MoMA e NDSS

Recurrent Private Set Intersection for Unbalanced

Databases with Cuckoo Hashing and Leveled FHE

Eduardo Chielle Michail Maniatakos

Center for Cyber Security Center for Cyber Security
New York University Abu Dhabi New York University Abu Dhabi

M-oMA 4: NDSS

—

Private Set Intersection

Eduardo Chielle Michail Maniatakos

Center for Cyber Security Center for Cyber Security
New York University Abu Dhabi New York University Abu Dhabi

MoMA .: NDSS

Private Set Intersection for Unbalanced

Databases

Eduardo Chielle Michail Maniatakos

Center for Cyber Security Center for Cyber Security
New York University Abu Dhabi New York University Abu Dhabi

MoMA .: NDSS

Recurrent Private Set Intersection for Unbalanced

Databases

Eduardo Chielle Michail Maniatakos

Center for Cyber Security Center for Cyber Security
New York University Abu Dhabi New York University Abu Dhabi

MoMA e NDSS

Recurrent Private Set Intersection for Unbalanced

Databases with Cuckoo Hashing and Leveled FHE

Eduardo Chielle Michail Maniatakos

Center for Cyber Security Center for Cyber Security
New York University Abu Dhabi New York University Abu Dhabi

URL Denylisting / Email Filtering

Email Filter

URL Denylisting / Email Filtering

Email Filter

@ws>= L

Someone Mail Server Service Provider
(List of malicious URLs)

URL Denylisting / Email Filtering

Email Filter

Email

® =

Someone Mail Server @ o Service Provider

(List of malicious URLs)
Block

URL Denylisting / Email Filtering

Email Filter

an ™ —

A

Someone Pass o Service Provid
O\Maﬂ Server ervice Provider
4

(List of malicious URLs)

Q

Rewrite URLSs and
send to inbox

d

Inbox

site.com — serviceprovider.com/url?u=site.com

URL Denylisting / Email Filtering

Email Filter

I t I - Privacy Issue
Someone Pass o Service Provid
Mail Server ervice I’rovider

‘
\ (List of malicious URLS)

>
Rewrite URLs and

* Privacy problem

Service Provider learns
list of URLSs in emails in

send to inbox accessed URLs

site.com — serviceprovider.com/url?u=site.com I

Inbox

URL Denylisting / Email Filtering

Email Filter

n
Emaﬂ V ()
() * Privacy problem
- E— — * Setintersection
Al —©
Someone 0r Mail Server Set Intersection Service Provider
\ (List of malicious URLs)

K

Q

Rewrite URLSs and
send to inbox

site.com — serviceprovider.com/url?u=site.com I

Service Provider learns
list of URLSs in emails in
accessed URLs

Privacy issue can be
addressed with the use
of a PSI protocol

Inbox

URL Denylisting / Email Filtering

Email Filter large set

* Privacy problem
 Setintersection
 Unbalanced sets

I
— v
I
S

Service Provider
(List of malicious URLs)

O\Mail Server
4

><

Service Provider learns
list of URLSs in emails in
accessed URLs

Rewrite URLSs and
send to inbox

site.com — serviceprovider.com/url?u=site.com I

Privacy issue can be
addressed with the use
of a PSI protocol

Inbox

URL Denylisting / Email Filtering

mail Filter

’A" * Privacy problem
cdanaintl * Setintersection
_ Unbalanced sets
-

receives * Recurrent operation

Someone

many email Service Provider

(List of malicious URLs)

®a Mail Server

4
>
Rewrite URLs and

send to inbox

site.com — serviceprovider.com/url?u=site.com I

Service Provider learns
list of URLSs in emails in
accessed URLs

Privacy issue can be
addressed with the use
of a PSI protocol

Inbox

Contributions

* Developed a PSI protocol for recurrent set intersection

Contributions

* Developed a PSI protocol for recurrent set intersection
* One-time cost on the large set and linear recurrent cost on the smaller set

Contributions

* Developed a PSI protocol for recurrent set intersection
* One-time cost on the large set and linear recurrent cost on the smaller set
* Proposed optimizations to reduce computation time and communication

Contributions

Developed a PSI protocol for recurrent set intersection

One-time cost on the large set and linear recurrent cost on the smaller set

Proposed optimizations to reduce computation time and communication

Reduce intersection time by one/two OOM compared to SOTA on slow/fast networks

Recurrent time (s) for |[X| = 229,|Y| = 4

This work 0.03 0.24
CLR [1] 2.21 2.81
KKRT [2] 1.67 6.46
PSSZ [3] 0.88 2.94

[1] Hao Chen, Kim Laine, and Peter Rindal. "Fast private set intersection from homomorphic encryption." CCS, 2017.
[2] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. "Efficient batched oblivious PRF with applications to private set intersection." CCS, 2016.
[3] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. "Phasing: Private set intersection using permutation-based hashing." USENIX Security, 2015.

Proposed PSI Protocol

(Blueprint) Basic Protocol

Protocol 1 Basic Protocol
Input: S inputs set X and R inputs set Y. Both sets consist
of bit strings of length o. Sizes | X|, , and o are public.

}/ °
Output: S outputs L; R outputs X NY. Recelver Sender

1) Setup: Parties agree on a Fully Homomorphic En-}
cryption scheme and encryption parameters (n, q,t).
2) Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X =
(T1,....,Tx|) to R.
3) Computing intersection: For each y; € Y, R:
a) samples a random plaintext r; € Z; from a
uniform distribution;
b) homomorphically computes

-

B X
d; =rj+ H(IT— Ys)
i=1

¢) encrypts r; — 7; under its own key:
d) sends d; and 7; to S.
4) Decryption: For each [E'F}), S:
a) decrypts d; — d;;
b) samples a non-zero random plaintext value
p; € Z\{0} from a uniform distribution;
¢) homomorphically computes

& = (75— dj) - pj
d) sends €; to R.
5) Result: R decrypts ¢; — e; and outputs

» Y

(Blueprint) Basic Protocol

Protocol 1 Basic Protocol
Input: S inputs set X and R inputs set Y. Both sets consist
of bit strings of length o. Sizes | X|, |Y'|, and o are public.

Output: S outputs L; R outputs X NY.

1) Setup: Parties agree on a Fully Homomorphic En-
cryption scheme and encryption parameters (n, q,t).
2) Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X =
(Z1, ..., Tjx7) to R.
3) Computing intersection: For each y; € Y, R:
a) samples a random plaintext r; € Z; from a
uniform distribution;
b) homomorphically computes

—

B X
d; =rj+ H(IT— Ys)
i=1

¢) encrypts r; — 7; under its own key:
d) sends d; and 7; to S.
4) Decryption: For each [E'F}), S:
a) decrypts d; — d;;
b) samples a non-zero random plaintext value
p; € Z\{0} from a uniform distribution;
¢) homomorphically computes

& = (75— dj) - pj
d) sends €; to R.
5) Result: R decrypts ¢; — e; and outputs

» Y

Receiver

Sender

encrypts set with Sender’s key

sends encrypted set

(Blueprint) Basic Protocol

Protocol 1 Basic Protocol
Input: S inputs set X and R inputs set Y. Both sets consist
of bit strings of length o. Sizes | X|, |Y'|, and o are public.
Output: S outputs L; R outputs X NY.
1) Setup: Parties agree on a Fully Homomorphic En-
cryption scheme and encryption parameters (n, q,t).
2) Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X =
(T1, ..., % x|) to R.
(3) Computing intersection: For each y; €Y, R:)
a) samples a random plaintext r; € Z; from a
uniform distribution;
b) homomorphically computes

X

di=r;+|]@-v)
1=1

c) encrypts r; — 7; under its own key;

Receiver

encrypts set with Sender’s key

sends encrypted set

L d) sends d; and 7, to S.)
4) Decryption: For each (d;,7;), S:
a) decrypts d; — d;;
b) samples a non-zero random plaintext value
p; € Z\{0} from a uniform distribution;
¢) homomorphically computes

& = (75— d;) - p,
d) sends €; to R.
5) Result: R decrypts ¢; — e; and outputs

, Y
XNy = UL‘:|1’{?J’J' te; =0}

computes intersection
adds random value

encrypts random value
with Recetver’s key

sends encrypted result and
encrypted random value

»

J

Sender

(Blueprint) Basic Protocol

Protocol 1 Basic Protocol
Input: S inputs set X and R inputs set Y. Both sets consist

of bit strings of length o. Sizes | X|, |Y'|, and o are public. ¢
Output: S outputs L; R outputs X NY. Recelver Sender
1) Setup: Parties agree on a Fully Homomorphic En-)
cryption scheme and encryption parameters (n, q,t). encrypts set with Sendet’s key
2) Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X = sends encrypted set

(T]_ L|X|) to K.
3) Computing intersection: For each y; € Y, R:

) mputes intersection
a) samples a random plaintext r; € Z; from a computes crsectio

uniform distﬁbution; adds random value
b) homomorphically computes
X encrypts random value
dj =rj+ [[@ —u)) with Receiver’s key
i=1
c) encrypts r; — 7 under its own key; sends encrypted result and
d) sendsd;and7, toS. encrypted random value
(" o A) ey N _
4) Decryption: For each (d;,7;), S: - <
a) decrypts d; — d;; decrypts result

b) samples a non-zero random plaintext value
p; € Z:\{0} from a uniform distribution;
¢) homomorphically computes

subtracts random value
multiply by another random value
€ = (75— dj) - pj

N sends final result
q d) sends ¢; to R.) L

A
-

5) Result: R decrypts ¢; — e; and outputs

, Y
XNy = UL‘:|1’{?J’J' te; =0}

(Blueprint) Basic Protocol

Protocol 1 Basic Protocol
Input: S inputs set X and R inputs set Y. Both sets consist

of bit strings of length o. Sizes | X|, |Y'|, and o are public. ¢
Output: S outputs L; R outputs X NY. Recelver Sender
1) Setup: Parties agree on a Fully Homomorphic En-)
cryption scheme and encryption parameters (n, q,t). encrypts set with Sender’s key
2) Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X = sends encrypted set

(T]_ L|X|) to K.
3) Computing intersection: For each y; € Y, R:

) mputes intersection
a) samples a random plaintext r; € Z; from a computes intersectio

uniform distﬁbution; adds random value
b) homomorphically computes
X encrypts random value
dj=r;+ [[@ -) with Receiver’s key
i=1
c) encrypts r; — 7 under its own key; sends encrypted result and
d) sends d; and 7; to 5. encrypted random value
4) Decryption: For each (d;,7;), S: >
a) decrypts d; — d;; decrypts result

b) samples a non-zero random plaintext value
p; € Z\{0} from a uniform distribution;
¢) homomorphically computes

subtracts random value

multiply by another random value
& = (75— dj) - pj

d) sends €; to R. <

[5) Result: R decrypts €; — e; and outputs } decrypts final result

sends final result

Y]

XNnY =U;_{y; :e; =0} checks if value is zero or not

(Blueprint) Basic Protocol

Protocol 1 Basic Protocol
Input: & inputs set X and R inputs set Y. Both sets consist

of bit strings of length o. Sizes | X|, |Y'|, and o are public. ¢
Output: S outputs L; R outputs X NY. Recelver Sender
1) Setup: Parties agree on a Fully Homomorphic En-)
cryption scheme and encryption parameters (n,q,t). Encrypts set with Sender’s key
2) Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X = sends encrypted set

(Tl .'II|X|) to R.
3) Computing intersection: For each y; € Y, R:
a) samples a random plaintext r; € Z; from a

\ V4
(B

~N
A

computes intersection

uniform distribution; adds random value
b) homomorphically computes
x| encrypts random value
dj =rj+ [[@ - u)) with Receiver’s key
i=1
c) encrypts r; — 7; under its own key:; sends CﬁCprted result and
S TS encrypted random value
4) Decryption: For each (d;,7;), S: Recurrent >
a) decrypts d; — d;; decrypts result

b) samples a non-zero random plaintext value
p; € Z:\{0} from a uniform distribution;
¢) homomorphically computes

subtracts random value

multiply by another random value
€ = (75— dj) - pj

d) sends €; to R. <

5) Result: R decrypts ¢; — e; and outputs decrypts final result

sends final result

. Y . .
XnY =l {y; :e; =0} L checks if value is zero or not

(Blueprint) Basic Protocol

; Assuming a Sendet’s set with one million entries
Protocol 1 Basic Protocol g

Input: & inputs set X and R inputs set Y. Both sets consist

of bit strings of length ¢. Sizes | X|, |Y'|, and o are public. ¢
Ol}tput: Sgoutputng_L R outpuL; XNnY. P . Recelver Sender .
1) Setup: Parties agree on a Fully Homomorphic En-
cryption scheme and encryption parameters (n, g, t). Encrypts set with Sender’s key
2) Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X = sends encrypted set ~ 7 Tefabytes

(T1,...,T;x|) to R.
3) Computing intersection: For each y; € Y, R:
a) samples a random plaintext r; € Z; from a

~N

V4
3

computes intersection Linear search (= 1 million multiplications)

uniform distribution; adds random value
b) homomorphically computes
x| encrypts random value
dj =rj+ [[@ - u)) with Recetver’s key
i=1
c) encrypts r; — 7; under its own key:; sends CﬁCprted result and
S TS encrypted random value
4) Decryption: For each (d;,7;), S: Recurrent >
a) decrypts d; — d;; decrypts result

b) samples a non-zero random plaintext value
p; € Z:\{0} from a uniform distribution;
¢) homomorphically computes

subtracts random value

multiply by another random value
€ = (75— dj) - pj

d) sends €; to R. <

5) Result: R decrypts ¢; — e; and outputs decrypts final result

sends final result

. Y . .
XnY =l {y; :e; =0} L checks if value is zero or not

Solving The Linear Search Problem

Sender hashes set X before sending it to Receiver.

Solving The Linear Search Problem

Sender hashes set X before sending it to Receiver.

Constraint: All bins must have the same number of items.

Simple hashing
000 Hash functions: h
dfh dfh
Maximum load
000 0 (log)
C - c00 log logn
eg eg0 | Number of entries
a a00 0 (nlogn)
logl
b b00 bgrogn

ooo | Multiplicative depth

0 (log logofoz n)

Solving The Linear Search Problem

Sender hashes set X before sending it to Receiver.

Constraint: All bins must have the same number of items.

Simple hashing Cuckoo hashing
000 Hash functions: h € € Hash functions: hy, -, hyp
dfh dfh h h
Maximum load Maximum load
000 loan f f
0 (2%) 1
C - c00 log logn 0
€g eg0 | Number of entries c ‘ c Number of entries
a a00 0(nlogn) g g <2n(1+e€)
loglogn
b b00 d d
000 Multiplicative depth b b Multiplicative depth
ogn O(log|H
0(log og logn) 0 (log|H|)
a a

(Blueprint) Basic Protocol

; Assuming a Sendet’s set with one million entries
Protocol 1 Basic Protocol g

Input: & inputs set X and R inputs set Y. Both sets consist

of bit strings of length ¢. Sizes | X|, |Y'|, and o are public. ¢
Ol}tput: Sgoutputng_L R outpuL; XNnY. P . Recelver Sender .
1) Setup: Parties agree on a Fully Homomorphic En-
cryption scheme and encryption parameters (n, g, t). Encrypts set with Sender’s key
2) Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X = sends encrypted set ~ 7 Tefabytes

(T1,...,T;x|) to R.
3) Computing intersection: For each y; € Y, R:
a) samples a random plaintext r; € Z; from a

~N

V4
3

computes intersection Linear search (= 1 million multiplications)

uniform distribution; adds random value
b) homomorphically computes
x| encrypts random value
dj =rj+ [[@ - u)) with Recetver’s key
i=1
c) encrypts r; — 7; under its own key:; sends CﬁCprted result and
S TS encrypted random value
4) Decryption: For each (d;,7;), S: Recurrent >
a) decrypts d; — d;; decrypts result

b) samples a non-zero random plaintext value
p; € Z:\{0} from a uniform distribution;
¢) homomorphically computes

subtracts random value

multiply by another random value
€ = (75— dj) - pj

d) sends €; to R. <

5) Result: R decrypts ¢; — e; and outputs decrypts final result

sends final result

. Y . .
XnY =l {y; :e; =0} L checks if value is zero or not

(Blueprint) Basic Protocol

; Assuming a Sendet’s set with one million entries
Protocol 1 Basic Protocol g

Input: & inputs set X and R inputs set Y. Both sets consist

of bit strings of length ¢. Sizes | X|, |Y'|, and o are public. ¢
Output: Sgoutputng_L R outpuL; XNnY. P Recelver Sender
(1) Setup: Parties agree on a Fully Homomorphic En- ||)
cryption scheme and encryption parameters (n, g, t). Encrypts set with Sender’s key
2) Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X =) sends encrypted set = 100 Gigabytes

(T1,...,T;x|) to R.
3) Computing intersection: For each y; € Y, R:
a) samples a random plaintext r; € Z; from a

uniform distﬁbution; adds random value
b) homomorphically computes

~N
A

computes intersection

encrypts random value

X
dj =rj+ [[@ —y;) with Recetver’s key
i=1
c) encrypts r; — 7; under its own key:; sends eﬁCfYPted result and
d) sends d; and 7; to S. encrypted random value
4) Decryption: For each (d;,7;), S: Recurrent >
) e 6 s G decrypts result

b) samples a non-zero random plaintext value
p; € Z:\{0} from a uniform distribution;
¢) homomorphically computes

subtracts random value

multiply by another random value
€ = (75— dj) - pj

d) sends €; to R. <

5) Result: R decrypts ¢; — e; and outputs decrypts final result

sends final result

. Y . .
XnY =l {y; :e; =0} L checks if value is zero or not

Reducing Communication on Sender’s Set

Pack many entries into one ciphertext.

Reducing Communication on Sender’s Set

Pack many entries into one ciphertext.

FHE encrypts plaintext polynomials into ciphertext polynomials.

Message space: M = Z; Plaintext space: P = Z,[x|/(x™ + 1) Ciphertext space: C = Zg[x]/(x" + 1)

Reducing Communication on Sender’s Set

Pack many entries into one ciphertext.

FHE encrypts plaintext polynomials into ciphertext polynomials.

Message space: M = Z; Plaintext space: P = Z,[x|/(x™ + 1) Ciphertext space: C = Zg[x]/(x" + 1)

()

Integer

p=egm): M- P
c=E(p):Pw C?

Reducing Communication on Sender’s Set

Pack many entries into one ciphertext.

FHE encrypts plaintext polynomials into ciphertext polynomials.

Message space: M = Z; Plaintext space: P = Z,[x|/(x™ + 1) Ciphertext space: C = Zg[x]/(x" + 1)

Integer Batching
p=em):MoP |p=emy,my -, my): M" P
c=E(p):Pw C? c=E(p):P C>

[4] Nigel P. Smart and Frederik Vercauteren. "Fully homomorphic SIMD operations." Designs, codes and cryptography, 2014.

Reducing Communication on Sender’s Set

Pack many entries into one ciphertext.

FHE encrypts plaintext polynomials into ciphertext polynomials.

Message space: M = Z; Plaintext space: P = Z,[x|/(x™ + 1) Ciphertext space: C = Zg[x]/(x" + 1)

Integer

p=e(m):MoP p=e(my,my - my): M* o P
c=E(p):Pw C? c=E(p):P C>

-

Batching ¥

g

Batching + Packing

P = s(ml,mz,---,mkn) : Mkn - P
c=E(p):Pw C?

[4] Nigel P. Smart and Frederik Vercauteren. "Fully homomorphic SIMD operations." Designs, codes and cryptography, 2014.

Reducing Communication on Sender’s Set

Pack many entries into one ciphertext.

FHE encrypts plaintext polynomials into ciphertext polynomials.

Message space: M = Z; Plaintext space: P = Z,[x|/(x™ + 1) Ciphertext space: C = Zg[x]/(x" + 1)

Integer

p=egm): M- P
c=E(p):Pw C?

Batching ¥

p = g(mlimZJ ”.;mn) . Mn — P
c=E@p):Pw C*

-

g

Batching + Packing

P = s(ml,mz,---,mkn) : Mkn - P
c=E(p):Pw C?

We encode Cuckoo hash table T with proposed “Batching + Packing” method.

[4] Nigel P. Smart and Frederik Vercauteren. "Fully homomorphic SIMD operations." Designs, codes and cryptography, 2014.

Reducing Communication on Sender’s Set

Ciphertext
—-— S

E Packing slot Batching slot
| |

‘ Cuckoo Hashing

Hash Tables
Tt T Te1 Tk

»

Encoding
&
Encrypting

(Blueprint) Basic Protocol

; Assuming a Sendet’s set with one million entries
Protocol 1 Basic Protocol g

Input: & inputs set X and R inputs set Y. Both sets consist

of bit strings of length ¢. Sizes | X|, |Y'|, and o are public. ¢
Output: Sgoutputng_L R outpuL; XNnY. P Recelver Sender
(1) Setup: Parties agree on a Fully Homomorphic En- ||)
cryption scheme and encryption parameters (n, g, t). Encrypts set with Sender’s key
2) Set encryption: S encrypts each element x; € X
under its own key, and sends the | X| ciphertexts X =) sends encrypted set = 100 Gigabytes

(T1,...,T;x|) to R.
3) Computing intersection: For each y; € Y, R:
a) samples a random plaintext r; € Z; from a

uniform distﬁbution; adds random value
b) homomorphically computes

~N
A

computes intersection

encrypts random value

X
dj =rj+ [[@ —y;) with Recetver’s key
i=1
c) encrypts r; — 7; under its own key:; sends eﬁCfYPted result and
d) sends d; and 7; to S. encrypted random value
4) Decryption: For each (d;,7;), S: Recurrent >
) e 6 s G decrypts result

b) samples a non-zero random plaintext value
p; € Z:\{0} from a uniform distribution;
¢) homomorphically computes

subtracts random value

multiply by another random value
€ = (75— dj) - pj

d) sends €; to R. <

5) Result: R decrypts ¢; — e; and outputs decrypts final result

sends final result

. Y . .
XnY =l {y; :e; =0} L checks if value is zero or not

(Blueprint) Basic Protocol

; Assuming a Sendet’s set with one million entries
Protocol 1 Basic Protocol g

Input: & inputs set X and R inputs set Y. Both sets consist

of bit strings of length ¢. Sizes | X|, |Y|, and ¢ are public. b
Output: Sgoutputng_L R outpuL; XNnY. P Recelver Sender
(1) Setup: Parties agree on a Fully Homomorphic En- ||)
cryption scheme and encryption parameters (n, g, t). Encrypts set with Sender’s key
2) Set encryption: S encrypts each element z; € X
lfmdcr its own kC};r,)and sends the | X| ciphertexts X = sends encrypted set
T1,...,2x]) to R. <

~N
A

3) Computing intersection: For each y; € Y, R:
a) samples a random plaintext r; € Z; from a

uniform distﬁbution; adds random value
b) homomorphically computes

computes intersection

encrypts random value

X
dj =rj+ [[@ —y;) with Recetver’s key
i=1
c) encrypts r; — 7; under its own key:; sends eﬁCfYPted result and
d) sends d; and 7; to S. encrypted random value
4) Decryption: For each (d;,7;), S: Recurrent >
) e 6 s G decrypts result

b) samples a non-zero random plaintext value
p; € Z:\{0} from a uniform distribution;
¢) homomorphically computes

subtracts random value

multiply by another random value
€ = (75— dj) - pj

d) sends €; to R. <

5) Result: R decrypts ¢; — e; and outputs decrypts final result

sends final result

. Y . .
k XnY =l {y; :e; =0} L checks if value is zero or not

Results

X| ~ 229, |Y| = {4, 16, 64)

_ 520 Y]
X =22 4 16 64
Fast Setup 0.09 Fast Setup| 0.02 0.11 043
Fast Intersection 0.30 Fast Intersection| 0.03 0.10 0.37
Computation Computation
Fast Setup 12.63 Fast Setup| 1.85 7.39 29.55
Fast Intersection 25.25 Fast Intersection| 0.66 2.65 10.59
Communication Communication

One-time Fast Setup| 0.10 Recurrent Fast Sctup| 0.02 0.12 045
) Fast Intersection 0.32) Fast Intersection| 0.03 0.10 0.38

Total time Total time

(10 Gbps) (10 Gbps)
Fast Setup 1.26 Fast Setup| 0.33 0.86 2.95
) Fast Intersection 2.48) Fast Intersection| 0.24 0.47 1.38

Total time Total time

(100 Mbps)

(100 Mbps)

X| ~ 229, |Y| = {4, 16, 64)

_ 520 Y]
(X| =22 4 16 64
Fast Setup 0.09 Fast Setup| 0.02 0.11 043
Fast Intersection 0.30 Fast Intersection| 0.03 0.10 0.37
Computation Computation
Fast Setup 12.63 Fast Setup| 1.85 7.39 29.55
Fast Intersection 25.25 Fast Intersection| 0.66 2.65 10.59
Communication Communication

One-time Fast Seup| 0.10 Recurrent Fast Sctup| 0.02 0.12 045
. Fast Intersection 0.32) Fast Intersection| 0.03 0.10 0.38

Total time Total time

(10 Gbps) (10 Gbps)
Fast Setup 1.26 Fast Setup| 0.33 0.86 2.95
) Fast Intersection 2.48) Fast Intersection| 0.24 0.47 1.38

Total time Total time

(100 Mbps)

(100 Mbps)

X| ~ 229, |Y| = {4, 16, 64)

_ 520 Y]
(X| =22 4 16 64
Fast Setup 0.09 Fast Setup| 0.02 0.11 043
Fast Intersection 0.30 Fast Intersection| 0.03 0.10 0.37
Computation Computation
Fast Setup 12.63 Fast Setup| 1.85 7.39 29.55
Fast Intersection 25.25 Fast Intersection| 0.66 2.65 10.59
Communication Communication

One-time Fast Setup| 0.10 Recurrent Fast Seup| 0.02 012 045
) Fast Intersection 0.32) Fast Intersection| 0.03 0.10 0.38

Total time Total time

(10 Gbps) (10 Gbps)
Fast Setup 1.26 Fast Setup| 0.33 0.86 2.95
) Fast Intersection 2.48) Fast Intersection| 0.24 0.47 1.38

Total time Total time

(100 Mbps)

(100 Mbps)

X| ~ 229, |Y| = {4, 16, 64)

_ 520 Y]
X =22 4 16 64
Fast Setup 0.09 Fast Setup| 0.02 0.11 043
Fast Intersection 0.30 Fast Intersection| 0.03 0.10 0.37
Computation CLR [8] 1.21 Computation
KKRT [31] NA
PSSZ [38] NA
Fast Setup 12.63 Fast Setup| 1.85 7.39 29.55
Fast Intersection 25.25 Fast Intersection| 0.66 2.65 10.59
Communication CLR [8] 0.00 Communication
KKRT [31] NA
One-time PSSZ [38] NA Recurrent
Fast Setup 0.10 Fast Setup| 0.02 0.12 045
. Fast Intersection 0.32) Fast Intersection| 0.03 0.10 0.38
Total time CLR [8] 191 Total time
(10 Gbps) KKRT [31] NA (10 Gbps)
PSSZ [38] NA
Fast Setup 1.26 Fast Setup| 0.33 0.86 2.95
) Fast Intersection 2.48) Fast Intersection| 0.24 0.47 1.38
Total time CLR [8] 1.21 Total time
(100 Mbps) KKRT [31] 1\.TA (100 Mbps)
PSSZ [38] NA

[8] Hao Chen, Kim Laine, and Peter Rindal. "Fast private set intersection from homomorphic encryption." CCS, 2017.
[31] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. "Efficient batched oblivious PRF with applications to private set intersection." CCS, 2016.
[38] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. "Phasing: Private set intersection using permutation-based hashing." USENIX Security, 2015.

X| ~ 229, |Y| = {4, 16, 64)

_ 520 Y]

X =22 4 16 64

Fast Setup 0.09 Fast Setup| 0.02 0.11 043

Fast Intersection 0.30 Fast Intersection| 0.03 0.10 0.37

Computation CLR [8] 1.21 Computation CLR [8]| 2.21 2.21 2.21
KKRT [31] NA KKRT[31]| 1.62 1.62 1.62

PSSZ [38] NA PSSZ [38]| 0.86 0.86 0.71
Fast Setup 12.63 Fast Setup| 1.85 7.39 29.55
Fast Intersection 25.25 Fast Intersection| 0.66 2.65 10.59
Communication CLR [8] 0.00 Communication CLR [8]| 5.60 5.60 5.60
KKRT [31] NA KKRT [31]|57.17 57.17 57.17
One-time PSSZ [38] NA Recurrent PSSZ [38]24.05 24.05 27.11
Fast Setup 0.10 Fast Setup| 0.02 0.12 045

Total time Fast Intersection 0.32 Total time Fast Intersection| 0.03 0.10 0.38
(10 Gbps) CLR [8] 1.21 (10 Gbps) CLR [8]| 2.21 2.21 2.21
ps KKRT [31] NA ps KKRT [31]| 1.67 1.67 1.67

PSSZ [38] NA PSSZ [38]]| 0.88 0.88 0.73

Fast Setup 1.26 Fast Setup| 0.33 0.86 2.95

Total ti Fast Intersection 2.48 Total Fast Intersection| 0.24 0.47 1.38
(1803M‘l;“‘2) CLR [8] 1.21 (_lgoaMlbmf) CLR [8]] 2.81 2.81 281
P KKRT [31] NA b KKRT [31]| 6.46 6.46 6.46

PSSZ [38] NA PSSZ [38]| 2.94 294 3.05

[8] Hao Chen, Kim Laine, and Peter Rindal. "Fast private set intersection from homomorphic encryption." CCS, 2017.
[31] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. "Efficient batched oblivious PRF with applications to private set intersection." CCS, 2016.
[38] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. "Phasing: Private set intersection using permutation-based hashing." USENIX Security, 2015.

Thank You

github.com/momalab /psi-ndss2025

Artifact
Evaluated

A NDss

Available
Functional

Reproduced

URL Denylisting / Email Filtering

mail Filter

* Privacy problem

* Set intersection

* Unbalanced sets

e Recurrent operation

receives

many emails Service Provider

(List of malicious URLs)

O Mail Server

Service Provider learns
Rewrite URLs and list of URLs in emails in

send to inbox I Chck accessed URLs
Privacy issue can be
. addressed with the use
Redirect of a PSI protocol

site.com Inbox

Full Protocol

Protocol 2 Full Protocol

Input:

are public

S inputs set X of size [X]. R inputs set Y of size [Y]. Both sets consist of bit strings of length oy, [X], [Y

.

,and oy

5) Decryption: For all pairs (D', R®) Vi e Ly, +1. St
a) Decrypts each D" — DU, and humumm‘phiulll) computes M — RG D“' Vi € Ly, s

Output: S outputs L; R outputs X NY. b) Performs h — 1y — 1 — 1, : r,a, € Z,, +1 homomorphic multiplications between MO e Zy, 41, resulting in
1) Setup: In this step, parties select all parameters to be used in the protocol. Ny + 1 ciphertexts NU) i €7 L 1-
a) Security parameters: Parties agree on computational and statistical security parameters (x and A, respectively). c) Samples 7, + 1 tuples of random values (py, ..., pn, € Z;\{a - #;} Va,i € Z :1 <4 < k) such that no random
b) Data compression: From Eqs and(, we have that ¢ = min (o4, ay,). Therefore, if oy, < a4, parties value is a multiple of any p‘ukmw modulus !(, and encode each luple as a polynomial PO e T, /(a™ + 1).
agree on a hash function Z(-) : Zyea + Zy-. for data compression. Otherwise, Z(x) = . d) Homomorphically computes EU) = rotate [1'\- . pll w) vy e Zy, 41, where the function m!u!r[). rotates
¢) Cuckoo hashing and Permutation-based hashing: the batching slots by a random number of positions w; 3 Z,,. . modulus switches and sends each EU) 1o R.
i Parties agree on the number of hash functions i and insertion depth limit d for Cuckoo hashing. . =) () . Y| T
ii; They select the number of Cuckoo hash tables & (= number of gacking slots), and a I\lll‘lCli()l‘lL.‘(j["] that 6) Result: R decrypts each £%9 » E') and outputs X NY = L;_l}_l{g,r_‘, = 0¢ LJJJ_“ 'L“}'
maps a ¢-bit entry x to Cuckoo hash table 79(*)) (§ .
iii) Following amd S chooses the Cuckoo hash table size |T)| for a failure rate < 272,
iv) By knowing [T7|, one can calculate the left o7 = |log, |T'?|| and right o = o — o, sizes for
Permutation-based hashing (,
v) S selects the h different hash functions H : Zy- + Zjp), where H; (20..2r) = zL @ fj(2r) and
J[i‘,[',':,q] : ZQ”H — Z|';'-:|:-| (
d) Encryption parameters:
i) Parties agree on partitioning parameters 7, and 7, (and plaintext modulus £ = Hf‘_l t; oty =
298 4 2 (m TV-B4] and §IV-B7).
ii) Pdlllﬁ\ select enu)plmn parameters (ng,gs, L), (ny,qrt) : ng = n, following Eq. and
Encryption parameters are public.
iti) Each party generates decryption and encryption keys, which are kepl private.
2) Cuckm hashing: For each entry = € X, S performs z = z|zp = Z(x) : |22] = |log, |[T'¥|| and inserts zp at

(ep.zp) - 1 =7 < ho A dummy \‘llue is assigned to empty bins after msemn" entries € X into tables 70 (§IV-A2).
3) Qet encry ptmn & encodes all Cuckoo hash tables and bins into polynomials following Eq. l(. encrypits them

into ciphertexts under its own key, and sends the |—IjI v] ciphertexts C' to R.
4) Computing intersection: For each y € ¥, R:

a) Computes z = zp|zg = Z(y) : |z1] = |logy [T
i< h R:
i) Creates a polynomial P € Z[z] /(2™ + 1) s.t. P, , = zg for (u,v) = (H;(z, zg) mod n,, g(z) —1)
and a dummy value otherwise.

|, and for each Cuckoo hash function H;(-) ¥j € Z:1 <

g _ (| Hitzr.=r)
ii) Homomorphically computes the difference gV (_T(l J) _ P

. . T . -} . \ . .
b) Performs h —ns —1:ns € Zj, homomorphic multiplications between 5 : j € Zy 44 \{0}, resulting in 5, +1
. i) .
ciphertexts M Vi € Z,, ;1.
c) Samples ns + 1 tuples of ra_l_r_ldu'}m values (ri,...,rn, € Z;) from a uniform distribution, where each tuple is
encoded as a polynomial R' € Z;[z] /(" + 1).
) — (i) (i) P .) o)
d) Computes D'~ =M~ +RU Ve Zy, +1, modulus switches it, encrypts R'*) +— R'*) under its key, and sends
—{i) = . ~ . . .
the (D", R')) pairs to &. Note that each R'*) will be several ciphertexts if ng > n,.

X| ~ 224, |Y| = {4, 16, 64)

e Y]

| X| =22 4 16 64

Fast Setup 1.79 Fast Setup| 0.02 0.11 0.43

Fast Intersection 7.74 Fast Intersection| 0.03 0.10 0.37

Computation CLR [8] 21.54 Computation CLR [8]| 23.22 23.22 23.22
KKRT [31] NA KKRT[31]| 30.42 40.42 30.42

PSSZ [38] NA PSSZ [38]| 11.11 11.11 8.54

Fast Setup 202.04 Fast Setup| 1.85 7.39 29.55

Fast Intersection 404.08 Fast Intersection| 0.66 2.65 10.59
Communication CLR [8] 0.00 Communication CLR [8]| 11.00 11.00 11.00
KKRT [31] NA KKRT [31]]946.75 946.75 946.75
One-time PSSZ [38] NA Recurrent PSSZ [38]]1432.05 432.05 432.11
Fast Setup 1.96 Fast Setup| 0.02 0.12 0.45

Total time Fast Intersection 8.08 Total time Fast Intersection 0.03 0.10 0.38
(10 Gbps) CLR_ [8] 21.54 (10 Gbps) CLR_ [8] 23.22 23.22 23.22

) KKRT [31] NA KKRT [31]] 31.21 31.21 31.21

PSSZ [38] NA PSSZ [38]| 11.47 11.47 8.90

Fast Setup 18.68 Fast Setup| 0.33 086 2.95

Total time Fast Intersection 41.44 Total time Fast Intersection| 0.24 047 1.38
(100 Mbps) CLR.[S_] 21.54 (100 Mbps) CLR_ [8] 23.59 23.59 .23.59
KKRT [31] NA KKRT [31]]109.27 109.27 109.27

PSSZ [38] NA PSSZ [38]| 47.14 47.14 44.57

TABLE VI: Total time (in seconds) for two configurations of our PSI protocol, Fast Setup and Fast Intersection, and related
work, considering a S’s set size | X| = £ - 2?4 and several sizes of R’s set |Y|, where we evaluate the one-time costs and
recurrent costs of performing set intersections. KKRT and PSSZ do not have one-time costs.

	Slide 1: Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo Hashing and Leveled FHE
	Slide 2: Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo Hashing and Leveled FHE
	Slide 3: Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo Hashing and Leveled FHE
	Slide 4: Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo Hashing and Leveled FHE
	Slide 5: Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo Hashing and Leveled FHE
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Proposed PSI Protocol
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Results
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Thank You
	Slide 47
	Slide 48
	Slide 49

