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Contributions

Developed a PSI protocol for recurrent set intersection

One-time cost on the large set and linear recurrent cost on the smaller set

Proposed optimizations to reduce computation time and communication

Reduce intersection time by one/two OOM compared to SOTA on slow/fast networks

Recurrent time (s) for |[X| = 229,|Y| = 4

This work 0.03 0.24
CLR [1] 2.21 2.81
KKRT [2] 1.67 6.46
PSSZ [3] 0.88 2.94

[1] Hao Chen, Kim Laine, and Peter Rindal. "Fast private set intersection from homomorphic encryption." CCS, 2017.
[2] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. "Efficient batched oblivious PRF with applications to private set intersection." CCS, 2016.
[3] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. "Phasing: Private set intersection using permutation-based hashing." USENIX Security, 2015.
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(Blueprint) Basic Protocol

Protocol 1 Basic Protocol
Input: S inputs set X and R inputs set Y. Both sets consist
of bit strings of length o. Sizes | X|, , and o are public.

}/ °
Output: S outputs L; R outputs X NY. Recelver Sender

1)  Setup: Parties agree on a Fully Homomorphic En-}
cryption scheme and encryption parameters (n, q,t).
2)  Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X =
(T1,....,Tx|) to R.
3) Computing intersection: For each y; € Y, R:
a) samples a random plaintext r; € Z; from a
uniform distribution;
b)  homomorphically computes

-

B X
d; =rj+ H(IT— Ys)
i=1

¢) encrypts r; — 7; under its own key:
d) sends d; and 7; to S.
4)  Decryption: For each [E'F}), S:
a)  decrypts d; — d;;
b) samples a non-zero random plaintext value
p; € Z\{0} from a uniform distribution;
¢) homomorphically computes

& = (75— dj) - pj
d) sends €; to R.
5)  Result: R decrypts ¢; — e; and outputs

» Y
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[4] Nigel P. Smart and Frederik Vercauteren. "Fully homomorphic SIMD operations." Designs, codes and cryptography, 2014.
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Pack many entries into one ciphertext.

FHE encrypts plaintext polynomials into ciphertext polynomials.
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[4] Nigel P. Smart and Frederik Vercauteren. "Fully homomorphic SIMD operations." Designs, codes and cryptography, 2014.
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Fast Setup 0.09 Fast Setup| 0.02 0.11 043
Fast Intersection 0.30 Fast Intersection| 0.03 0.10 0.37
Computation Computation
Fast Setup 12.63 Fast Setup| 1.85 7.39 29.55
Fast Intersection 25.25 Fast Intersection| 0.66 2.65 10.59
Communication Communication

One-time Fast Setup|  0.10 Recurrent Fast Seup| 0.02 012 045
) Fast Intersection 0.32 ) Fast Intersection| 0.03 0.10 0.38

Total time Total time

(10 Gbps) (10 Gbps)
Fast Setup 1.26 Fast Setup| 0.33 0.86 2.95
) Fast Intersection 2.48 ) Fast Intersection| 0.24 0.47 1.38

Total time Total time

(100 Mbps)

(100 Mbps)




X| ~ 229, |Y| = {4, 16, 64)

_ 520 Y]
X =22 4 16 64
Fast Setup 0.09 Fast Setup| 0.02 0.11 043
Fast Intersection 0.30 Fast Intersection| 0.03 0.10 0.37
Computation CLR [8] 1.21 Computation
KKRT [31] NA
PSSZ [38] NA
Fast Setup 12.63 Fast Setup| 1.85 7.39 29.55
Fast Intersection 25.25 Fast Intersection| 0.66 2.65 10.59
Communication CLR [8] 0.00 Communication
KKRT [31] NA
One-time PSSZ [38] NA Recurrent
Fast Setup 0.10 Fast Setup| 0.02 0.12 045
. Fast Intersection 0.32 ) Fast Intersection| 0.03 0.10 0.38
Total time CLR [8] 191 Total time
(10 Gbps) KKRT [31] NA (10 Gbps)
PSSZ [38] NA
Fast Setup 1.26 Fast Setup| 0.33 0.86 2.95
) Fast Intersection 2.48 ) Fast Intersection| 0.24 0.47 1.38
Total time CLR [8] 1.21 Total time
(100 Mbps) KKRT [31] 1\.TA (100 Mbps)
PSSZ [38] NA

[8] Hao Chen, Kim Laine, and Peter Rindal. "Fast private set intersection from homomorphic encryption." CCS, 2017.
[31] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. "Efficient batched oblivious PRF with applications to private set intersection." CCS, 2016.
[38] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. "Phasing: Private set intersection using permutation-based hashing." USENIX Security, 2015.



X| ~ 229, |Y| = {4, 16, 64)

_ 520 Y]

X =22 4 16 64

Fast Setup 0.09 Fast Setup| 0.02 0.11 043

Fast Intersection 0.30 Fast Intersection| 0.03 0.10 0.37

Computation CLR [8] 1.21 Computation CLR [8]| 2.21 2.21 2.21
KKRT [31] NA KKRT[31]| 1.62 1.62 1.62

PSSZ [38] NA PSSZ [38]| 0.86 0.86 0.71
Fast Setup 12.63 Fast Setup| 1.85 7.39 29.55
Fast Intersection 25.25 Fast Intersection| 0.66 2.65 10.59
Communication CLR [8] 0.00 Communication CLR [8]| 5.60 5.60 5.60
KKRT [31] NA KKRT [31]|57.17 57.17 57.17
One-time PSSZ [38] NA Recurrent PSSZ [38]24.05 24.05 27.11
Fast Setup 0.10 Fast Setup| 0.02 0.12 045

Total time Fast Intersection 0.32 Total time Fast Intersection| 0.03 0.10 0.38
(10 Gbps) CLR [8] 1.21 (10 Gbps) CLR [8]| 2.21 2.21 2.21
ps KKRT [31] NA ps KKRT [31]| 1.67 1.67 1.67

PSSZ [38] NA PSSZ [38]]| 0.88 0.88 0.73

Fast Setup 1.26 Fast Setup| 0.33 0.86 2.95

Total ti Fast Intersection 2.48 Total Fast Intersection| 0.24 0.47 1.38
( 1803M‘l;“‘2) CLR [8] 1.21 (_lgoaMlbmf) CLR [8]] 2.81 2.81 281
P KKRT [31] NA b KKRT [31]| 6.46 6.46 6.46

PSSZ [38] NA PSSZ [38]| 2.94 294 3.05

[8] Hao Chen, Kim Laine, and Peter Rindal. "Fast private set intersection from homomorphic encryption." CCS, 2017.
[31] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. "Efficient batched oblivious PRF with applications to private set intersection." CCS, 2016.
[38] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. "Phasing: Private set intersection using permutation-based hashing." USENIX Security, 2015.
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Full Protocol

Protocol 2 Full Protocol

Input:

are public

S inputs set X of size [X]. R inputs set Y of size [Y]. Both sets consist of bit strings of length oy, [X], [Y

.

,and oy

5)  Decryption: For all pairs (D', R®) Vi e Ly, +1. St
a)  Decrypts each D" — DU, and humumm‘phiulll) computes M — RG D“' Vi € Ly, s

Output: S outputs L; R outputs X NY. b)  Performs h — 1y — 1 — 1, : r,a, € Z,, +1 homomorphic multiplications between MO e Zy, 41, resulting in
1) Setup: In this step, parties select all parameters to be used in the protocol. Ny + 1 ciphertexts NU) i €7 L 1-
a)  Security parameters: Parties agree on computational and statistical security parameters (x and A, respectively). c)  Samples 7, + 1 tuples of random values (py, ..., pn, € Z;\{a - #;} Va,i € Z :1 <4 < k) such that no random
b) Data compression: From Eqs and(, we have that ¢ = min (o4, ay,). Therefore, if oy, < a4, parties value is a multiple of any p‘ukmw modulus !(, and encode each luple as a polynomial PO e T, /(a™ + 1).
agree on a hash function Z(-) : Zyea + Zy-. for data compression. Otherwise, Z(x) = . d) Homomorphically computes EU) = rotate [1'\- . pll w) vy e Zy, 41, where the function m!u!r[ ). rotates
¢) Cuckoo hashing and Permutation-based hashing: the batching slots by a random number of positions w; 3 Z,,. . modulus switches and sends each EU) 1o R.
i Parties agree on the number of hash functions i and insertion depth limit d for Cuckoo hashing. . =) () . Y| T
ii; They select the number of Cuckoo hash tables & (= number of gacking slots), and a I\lll‘lCli()l‘lL.‘(j["] that 6) Result: R decrypts each £%9 » E') and outputs X NY = L;_l}_l{g,r_‘, = 0¢ LJJJ_“ 'L“}'
maps a ¢-bit entry x to Cuckoo hash table 79(*)) (§ .
iii)  Following amd S chooses the Cuckoo hash table size |T)| for a failure rate < 272,
iv) By knowing [T7|, one can calculate the left o7 = |log, |T'?|| and right o = o — o, sizes for
Permutation-based hashing (,
v) S selects the h different hash functions H : Zy- + Zjp), where H; (20..2r) = zL @ fj(2r) and
_J[i‘,[',':,q_] : ZQ”H — Z|';'-:|:-| (
d) Encryption parameters:
i)  Parties agree on partitioning parameters 7, and 7, ( and plaintext modulus £ = Hf‘_l t; oty =
298 4 2 (m TV-B4] and §IV-B7).
ii) Pdlllﬁ\ select enu)plmn parameters (ng,gs, L), (ny,qrt) : ng = n, following Eq. and
Encryption parameters are public.
iti)  Each party generates decryption and encryption keys, which are kepl private.
2) Cuckm hashing: For each entry = € X, S performs z = z|zp = Z(x) : |22] = |log, |[T'¥|| and inserts zp at

(ep.zp) - 1 =7 < ho A dummy \‘llue is assigned to empty bins after msemn" entries € X into tables 70 (§IV-A2).
3) Qet encry ptmn & encodes all Cuckoo hash tables and bins into polynomials following Eq. l( . encrypits them

into ciphertexts under its own key, and sends the |—IjI v ] ciphertexts C' to R.
4)  Computing intersection: For each y € ¥, R:

a) Computes z = zp|zg = Z(y) : |z1] = |logy [T
i< h R:
i)  Creates a polynomial P € Z[z] /(2™ + 1) s.t. P, , = zg for (u,v) = (H;(z, zg) mod n,, g(z) —1)
and a dummy value otherwise.

|, and for each Cuckoo hash function H;(-) ¥j € Z:1 <

g _ (| Hitzr.=r)
ii)  Homomorphically computes the difference gV (_T(l J) _ P

. . T . -} . \ . .
b)  Performs h —ns —1:ns € Zj, homomorphic multiplications between 5 : j € Zy 44 \{0}, resulting in 5, +1
. i) .
ciphertexts M Vi € Z,, ;1.
c) Samples ns + 1 tuples of ra_l_r_ldu'}m values (ri,...,rn, € Z;) from a uniform distribution, where each tuple is
encoded as a polynomial R' € Z;[z] /(" + 1).
) — (i) (i) P . ) o )
d) Computes D'~ =M~ +RU Ve Zy, +1, modulus switches it, encrypts R'*) +— R'*) under its key, and sends
—{i) = . ~ . . .
the (D", R')) pairs to &. Note that each R'*) will be several ciphertexts if ng > n,.



X| ~ 224, |Y| = {4, 16, 64)

e Y]

| X| =22 4 16 64

Fast Setup 1.79 Fast Setup| 0.02 0.11 0.43

Fast Intersection 7.74 Fast Intersection| 0.03 0.10 0.37

Computation CLR [8] 21.54 Computation CLR [8]| 23.22 23.22 23.22
KKRT [31] NA KKRT[31]| 30.42 40.42 30.42

PSSZ [38] NA PSSZ [38]| 11.11 11.11 8.54

Fast Setup 202.04 Fast Setup| 1.85 7.39 29.55

Fast Intersection 404.08 Fast Intersection| 0.66 2.65 10.59
Communication CLR [8] 0.00 Communication CLR [8]| 11.00 11.00 11.00
KKRT [31] NA KKRT [31]]946.75 946.75 946.75
One-time PSSZ [38] NA Recurrent PSSZ [38]]1432.05 432.05 432.11
Fast Setup 1.96 Fast Setup| 0.02 0.12  0.45

Total time Fast Intersection 8.08 Total time Fast Intersection 0.03 0.10 0.38
(10 Gbps) CLR_ [8] 21.54 (10 Gbps) CLR_ [8] 23.22 23.22 23.22

) KKRT [31] NA KKRT [31]] 31.21 31.21 31.21

PSSZ [38] NA PSSZ [38]| 11.47 11.47 8.90

Fast Setup 18.68 Fast Setup| 0.33 086 2.95

Total time Fast Intersection 41.44 Total time Fast Intersection| 0.24 047 1.38
(100 Mbps) CLR.[S_] 21.54 (100 Mbps) CLR_ [8] 23.59 23.59 .23.59
KKRT [31] NA KKRT [31]]109.27 109.27 109.27

PSSZ [38] NA PSSZ [38]| 47.14 47.14 44.57

TABLE VI: Total time (in seconds) for two configurations of our PSI protocol, Fast Setup and Fast Intersection, and related
work, considering a S’s set size | X| = £ - 2?4 and several sizes of R’s set |Y|, where we evaluate the one-time costs and
recurrent costs of performing set intersections. KKRT and PSSZ do not have one-time costs.
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