Enclave-based TEEs
* Intel SGX, Keystone, Sanctum, CURE...

Hardware - * Significantly smaller TCB

ByteDance

bl TN

Trusted Execution Environments (TEES)

Secure containers immune to attacks from privileged software

-y * VM-based TEEs
|
@ Enclave/VM Enclave/VM ° AMD SEV, Intel TDX

* VM-level abstraction

* Enclave-based TEEs
* Intel SGX, Keystone, Sanctum, CURE...
intel) b
Hardware * Significantly smaller TCB

Enclave-based TEEs are here to stay

ByteDance

bl TN

In-Enclave Multi-Tenancy for SGX

* |n-enclave multi-tenancy

j: :E Enclave
* Mutually distrustful workloads in one enclave

e

O PrIVaCy_preSerVIng data anaIyS|S Mutually distrustful workloads

* Confidential Function-as-a-Service (FaaS)

* WebAssembly (Wasm) as a solution
* A novel portable and efficient binary format

* |solated sandboxes for Wasm modules

* “Wasm+SGX” designs: TWINE, Reusable Enclaves... Wasmbinary Wasm runtime

ByteDance

hil TR

WebAssembly Memory Isolation
Wasm features a linear memory model isolating modules’ memories

0x00000000 [* Linear memory

* A contiguous byte array
e 32-bit Wasm addresses

* One memory per module

oxEFFFFEEE * Boundary-check-based isolation

ByteDance

bl TN

WebAssembly Memory Isolation
Wasm features a linear memory model isolating modules’ memories

0x00000000 [* Linear memory

* A contiguous byte array
e 32-bit Wasm addresses

* One memory per module

oxEFFFFEEE * Boundary-check-based isolation

Linear memory model is incompatible with confidential computing
scenarios where data sharing and access control is important

ByteDance

bl TN

Limitations of Linear Memory

* Limitation: Inefficient memory sharing

* One memory per module

* Share by exporting entire memory
* |nflexible and impractical

* Multi-memory proposal
* Coarse-grained sharing

* No compiler support

ByteDance

bl TN

Limitations of Linear Memory

S * Limitation: Lack of memory access control
... eebe{ + Noread-only memory
Auxdliary Stack * All partitions are writable
.................. * Not secure in memory sharing
* Shared data is entirely writable
Heap

* Shared data can be tampered with

System Model

Platform owner

s

Data providers
/
/

Data consumers
N\

N\

-

[t&j @5

Wasm runtime

* Roles

* Platform owner provides service

* Data providers share data

| Uplo?ddata \\
\
y R
\\ * Data consumers compute
|
Data | o -
ol Security goals
. . /
access control 1" * Execution confidentiality

* Execution integrity

* Controlled data sharing

ByteDance

hil RN

Example Use Cases

1. Confidential stateful FaaS

Confidential Secure data

stateful FaaS marketplaces * A task uses parallel modules

* Shared data across modules
Platform operator = Market operator

Platform owner

* Modules cannot modify the data
FaasS users or Data sellers 2. Secure data marketplace
pataproviders ~ dataset owners
* Sellers share their data
N FaaS users Data buyers e Buyers compute on it

* Buyer cannot modify the data

ByteDance

) - —

3’6?5‘: aﬂ'#i{%% I l ==t

ST) oomemomen bscrcono 1IN —+~T1EIL
¥

WebAssembly Memory Virtualization as a Solution
WAVEN: WebAssembly Memory Virtualization scheme for ENclaves

* Experience in OS evolvement
* Modules hosted in a Wasm runtime vs. Processes running in an OS
* Alike an OS kernel, the runtime manages the memory of modules
* OS memory management

* From direct allocation on physical memory to memory paging

ByteDance

hil TR

WebAssembly Memory Virtualization as a Solution
WAVEN: WebAssembly Memory Virtualization scheme for ENclaves

* Experience in OS evolvement
* Modules hosted in a Wasm runtime vs. Processes running in an OS
* Alike an OS kernel, the runtime manages the memory of modules
* OS memory management

* From direct allocation on physical memory to memory paging

Inspired by OSs’ evolvement, we propose a memory virtualization scheme for

In-enclave Wasm runtimes, supporting memory sharing with access control

ByteDance

hil TR

Design Goals & Challenges

Goals Challenges

* Practicality: Comply with Wasm spec * Complexity: Design could be complex
* Security: Memory isolation guarantee * Efficiency: Software MMU is slow

* Performance: Minimal overhead * Compatibility: No linear memory

ByteDance

bl TN

Design Goals & Challenges

Goals Challenges

Practicality: Comply with Wasm spec * Complexity: Design could be complex
Security: Memory isolation guarantee * Efficiency: Software MMU is slow

Performance: Minimal overhead * Compatibility: No linear memory

Solutions
Complexity and efficiency: Single-level page table and dual page tables
Efficiency. Exception page and page padding

Compatibility: Only require modifications to Wasm runtimes

ByteDance

bl TN

WebAssembly Paging

Wasm address Virtual address * Memory virtualization
Page table
Wl 0
o Weempage1 T Vislpege * 64KB page size
| Wasmpage2 Virtuelpage |
- —p Virtual page - .
.. Nempeges, T~ [Sl * “Virtual address”: Wasm address (32 bits)
Wasmpaged | = 000S<b_ .7 rualpage .
i il
__________ . Vinualpage * “Physical address”: Runtime virtual address
Wasm page 65535 \ ----- Virtualpage .
Virtual page _ = o=
| wemiee | * Single-level page table: Minimal page table walk
! Ariepage 1 * Address translation for memory instructions
31 16 0
T TTTTTTTTTTTTT] | []
je > >}
Page index: Offset in the page
page 0,1,...65535

ByteDance

£ %) -

(o) afﬁi{%% I l ? I | T
W %/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY I J ‘E
i# Y)1‘

Memory Isolation

* Linear memory model’s approach

* Use boundary checks

* |In-SGX Wasm only supports expensive software checks
* WAVEN'’s approach

* Optimize the address translation

* Prevent illegal accesses without explicit checks

ByteDance

bl TN

Memory Isolation

Wasm address

Page table

Virtual address

Wasm page 0

llllllllllllllll

> Virtual page

lllllllllllllllllllll

Y

Virtual page

lllllllllllllllllll

v

Virtual page

0000000000000000

llllllllllllllllllllll

Y

Virtual page

Exception page

Unallocated

Virtual page
P
Virtual page

Virtual page

Page padding

* Exception pages
* One empty exception page for a module
* QOut-of-bound accesses = exception page
* Page paddings
* Every page is padded with extra bytes
* Cross-page accesses - padding

* Minimum padding size: 7 bytes

ByteDance

bl TN

Memory Sharing

Wasm address Virtual address * Sharing by page table manipulation

Page table

Wasm page 0 —~ virtual page

P
Module 1 | ‘Wasmpage 1 — """ \irtual page * Entries point to the same page

Wasm page 2

il el oW ol R s e Rl el e el o Rl i oA B R B e o o o

...................... * Flexible shared memory

o e e e e e e e - e e e e @ - - e o

.. Mrusipage * Page-granularity

virtual page ° Easy tO Shal‘e

Module 2

Wasm page 4 virtual page

* Easy to revoke shared data

ByteDance

bl TN

Memory Access Control

* Approaches for Wasm memory access control
* Hardware primitives
* |ntel MPK: Require a trusted OS
* Software permission checks
* Check before accessing: High overhead
* Dual-page-table design in WAVEN
* Read page table for memory reads, write page table for memory writes

* Address translation without expensive permission checks

ByteDance

hil TR

Wasm address

Memory Access Control

Virtual address

Wasm address

Write page table Read page table
Wasm page 0 > Virtual page < Wasm page 0
""""""""""" | [rocerrarasascasarasea
Wasm page 1 > Virtual page <« Wasm page 1
I
W, 2 Wasm page 2
....... ?fr‘n‘??g'e‘””” —> Virtual page < ...,,....,.?.?n......
Wasm page 3 _ Wasm page 3
""""""""""" Virtual page < [rosrorreroeeeseeeasey
Unallocated Unallocated
Unallocated Exception page Unallocated
oo Virtual page oo
...
Unallocated Virtual page Unallocated

* In the write page table, entries of read-only pages point to the exception page

* Any memory writes on page 3 Is redirected to the exception page

ByteDance

bl TN

Implementation

g <H olemented * Support Ahead-of-time compilation

caym p— L

@ ; .../> @ @

* Modity the compiler to support
address translation

LLVM toolchain Runtime interfaces AOT compiler WAMR runtime

* Modity the runtime to manage page
B ittt T ------------ T ------ | tables during execution

Bytecode AOT code * Specify shared memory interfaces
Implemented atop WAMR, a runtime with native SGX support

ByteDance

bl TN

Evaluation

* Benchmarks

* PolyBench: Scientific computing tasks

* STREAM: Memory stress tests

* Confidential workloads: Database and machine learning inference

* Memory sharing scenarios. Multi-write multi-read and multi-read settings
* Evaluation questions

* What's the performance of WAVEN?

* What’s the effectiveness of memory sharing?

ByteDance

hil RN

Normalized Time

Performance on PolyBench

What’s the performance of WAVEN in scientic computation tasks?

=
(@]
™

14l
1.25—
1.0:
0.8
0.6
0.4
0.2
0.0)
o oS B F «,0% éﬁ«,@ - 00«:‘/ e&cp"’oﬁ%e 6& «,0 ’L; &&«, oo &q " & e’?* 2 Ob @0@ N 06&? @» ,&o'4 2B «;@B dar» N s
e oo'cce o & & A %1, S° A 330 @O 6‘3\’

&'\'Oq

* Vanilla WAMR uses software boundary checks
* WAVEN incurs extra memory reads for page table lookups
* Overheads are dependent on the memory access patterns

* The geometric mean of overheads s 10.42%

ByteDance

hil TR

Performance on Typical Confidential Workloads
What’s the performance of WAVEN in confidential workloads?

Confidential database (SQL.ite) Privacy-preserving ML inference

* Run a face detection model

* Measure the time used In detection

ool H I EH B B B EEENENEBNEBN®N.
NN RN RN/ S SN SRR SRS

Average overhead of database query: 11.47% * WAVEN only exhibits 6.14% overhead

o * Vanilla WAMR takes 165.87s

* WAVEN takes 176.06s to process

A 0 0 O O D g gD g g D o ® P
Average overhead of database update: 12.52%

ByteDance

hil TR

Effectiveness of Memory Sharing

Multi-write multi-read setting Multi-read setting
* Typical in confidential stateful FaaS * Typical in secure data marketplaces
* Master and worker functions * Users compute on the same data

.....................

+ 7Data partition #N ’
---------------------- Read
FTstTttttttstcscccccey s
; Results s
erte

' '

Master Workers User 1 User 2 User N

o

ByteDance

hil TR

Effectiveness of Memory Sharing

Multi-write multi-read setting

’I

-
-
-

Number of concurrent users (log scale)

Peak speedup: 1.56x-1.82x

8
Ol
<b) 6 —
E°]
P o
a0
g 0
S 4r
- i
-
o i
2
-l---====='=:
T--- | , L
1 2 4

8

— - —o— = \\NAVEN
" = —m== WAMR

Multi-read setting

1
20

— =
) Ot
L] I L] L L 1] I L L
-

Running time (s)

ot
]] I L] L]

oy |
-
”
” /7
= Fe)
- -
- -
- PR
- -

@= = =— ==

=
—— e

p—
—
——

Number of concurrent users (log scale)

Peak speedup: 2.4x-2.5x

ByteDance

bl TN

1 2 4 8 16 32

Discussion

* Prevelance of in-enclave WebAssembly

* Wasm is formally specified and verified

* Wasm has a strong ecosystem
* Generalization to other TEEs

* SGX is still important: WAVEN is useful in the long run

* WAVEN can also be adapted to other enclave-based TEEs
* TLB implementation

* Tried implementing software TLB

* Extra overhead (~21%) due to the “miss or hit” checks

ByteDance

hil TR

Related Work

* Intra-enclave isolation
* Other software fault isolation approach

* Not as flexible as Wasm: CHANCEL (NDSS ’21), users cannot execute their code
* Hardware-based approach

* Deprecated technique (Intel MPX): MPTEE (EuroS&P ’20) and Occlum (ASPLOS ’20)
* Require hardware modification to use Intel MPK: LightEnclave (Security ’22)
* Confidential computing with WebAssembly

* Two-way sandboxes: TWINE (ICDE ’21) and AccTEE (Middleware ’19)

* FaaS: Reusable enclaves (Security '23) and Se-Lambda (SecureComm ’18)

WAVEN is the first approach that enables cross-module memory sharing with fine-
grained memory access control for in-enclave Wasm

ByteDance

bl TN

Conclusion

* WebAssembly + SGX
* A popular design paradigm that provides in-enclave multi-tenancy

* Linear memory model impedes important confidential computing scenarios
where controlled data sharing is highly needed

Refer to our paper

 WAVEN for more details!

* |In-enclave memory virtualization as a solution

* Page-granularity memory sharing with access control

* Much better performance in data sharing scenarios

ByteDance

bl TN

