On the Robustness of LDP Protocols for Numerical Attributes under Data Poisoning Attacks

Xiaoguang Li*~, Zitao Li^, Ninghui Li~, and <u>Wenhai Sun~</u>

*Xidian University ^Alibaba Group (U.S.) Inc. ~Purdue University

Local Differential Privacy

LDP [Duchi *et al.* FOCS'13]: A randomized algorithm M is ϵ -LDP if and only if $\Pr[M(x_1) = t] \le e^{\epsilon} \Pr[M(x_2) = t]$

where x_1 and x_2 are any pair of inputs in the domain.

Poisoning Attacks – A more realistic threat model

Profound adverse impacts on the Internet

Undermine the mutual trust between users and service providers

Detrimental to Internet freedom, e.g., stealthy censorship and suppression by abusing privacy-enhancing technology

Research Objectives and Contributions

Overarching goal: Understand the robustness of diverse state-of-the-art LDP protocols under data poisoning attacks

- New metrics
- Reveal new insights from protocol design to alleviate attack influence
- Enable fair comparison for protocol recommendation
- Explore effective mitigation

Attack-driven robustness evaluation framework

Attack Simulation

Target task: Numerical distribution

Threat model

- Attacker's capabilities
 - Compromise $\beta \in [0,1]$ of n users to inject fake data
 - Know the relevant parameters (e.g., ϵ) of LDP
 - Craft values in the output domain of LDP perturbation
- Attack goal
 - Shift the distribution to the right-most end of the domain

Before Attack

After Attack

Baseline: Inject fake data directly in the input domain of LDP perturbation

- A universal attack
- Represent the minimum damage the attack may cause

Robustness Evaluation

Metrics

• Absolute Shift Gain (ASG):

P(X, v): Cumulative distribution
 function over distribution X on value v

• X, \hat{X}_a : True distribution and estimated distribution after attack respectively

• Measure the value difference between cumulative distribution functions before

 $ASG(X, \hat{X}_a) = \sum_{i} P(X, v) - P(\hat{X}_a, v)$

• Higher ASG indicates higher attack efficacy and lower robustness of target protocols

Limitations

- \circ Sensitive to many factors, e.g., β and true data distribution
- Cannot indicate relative advantage compared to the baseline

Robustness Evaluation

Metrics

• Shift Gain Ratio (SGR):

$$SGR(\hat{X}_{a}) = \frac{ASG(X, \hat{X}_{a})}{ASG(X, X_{a}^{base})}$$

• Normalized by ASG of the baseline

Measure the attack efficacy at per-fake-user level

- How many fake users in the baseline is equivalent to one fake user in the proposed attack
- Upper-bounded by $1/\beta$, i.e., β fake users in our attack equal to 100% fake users in the baseline
- The higher SGR, the higher attack efficacy and lower protocol robustness

Enable more meaningful robustness analysis across different LDP protocols

• X_a^{base} : The skewed distribution estimate after baseline attack

Experiment Setup

Datasets

- Synthesized: Norm
- Real-world: Taxi and Retirement

Target LDP protocols

- \circ Categorical frequency oracles (CFO) with binning
 - Direct encoding: **GRR** [Wang *et al*. USENIX Security'17]
 - Unary encoding: **OUE** [Wang *et al*. USENIX Security'17]
 - Local hashing based protocols: HST [Bassily *et al*. NeurIPS'17] and OLH [Wang *et al*. USENIX Security'17]
 - For OLH and HST, we differentiate the <u>Server</u> and <u>User</u> settings depending on who selects the hash function
- \circ Distribution reconstruction
 - SW mechanism [Li et al. SIGMOD'20]

Experimental Results

- SW and the Server setting of local hashing-based LDP protocols are the most robust
- OLH-User is slightly robust than HST-User
- GRR, OUE and HST-User can achieve the upper bound of SGR, indicating more vulnerable to the attack

New Insights from Protocol Design into LDP Security

Prior results

 \circ Privacy budget ϵ : Either trade-off or consistency depending on attack goals

Our findings

- \circ The hash domain size g in OLH:
 - Small g leads to better security
 - An optimal g for utility is not always optimal for robustness

- $\,\circ\,$ The smoothing step in SW:
 - Diminish attack influence on target bins by averaging with adjacent bins

Zero-shot Detection

Challenges in practice

- The user data is *unknown*
- The attack strategy is *unknown*
- The method should be highly *sensitive* to data pollution

No prior work on numerical distribution

Adapt the malicious user detection (MUD) for categorical data

- -- [Cao *et al.* USENIX Security'21]
 - Frequent itemset mining to identify commonly supported items

Zero-shot Detection

- Randomness from bogus data is statistically different from LDP randomness
- In two-round reconstructions, measure distances between perturbed results
- g_{ben} as benchmark since no attack occurs and apply a two-sample KS test for detection

Detection Results

Metric -- Aera under the curve (AUC); A larger AUC means a better detection

Dataset	eta	ε	HST-Server		HST-User		OLH-Server		OLH-User		OUE		GRR	
			Ours / MUD	ASG	Ours / MUD	ASG	Ours / MUD	ASG	Ours / MUD	ASG	Ours / MUD	ASG	Ours / MUD	ASG (
Taxi		0.2	0.4416 / –	0.0484	1.00 / -	0.391	0.476 / –	0.047	0.9952 / -	0.207	1.00 / -	0.391	1.00 / -	0.391
	1%	0.6	0.4384 / –	0.0054	1.00 / -	0.101	0.4232 / -	0.0189	0.6224 / -	0.105	1.00 / -	0.071	1.00 / -	0.184
		1	0.3306 / -	0.008	0.9744 / –	0.058	0.392 / -	0.015	0.5784 / –	0.063	0.6808 / -	0.026	0.8992 / –	0.096
		0.2	0.4972 / –	0.0992	1.00 / -	0.391	0.6167 / –	0.117	1.00 / -	0.285	1.00 / -	0.39	1.00 / -	0.391
	2.5%	0.6	0.4872 / -	0.03432	1.00 / -	0.392	0.4933 / -	0.0407	1.00 / -	0.2012	1.00 / -	0.382	1.00 / -	0.387
		1	0.3696 / –	0.027	1.00 / -	0.344	0.4 / -	0.035	1.00 / -	0.146	0.9696 / –	0.11	1.00 / -	0.22
		0.2	0.555 / -	0.18	1.00 / -	0.3912	0.6504 / -	0.204	1.00 / -	0.3353	1.00 / -	0.391	1.00 / -	0.391
	5%	0.6	0.5352 / -	0.072	1.00 / -	0.391	0.5392 / -	0.106	1.00 / -	0.277	1.00 / -	0.391	1.00 / -	0.391
		1	0.4976 / –	0.048	1.00 / -	0.389	0.4844 / –	0.0771	1.00 / -	0.23	1.00 / -	0.389	1.00 / -	0.385
		0.2	0.6211 / -	0.29	1.00 / -	0.391	0.7411 / –	0.31	1.00 / -	0.357	1.00 / -	0.392	1.00 / -	0.391
	7.5%	0.6	0.6089 / –	0.108	1.00 / -	0.39	0.6494 / –	0.15	1.00 / -	0.31	1.00 / -	0.391	1.00 / -	0.391
		1	0.5667 / –	0.073	1.00 / -	0.391	0.5583 / -	0.11	1.00 / -	0.27	1.00 / -	0.391	1.00 / -	0.391
		0.2	0.8432 / 0.575	0.382	1.00 / 0.575	0.392	0.7912 / 0.55	0.377	1.00 / 0.55	0.37	1.00 / 0.55	0.392	1.00 / -	0.391
	10%	0.6	0.62 / -	0.15	1.00 / -	0.39	0.63 / -	0.207	1.00 / -	0.335	1.00 / -	0.39	1.00 / -	0.391
		1	0.5072 / -	0.097	1.00 / -	0.39	0.5338 / -	0.15	1.00 / -	0.303	1.00 / -	0.391	1.00 / -	0.391

- Our detection outperforms the existing method
- The detection shows better results with growing β and decreasing ϵ
- AUC is relatively low for Server setting

What's Next?

Robust protocol design

- Security should be considered for LDP design in addition to privacy and utility
- Our metrics could help with relevant robustness analysis

Systematic exploration on defense

- Diversifying detection perspectives, e.g., fake users and overall anomaly behavior
- Effective recovery schemes for corrupted data collection
 Attack-aware LDP post-processing

Conclusion

We designed a robustness evaluation framework and studied state-ofthe-art LDP protocols for distribution estimation

SW and CFO with binning under Server setting are preferred against data poisoning attacks

We revealed new factors relating to LDP security, i.e., g in OLH and the smoothing in SW

We proposed a novel effective zero-shot detection method