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Local Differential Privacy
LDP [Duchi et al. FOCS’13]: A randomized algorithm 𝑀 is 𝜖-LDP if and only if 

Pr 𝑀 𝑥1 = 𝑡 ≤ 𝑒𝜖 Pr[𝑀 𝑥2 = 𝑡]
where 𝑥1 and 𝑥2 are any pair of inputs in the domain.



Poisoning Attacks – A more realistic threat model

For example, 
o Cao et al. USENIX Security’21

• Goal: Promote target items

o Cheu et al. IEEE S&P’21
• Goal: Degrade estimation accuracy

o Li et al. USENIX Security’23
• Goal: Fine-grained result control

Profound adverse impacts on the Internet

❑ Undermine the mutual trust between users and service providers

❑ Detrimental to Internet freedom, e.g., stealthy censorship and suppression by abusing 

privacy-enhancing technology



Research Objectives and Contributions

Overarching goal: Understand the robustness of diverse state-of-the-art 
LDP protocols under data poisoning attacks 

• New metrics

• Reveal new insights from protocol design to alleviate attack influence

• Enable fair comparison for protocol recommendation

• Explore effective mitigation

Attack-driven robustness evaluation framework

Attack Simulation Robustness Analysis Defense Exploration



Attack Simulation
Target task: Numerical distribution

Threat model
o Attacker’s capabilities

• Compromise 𝛽 ∈ [0,1] of 𝑛 users to inject fake data
• Know the relevant parameters (e.g., 𝜖) of LDP
• Craft values in the output domain of LDP perturbation

o Attack goal

• Shift the distribution to the right-most end of the domain

Baseline: Inject fake data directly in the input domain of LDP perturbation

• A universal attack 

• Represent the minimum damage the attack may cause



Robustness Evaluation

Metrics
o Absolute Shift Gain (ASG): 

𝐴𝑆𝐺(𝑋, 𝑋𝑎) = 

𝑣=1

𝑚

𝑃 𝑋, 𝑣 − 𝑃 𝑋𝑎, 𝑣

• Measure the value difference between cumulative distribution functions before 
and after attack

• Higher ASG indicates higher attack efficacy and lower robustness of target protocols

Limitations
o Sensitive to many factors, e.g., 𝛽 and true data distribution
o Cannot indicate relative advantage compared to the baseline

❖ 𝑃 𝑋, 𝑣 : Cumulative distribution 
function over distribution 𝑋 on value 𝑣

❖ 𝑋, 𝑋𝑎: True distribution and estimated 
distribution after attack respectively



Metrics
o Shift Gain Ratio (SGR): 

𝑆𝐺𝑅( 𝑋𝑎) =
𝐴𝑆𝐺(𝑋, 𝑋𝑎)

𝐴𝑆𝐺(𝑋, 𝑋𝑎
𝑏𝑎𝑠𝑒)

• Normalized by ASG of the baseline

Robustness Evaluation

❖ 𝑋𝑎
𝑏𝑎𝑠𝑒: The skewed distribution 

estimate after baseline attack

Measure the attack efficacy at per-fake-user level
• How many fake users in the baseline is equivalent to 

one fake user in the proposed attack

• Upper-bounded by 1/𝛽, i.e., 𝛽 fake users in our attack equal to 100% fake users in 
the baseline

• The higher SGR, the higher attack efficacy and lower protocol robustness

Enable more meaningful robustness analysis across different LDP protocols



Experiment Setup

Datasets
• Synthesized: Norm
• Real-world: Taxi and Retirement

Target LDP protocols
o Categorical frequency oracles (CFO) with binning

• Direct encoding: GRR [Wang et al. USENIX Security'17]
• Unary encoding: OUE [Wang et al. USENIX Security'17]
• Local hashing based protocols: HST [Bassily et al. NeurIPS'17] and OLH

[Wang et al. USENIX Security'17]
❖ For OLH and HST, we differentiate the Server and User settings 

depending on who selects the hash function
o Distribution reconstruction

• SW mechanism [Li et al. SIGMOD'20]



Experimental Results

• SW and the Server setting of local hashing-based LDP protocols are the most robust
• OLH-User is slightly robust than HST-User
• GRR, OUE and HST-User can achieve the upper bound of SGR, indicating more vulnerable 

to the attack
*Refer to the paper for more results

Varying ϵ

Varying β



New Insights from Protocol Design into LDP Security

Prior results
o Privacy budget 𝜖: Either trade-off or consistency depending on attack goals

Our findings
o The hash domain size 𝑔 in OLH:

▪ Small 𝑔 leads to better security
▪ An optimal 𝑔 for utility is not 

always optimal for robustness

o The smoothing step in SW:
▪ Diminish attack influence on target bins by averaging with adjacent bins 



Zero-shot Detection

Challenges in practice

• The user data is unknown

• The attack strategy is unknown

• The method should be highly sensitive to data pollution

No prior work on numerical distribution

Adapt the malicious user detection (MUD) for categorical data 
-- [Cao et al. USENIX Security’21]

• Frequent itemset mining to identify commonly supported items



Zero-shot Detection

• Randomness from bogus data is statistically different from LDP randomness

• In two-round reconstructions, measure distances between perturbed results 

• 𝑔𝑏𝑒𝑛 as benchmark since no attack occurs and apply a two-sample KS test for detection



Detection Results

• Our detection outperforms the existing method
• The detection shows better results with growing 𝛽 and decreasing 𝜖
• AUC is relatively low for Server setting

Metric -- Aera under the curve (AUC); A larger AUC means a better detection

*Refer to the paper for more results



What’s Next?

Robust protocol design

• Security should be considered for LDP design in addition to privacy 
and utility

• Our metrics could help with relevant robustness analysis

Systematic exploration on defense

• Diversifying detection perspectives, e.g., fake users and overall 
anomaly behavior

• Effective recovery schemes for corrupted data collection
❑Attack-aware LDP post-processing



Conclusion

We designed a robustness evaluation framework and studied state-of-
the-art LDP protocols for distribution estimation

SW and CFO with binning under Server setting are preferred against data 
poisoning attacks

We revealed new factors relating to LDP security, i.e., 𝑔 in OLH and the  
smoothing in SW

We proposed a novel effective zero-shot detection method
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