
WAVEN: WebAssembly Memory
Virtualization for Enclaves
Weili Wang1*, Honghan Ji2, Peixuan He2, Yao Zhang2, Ye Wu2, Yinqian Zhang1

1Southern University of Science and Technology

2ByteDance Inc.

* Currently a Ph.D. student at Duke University

Trusted Execution Environments (TEEs)

• VM-based TEEs
• AMD SEV, Intel TDX
• VM-level abstraction

• Enclave-based TEEs
• Intel SGX, Keystone, Sanctum, CURE…
• Significantly smaller TCB

Secure containers immune to attacks from privileged software

Trusted Execution Environments (TEEs)

• VM-based TEEs
• AMD SEV, Intel TDX
• VM-level abstraction

• Enclave-based TEEs
• Intel SGX, Keystone, Sanctum, CURE…
• Significantly smaller TCB

Secure containers immune to attacks from privileged software

Enclave-based TEEs are here to stay

In-Enclave Multi-Tenancy for SGX
• In-enclave multi-tenancy

• Mutually distrustful workloads in one enclave

• Confidential Function-as-a-Service (FaaS)

• Privacy-preserving data analysis

• WebAssembly (Wasm) as a solution

• A novel portable and efficient binary format

• Isolated sandboxes for Wasm modules

• “Wasm+SGX” designs: TWINE, Reusable Enclaves…

Enclave

…

Mutually distrustful workloads

WebAssembly Memory Isolation

• Linear memory

• A contiguous byte array

• 32-bit Wasm addresses

• One memory per module

• Boundary-check-based isolation

Wasm features a linear memory model isolating modules’ memories

WebAssembly Memory Isolation

• Linear memory

• A contiguous byte array

• 32-bit Wasm addresses

• One memory per module

• Boundary-check-based isolation

Wasm features a linear memory model isolating modules’ memories

Linear memory model is incompatible with confidential computing
scenarios where data sharing and access control is important

Limitations of Linear Memory
• Limitation: Inefficient memory sharing

• One memory per module

• Share by exporting entire memory

• Inflexible and impractical

• Multi-memory proposal

• Coarse-grained sharing

• No compiler support

Limitations of Linear Memory
• Limitation: Lack of memory access control

• No read-only memory

• All partitions are writable

• Not secure in memory sharing

• Shared data is entirely writable

• Shared data can be tampered with

System Model
• Roles

• Platform owner provides service

• Data providers share data

• Data consumers compute

• Security goals

• Execution confidentiality

• Execution integrity

• Controlled data sharing

Example Use Cases
1. Confidential stateful FaaS

• A task uses parallel modules

• Shared data across modules

• Modules cannot modify the data

2. Secure data marketplace

• Sellers share their data

• Buyers compute on it

• Buyer cannot modify the data

Confidential
stateful FaaS

Secure data
marketplaces

Platform operator Market operator

FaaS users or
dataset owners Data sellers

FaaS users Data buyers

Platform owner

Data providers

Data consumers

WebAssembly Memory Virtualization as a Solution

• Experience in OS evolvement

• Modules hosted in a Wasm runtime vs. Processes running in an OS

• Alike an OS kernel, the runtime manages the memory of modules

• OS memory management

• From direct allocation on physical memory to memory paging

WAVEN: WebAssembly Memory Virtualization scheme for ENclaves

WebAssembly Memory Virtualization as a Solution

• Experience in OS evolvement

• Modules hosted in a Wasm runtime vs. Processes running in an OS

• Alike an OS kernel, the runtime manages the memory of modules

• OS memory management

• From direct allocation on physical memory to memory paging

WAVEN: WebAssembly Memory Virtualization scheme for ENclaves

Inspired by OSs’ evolvement, we propose a memory virtualization scheme for
in-enclave Wasm runtimes, supporting memory sharing with access control

• Practicality: Comply with Wasm spec

• Security: Memory isolation guarantee

• Performance: Minimal overhead

Design Goals & Challenges
Goals Challenges

• Complexity: Design could be complex

• Efficiency: Software MMU is slow

• Compatibility: No linear memory

• Practicality: Comply with Wasm spec

• Security: Memory isolation guarantee

• Performance: Minimal overhead

Design Goals & Challenges
Goals Challenges

• Complexity: Design could be complex

• Efficiency: Software MMU is slow

• Compatibility: No linear memory

• Complexity and efficiency: Single-level page table and dual page tables

• Efficiency: Exception page and page padding

• Compatibility: Only require modifications to Wasm runtimes

Solutions

WebAssembly Paging
• Memory virtualization

• 64KB page size

• “Virtual address”: Wasm address (32 bits)

• “Physical address”: Runtime virtual address

• Single-level page table: Minimal page table walk

• Address translation for memory instructions

Memory Isolation
• Linear memory model’s approach

• Use boundary checks

• In-SGX Wasm only supports expensive software checks

• WAVEN’s approach

• Optimize the address translation

• Prevent illegal accesses without explicit checks

Memory Isolation

• Exception pages

• One empty exception page for a module

• Out-of-bound accesses à exception page

• Page paddings

• Every page is padded with extra bytes

• Cross-page accesses à padding

• Minimum padding size: 7 bytes

Memory Sharing

• Sharing by page table manipulation

• Entries point to the same page

• Flexible shared memory

• Page-granularity

• Easy to share

• Easy to revoke shared data

Memory Access Control
• Approaches for Wasm memory access control

• Hardware primitives

• Intel MPK: Require a trusted OS

• Software permission checks

• Check before accessing: High overhead

• Dual-page-table design in WAVEN

• Read page table for memory reads, write page table for memory writes

• Address translation without expensive permission checks

Memory Access Control

• In the write page table, entries of read-only pages point to the exception page

• Any memory writes on page 3 is redirected to the exception page

Implementation

• Support Ahead-of-time compilation

• Modify the compiler to support
address translation

• Modify the runtime to manage page
tables during execution

• Specify shared memory interfaces
Implemented atop WAMR, a runtime with native SGX support

Evaluation
• Benchmarks

• PolyBench: Scientific computing tasks

• STREAM: Memory stress tests

• Confidential workloads: Database and machine learning inference

• Memory sharing scenarios: Multi-write multi-read and multi-read settings

• Evaluation questions

• What’s the performance of WAVEN?

• What’s the effectiveness of memory sharing?

Performance on PolyBench
What’s the performance of WAVEN in scientic computation tasks?

N
or

m
al

ize
d

Ti
m

e

• Vanilla WAMR uses software boundary checks

• WAVEN incurs extra memory reads for page table lookups
• Overheads are dependent on the memory access patterns

• The geometric mean of overheads is 10.42%

Performance on Typical Confidential Workloads
What’s the performance of WAVEN in confidential workloads?

Privacy-preserving ML inferenceConfidential database (SQLite)

Average overhead of database query: 11.47%

Average overhead of database update: 12.52%

• Run a face detection model

• Measure the time used in detection

• WAVEN only exhibits 6.14% overhead

• WAVEN takes 176.06s to process

• Vanilla WAMR takes 165.87s

Effectiveness of Memory Sharing

• Typical in confidential stateful FaaS
• Master and worker functions

Multi-write multi-read setting Multi-read setting

• Typical in secure data marketplaces
• Users compute on the same data

Effectiveness of Memory Sharing

WAVEN

WAMR

Peak speedup: 1.56×-1.82× Peak speedup: 2.4×-2.5×

Multi-write multi-read setting Multi-read setting

Discussion
• Prevelance of in-enclave WebAssembly
• Wasm is formally specified and verified
• Wasm has a strong ecosystem

• Generalization to other TEEs
• SGX is still important: WAVEN is useful in the long run
• WAVEN can also be adapted to other enclave-based TEEs

• TLB implementation
• Tried implementing software TLB
• Extra overhead (~21%) due to the “miss or hit” checks

Related Work
• Intra-enclave isolation
• Other software fault isolation approach
• Not as flexible as Wasm: CHANCEL (NDSS ’21), users cannot execute their code

• Hardware-based approach
• Deprecated technique (Intel MPX): MPTEE (EuroS&P ’20) and Occlum (ASPLOS ’20)
• Require hardware modification to use Intel MPK: LightEnclave (Security ’22)

• Confidential computing with WebAssembly
• Two-way sandboxes: TWINE (ICDE ’21) and AccTEE (Middleware ’19)
• FaaS: Reusable enclaves (Security ’23) and Se-Lambda (SecureComm ’18)

WAVEN is the first approach that enables cross-module memory sharing with fine-
grained memory access control for in-enclave Wasm

Conclusion
• WebAssembly + SGX

• A popular design paradigm that provides in-enclave multi-tenancy

• Linear memory model impedes important confidential computing scenarios
where controlled data sharing is highly needed

• WAVEN

• In-enclave memory virtualization as a solution

• Page-granularity memory sharing with access control

• Much better performance in data sharing scenarios

Refer to our paper
for more details!

