\

Silence False Alarms: Identifying
Anti-Reentrancy Patterns on Ethereum to
Refine Smart Contract Reentrancy Detection

Qiyang Song, Heqging Huang, Xiaoqi Jia, Yuanbo Xie, and Jiahao Cao

\\\\\\\
.“\‘ \‘..
- PR
24\
4 <SSRy, 0 .
L WSl)
F VLSS . N
G RS - V)
g @ bl e Nd & -
AT I > 7
N A
03, eTBy S 5
0‘.] o
rreeesss

Q== Tsinghua University
L

F B} 5 AR T4 Dy

INSTITUTE OF INFORMATION ENGINEERING,CAS

aV NDSS

SYMPOSIUM/2025

I

Infamous Smart Contract Bug: Reentrancy

Reentrancy bugs have caused massive financial losses on the blockchain

» Since DAO hack (2016)

S50+ million stolen

How The DAO Hack Back in 2016 Changed Ethereum and Crypto Forever

As part of our "CoinDesk Turns 10" series looking back at seminal stories from crypto history,
Slock.it founder and corpus.ventures CEO Christoph Jentzsch joins "First Mover" to discuss how The
DAO hack in 2016 impacted the Ethereum network and the broader crypto industry as a whole.

» SpankChain and Lendf.me

Millions of assets stolen

How Spankchain Got Hacked

Explained: A Reentrancy attack which drained 165 Ether

Cryptocurrency Worth $25 Mn Stolen in

zzzzzzzzzzzzzzzzzzzz

Infamous Smart Contract Bug: Reentrancy

B Reentrancy bugs have caused massive financial losses on the blockchain

B They enable external attackers to manipulate program execution

» Since DAO hack (2016)

S50+ million stolen

How The DAO Hack Back in 2016 Changed Ethereum and Crypto Forever

As part of our "CoinDesk Turns 10" series looking back at seminal stories from crypto history,
Slock.it founder and corpus.ventures CEO Christoph Jentzsch joins "First Mover" to discuss how The
DAO hack in 2016 impacted the Ethereum network and the broader crypto industry as a whole.

» SpankChain and Lendf.me

Millions of assets stolen

How Spankchain Got Hacked

Explained: A Reentrancy attack which drained 165 Ether

Cryptocurrency Worth $25 Mn Stolen in
Lendf.Me and Uniswap Hacking

BBBBBBBBB - April 20, 2020

T

Function Entry

!

Check

require(s > 0)

!

Token Transfer

ExAddress.call.value(s)()

\ 4

Variable Update

s=0

Reentrancy Attack Example

Attacker

Infamous Smart Contract Bug: Reentrancy

B Reentrancy bugs have caused massive financial losses on the blockchain

B They enable external attackers to manipulate program execution

» Since DAO hack (2016)

S50+ million stolen

How The DAO Hack Back in 2016 Changed Ethereum and Crypto Forever

As part of our "CoinDesk Turns 10" series looking back at seminal stories from crypto history,
Slock.it founder and corpus.ventures CEO Christoph Jentzsch joins "First Mover" to discuss how The
DAO hack in 2016 impacted the Ethereum network and the broader crypto industry as a whole.

» SpankChain and Lendf.me

Millions of assets stolen

How Spankchain Got Hacked

Explained: A Reentrancy attack which drained 165 Ether

Cryptocurrency Worth $25 Mn Stolen in
Lendf.Me and Uniswap Hacking

BBBBBBBBB - April 20, 2020

T

Function Entry
@
A\ 4

Check
require(s > 0)

!

Token Transfer
ExAddress.call.value(s)()

\ 4

Variable Update
s=0

Reentrancy Attack Example

Attacker

Infamous Smart Contract Bug: Reentrancy

B Reentrancy bugs have caused massive financial losses on the blockchain

B They enable external attackers to manipulate program execution

» Since DAO hack (2016)

S50+ million stolen

How The DAO Hack Back in 2016 Changed Ethereum and Crypto Forever

As part of our "CoinDesk Turns 10" series looking back at seminal stories from crypto history,
Slock.it founder and corpus.ventures CEO Christoph Jentzsch joins "First Mover" to discuss how The
DAO hack in 2016 impacted the Ethereum network and the broader crypto industry as a whole.

» SpankChain and Lendf.me

Millions of assets stolen

How Spankchain Got Hacked

Explained: A Reentrancy attack which drained 165 Ether

Cryptocurrency Worth $25 Mn Stolen in
Lendf.Me and Uniswap Hacking

BBBBBBBBB - April 20, 2020

T

Function Entry
@
\ 4

Check
require(s > 0)
l ®
Token Transfer
ExAddress.call.value(s)()

\ 4

Variable Update
s=0

Reentrancy Attack Example

Attacker

Infamous Smart Contract Bug: Reentrancy

B Reentrancy bugs have caused massive financial losses on the blockchain

B They enable external attackers to manipulate program execution

» Since DAO hack (2016)

S50+ million stolen

How The DAO Hack Back in 2016 Changed Ethereum and Crypto Forever

As part of our "CoinDesk Turns 10" series looking back at seminal stories from crypto history,
Slock.it founder and corpus.ventures CEO Christoph Jentzsch joins "First Mover" to discuss how The
DAO hack in 2016 impacted the Ethereum network and the broader crypto industry as a whole.

» SpankChain and Lendf.me

Millions of assets stolen

How Spankchain Got Hacked

Explained: A Reentrancy attack which drained 165 Ether

Cryptocurrency Worth $25 Mn Stolen in
Lendf.Me and Uniswap Hacking

BBBBBBBBB - April 20, 2020

T

Function Entry

@)
\

Check

require(s > 0)

l@

Token Transfer

ExAddress.call.value(s)()

\ 4

Variable Update

s=0

@_>

Attacker

Reentrancy Attack Example

Infamous Smart Contract Bug: Reentrancy

B Reentrancy bugs have caused massive financial losses on the blockchain

B They enable external attackers to manipulate program execution

» Since DAO hack (2016) r
S50+ million stolen Function Entry
@)
How The DAO Hack Back in 2016 Changed Ethereum and Crypto Forever A4
Check

As part of our "CoinDesk Turns 10" series looking back at seminal stories from crypto history,

Slock.it founder and corpus.ventures CEO Christoph Jentzsch joins "First Mover" to discuss how The .
DAO hack in 2016 impacted the Ethereum network and the broader crypto industry as a whole. I eq ulre (s> 0)

l@

» SpankChain and Lendf.me
Token Transfer
Millions of assets stolen ExAddress.callvalue(s)() |———s

How Spankchain Got Hacked

; to Attacker
Explained: A Reentrancy attack which drained 165 Ether / Va”able Update
Cryptocurrency Worth $25 Mn Stolen in \ s=0 ~ot updated

Lendf.Me and Uniswap Hacking L

Reentrancy Attack Example

Infamous Smart Contract Bug: Reentrancy

B Reentrancy bugs have caused massive financial losses on the blockchain

B They enable external attackers to manipulate program execution

» Since DAO hack (2016) r
550+ million stolen Function Entry <
@)
How The DAO Hack Back in 2016 Changed Ethereum and Crypto Forever A4 Reentrant |©
Check Call

As part of our "CoinDesk Turns 10" series looking back at seminal stories from crypto history,

Slock.it founder and corpus.ventures CEO Christoph Jentzsch joins "First Mover" to discuss how The .
DAO hack in 2016 impacted the Ethereum network and the broader crypto industry as a whole. I eq ulre (s> 0)

l@

» SpankChain and Lendf.me
Token Transfer
Millions of assets stolen ExAddress.callvalue(s)() |———s

How Spankchain Got Hacked

; to Attacker
Explained: A Reentrancy attack which drained 165 Ether / Va”able Update
Cryptocurrency Worth $25 Mn Stolen in \ s=0 ~ot updated

Lendf.Me and Uniswap Hacking L

Reentrancy Attack Example

Infamous Smart Contract Bug: Reentrancy

B Reentrancy bugs have caused massive financial losses on the blockchain

B They enable external attackers to manipulate program execution

» Since DAO hack (2016) r
550+ million stolen Function Entry <
@)
How The DAO Hack Back in 2016 Changed Ethereum and Crypto Forever A4 Reentrant |©
Check Call

As part of our "CoinDesk Turns 10" series looking back at seminal stories from crypto history,

Slock.it founder and corpus.ventures CEO Christoph Jentzsch joins "First Mover" to discuss how The .
DAO hack in 2016 impacted the Ethereum network and the broader crypto industry as a whole. I eq ulre (s> 0)

l@

» SpankChain and Lendf.me
Token Transfer
Millions of assets stolen ExAddress.callvalue(s)() |———s

How Spankchain Got Hacked

; to Attacker
Explained: A Reentrancy attack which drained 165 Ether / Va”able Update
Cryptocurrency Worth $25 Mn Stolen in \ s=0 ~ot updated

Lendf.Me and Uniswap Hacking L

Reentrancy Attack Example

Infamous Smart Contract Bug: Reentrancy

B Reentrancy bugs have caused massive financial losses on the blockchain

B They enable external attackers to manipulate program execution

» Since DAO hack (2016) r
S50+ million stolen Function Entry <
©)
How The DAO Hack Back in 2016 Changed Ethereum and Crypto Forever ‘l’ Reentrant |©
As part of our "CoinDesk Turns 10" series looking back at seminal stories from crypto history, Ch ECk Cal I
Slock.it founder and corpus.ventures CEO Christoph Jentzsch joins "First Mover" to discuss how The .
DAO hack in 2016 impacted the Ethereum network and the broader crypto industry as a whole. I eq ulre (s> 0)
> kCh d df VO
SpankChain and Lendf.me
P Token Transfer .
Millions of assets stolen ExAddress.call.value(s)() |— @

] Repeated Transfers!
How Spankchain Got Hacked

; to Attacker
Explained: A Reentrancy attack which drained 165 Ether / Va”able Update
Cryptocurrency Worth $25 Mn Stolen in \ s=0 ~ot updated

Lendf.Me and Uniswap Hacking L

Reentrancy Attack Example

Infamous Smart Contract Bug: Reentrancy

B Reentrancy bugs have caused massive financial losses on the blockchain

B They enable external attackers to manipulate program execution

» Since DAO hack (2016) r
S50+ million stolen Function Entry <
. 5
How The DAO Hack Back in 2016 Changed Ethereum and Crypto Forever
As part of our "CoinDesk Turns 10" series looking back at seminal stories from crypto history, Ch ECk
Slock.it founder and corpus.ventures CEO Christoph Jentzsch joins "First Mover" to discuss how The .
DAO hack in 2016 impacted the Ethereum network and the broader crypto industry as a whole. I eq ulre (s> 0) R eentrant
. \l, ® Call Again
» SpankChain and Lendf.me
Token Transfer
Millions of assets stolen ExAddress.callvalue(s)() |—2—s @

] Repeated Transfers!
How Spankchain Got Hacked

; to Attacker
Explained: A Reentrancy attack which drained 165 Ether / Va”able Update
Cryptocurrency Worth $25 Mn Stolen in \ s=0 ~ot updated

Lendf.Me and Uniswap Hacking L

Reentrancy Attack Example

Reentrancy Vulnerability Detection

B Existing Reentrancy Detectors

Function Entry

A4 Reentrant
require(var.>0) Call

» According to Basic Reentrancy Patterns

A4

ExAddress.call.value(var)() | ———>
Read Variable X --> External Call --> Write Variable X v

vars=0

» Based on static analysis/symbolic execution

2022 [EEE Symposium on Security and Privacy (SP)

% 1'-'!. "—; SEEUR'FY 2. SAILFISH: Vetting Smart Contract State-

SLITHER Mythril Inconsistency Bugs in Seconds

> A high rate of false positives (FPs)

I’'m am confused and tired |

@
* Leads to alert fatigue H RS /U\/U\/U\
sl

FP alarms Examine

*Durieux, T et al. Empirical review of automated analysis tools on 47,587 ethereum
smart contracts. ICSE’20

False Alarms Caused by Anti-reentrancy Patterns

B Exiting tools ignore anti-reentrancy patterns’

FP alarms
» FPs: misclassify safe contracts as vulnerable F@ﬂ U| ﬂ ﬂ ﬂ

Ignore anti-reentrancy patterns

* Xue, Y. et al. Cross-contract static analysis for detecting practical reentrancy vulnerabilities in smart contracts. ASE 2020. 4

False Alarms Caused by Anti-reentrancy Patterns

B Exiting tools ighore anti-reentrancy patterns’

FP alarms
» FPs: misclassify safe contracts as vulnerable F@ﬂ [u | ﬂ ﬂ ﬂ

» Anti-reentrancy patterns prevent illegal users

Ignore anti-reentrancy patterns

from reentering functions to gain profits

- Call ; - -
| Function Entry | ? Function Entry < r
8
\ 4 A 4 Hard to perform
Check the sender’s identity | —$8> stop reentrant calls
v ¥
Simple safe transfer function | —>
Example 1: sender check Example 2: Safe transfer

* Xue, Y. et al. Cross-contract static analysis for detecting practical reentrancy vulnerabilities in smart contracts. ASE 2020. 4

To reduce false positives, we

develop an automated tool to

identify anti-reentrancy patterns

B Use deep learning to learn anti-reentrancy patterns from various contracts

real-world contracts deployed on Ethereum —

learn anti-reentrancy patterns [O¥oKO) ---> [ONONO] ---> (OROnO)

= = -

DL models Lots of code patterns

B Use deep learning to learn anti-reentrancy patterns from various contracts

real-world contracts deployed on Ethereum —

learn anti-reentrancy patterns

-> | How to precisely learn anti-reentrancy
patterns from mixed code patterns?

DL models

I - il |

B Use deep learning to learn anti-reentrancy patterns from various contracts

real-world contracts deployed on Ethereum —

learn anti-reentrancy patterns

-> | How to precisely learn anti-reentrancy
patterns from mixed code patterns?

DL models

| i Bl i r

B Design specific methods and data structures to capture related semantics

ERE-—~ . BB [

real-world contracts potentially with anti- graph-based data structure
reentrancy patterns

v

Step #1.:

We begin by filtering contracts potentially

with anti-reentrancy patterns

Smart Contract Filtering

B Insight: Ethereum contracts prone to reentrancy often contain anti-
reentrancy patterns*

‘ High value... should be careful

= - 5 o e 115

OROR0] ---> [OR0RO) seems prone to guarded by anti-
reentrancy reentrancy patterns

often carefully scrutinize contracts Ethereum platform

B Utilize reentrancy knowledge to identify related smart contracts

» Static analysis B
- Reentrant

| require(var.>0) |

\1, Call
Read Variable X --> External Call --> Write Variable X [ExAddress.call.value(var,)() | —>

\

| var, =0 |

* According to our investigation and related paper “Xue, Y. et al. Cross-contract static analysis for detecting practical reentrancy vulnerabilities 8

in smart contracts. ASE 2020.”

Step #2:

Design a data structure to further capture anti-

reentrancy semantics from selected contracts

Program Dependency Graph for Anti-reentrancy (RentPDG)

B Observation: anti-reentrancy patterns often impose data and control

dependency constraints on external calls

Impose ————— e

: i Anti-reentrancy |
constraints i H
'O\
O O

controldependency
data depehdency w I

General anti-reentrancy semantics

Patterns

10

Program Dependency Graph for Anti-reentrancy (RentPDG)

B Observation: anti-reentrancy patterns often impose data and control

dependency constraints on external calls

B To capture the semantics, we use program dependency graphs

Impose E'"A;,'t'i:;é'ejr;;;a;&'i Program dependency graphs

| Patterns I . (PDG)
---------------------- To capture the semantics

constraints
:O‘
o~ —
controldependency (é - é (é
data depehd.gp_cy> ; s

Cxeall > Q)

General anti-reentrancy semantics

Reveal Control and Data dependency

10

Program Dependency Graph for Anti-reentrancy (RentPDG)

B Observation: anti-reentrancy patterns often impose data and control

dependency constraints on|external calls

B To capture the semantics, we use program dependency graphs

Impose YT I Program dependency graphs

constraints
PDG
'O\ ()
O O

controldependency

--------------------- To capture the semantics

I However, PDG may contain irrelevant
control/data dependencies

:

Reveal Control and Data dependency

data depéhdgp_cy>

General anti-reentrancy semantics

10

Program Dependency Graph for Anti-reentrancy (RentPDG)

B Observation: anti-reentrancy patterns often impose data and control

dependency constraints on|external calls

B To capture the semantics, we use programdependency graphs

A variant of program dependency graphs (RentPDG)

Impose [omnmmmmemmmmmmmmsmm Variant of Program Dependency Graph
5 ,/ constraints Patterns | (our RentPDG)
X O

""""""""""" ' | To capture the semantics
' > 1861660 (67
controldependency

. RentPDG) | RentPDG) | RentPDG

data depéhdgp_cy>

. . Only preserve components
General antl-reentrancy semantics y p p

related to external calls

10

Constructing RentPDGs from Smart Contracts

B Intuitive RentPDG construction

Smart Contract Code Inter-procedural PDG

—> control depend

1: function transfer(address to,address[] tokenld){ - > data depend

©)
_transfer(msg.sender;to, tokenld)); H
2

\v—'!“

3: function _transfer(address from,address to,address[] tokenld){
4: require(_approve(from,to,tokenld[0]));

¢ marketingAdar.call.value(fee)(); // external call

6 require(_approve(from, to, tokenld[1])); ...;

}

7: function _approve(from, to, tokenld) returns (bool) ...;
8: return true;

}

11

Constructing RentPDGs from Smart Contracts

Intuitive RentPDG construction

» use deep-first search (DFS) to extract external-call related PDG components

Smart Contract Code Inter-procedural PDG

1: function transfer(address to,address[] tokenld){ @ _: ZZ?:Z;ZZ%M
2: _transfer(msg.sender,to,tokenld)); J’V
! ©
3: function _transfer(address from,address to,address[] tokenld){
4: require(_approve(from,to,tokenla[0]));
c: marketingAdar.call.value(fee)(); // external call
6: require(_approve(from, to, tokenld[1])); ...;

}
7: function _approve(from, to, tokenld) returns (bool) ...;
8: return true;

}

RentPDG

Use DFS to extract call-
related components

11

Constructing RentPDGs from Smart Contracts

B Issues of DFS: not consider inter-procedural call contexts

» may falsely include nodes in infeasible paths, which are actually not

connected to external calls

PDG (Example) DFS-based RentPDG Construction

Nodes: {c, 4, 3, 2, 1, 7, 8, ﬁ No feasible paths from

6 to external calls
Edges: {e;..; €553, +,)

Infeasible Path: 6 to c

exit at site 4 return at site 4

——>@

Calling context mismatched!

return at
site 4

12

Constructing RentPDGs from Smart Contracts

B Context-sensitive reachability analysis

» Symbolize edges via a context-free language (CFL) => analyze path feasibility

» Combine CFL with adjacency-matrix-based reachability analysis

®. call edge -> (;

v return edge ->), 1 2 3 4 5 6lc (g) 0

1/ 0G0 0 0 0ol m\) (e

2] 00 e e 0 0|0 e 0 (e, (2e)ae, -}

3 @ 0 0 € (2 @ € S 0 -+ @ + v = M/,

. > 26
00 0 0 G 00 0 0 {e)2e} > nfeasible

S 0 0 0 0 0 e]0 0)26 Dse, -}

6] 0 0)) 0 0f0 \0) \ 0/ \ o)

e\ o000 000l B py=A-p e
Symbolic Adjacency 1-orde_r' 2-orde.r_ comple.tc.e

Edge Symbolization Matrix A reachability reachability reachability

13

Step #3:

Use a recognition model to automatically learn

anti-reentrancy semantics inherent in RentPDGs

14

Anti-Reentrancy Recognition Model

B We train a graph autoencoder

» To capture semantics into graph embedding vectors

B Cluster embedding vectors => find typical anti-reentrancy patterns

[1.

[0.9,0.2,0.5,...]

0] '\

RentPDGs

Reconstructed

patternl

Z,
cluster embeddings @/

===

Decoder

Graph
Embedding

Training a graph auto-encoder

6{9\

pattern2

15

Anti-reentrancy Recognition Model

B Recognizing anti-reentrancy patterns

> |If RentPDG embeddings fall within learned clusters => protected with anti-

reentrancy patterns

|u—= \ —>
contract RentPDGs
graph autoencoder embeddings

reveal anti-reentrancy?

patternl

RPN 3 DD

—>

g G

pattern2

16

Experiment Evaluation

B Dataset: 40K real-world smart contracts on Ethereum

» Diverse types: ERC721, ERC777, ERC 1155, etc

B Clustering result: 12 clusters

» For each cluster, we randomly select some contracts to review code patterns

Visualized Clustering Result Clustering Statistics
| e2e3e45¢6+7 . < enforced w/ (] notenforced w/
Cluster ~ ' "= "2 B - -
891011 - 12 51’1/////_/L P71V A
40 -5 gP2 P8
§ 20 o - gP3///// /J Pol //‘
a 0 :" EP4l PO\~
020_20 3 L M;*-— §p5 O, P11 /_//_///_/l
w40 ' Epe oy P12
—40 -20 0 20 40 0 25 50 75100 0 25 50 75100
t-SNE Dim 1 Percentage (%) Proportion (%)

17

Exp 1: Anti-reentrancy Patterns Learned

B By manually inspecting, we found 12 anti-reentrancy patterns

» reentrancy guard, EOA restriction, ... (see details in our paper)

| —
I “function proxy (bytes|[] calldata signs,| uint256inonce,

1 function _transferFrom(address from, addre
amount) internal :-ve_rrlde - addresls addr, bytes calldata input) external|

uint256 ctBalance = _balances[address(' 1} A= B = e P i - 5§ ¢} 5.) Juy PP
if (ctBalance == 0) return; /check st Dytes3<s haghn keccak256 (abi.encodePagked (PROXY USACE, noncefCld

: swap ctBalance tok 7-addzr, 1

® L0) interna)

will trigger a callback to update < 3 f
uint256 initialBalance - address(this) for{uint254 i 0; i < signatures.length; i++) ¢
uniswapAPI. swapExactTokensForETH (ctBal RBirass signer L 1 REE AR ans[il);
this, block.timestamp); _— e T = e o '
uint256 eth - address(this).balance -
address (wallet).call{value:eth} (""); /
« S0me code omitteds }

reguireg (authorized[signer], "“addrgss is ...");
bool sycc addr.call (input); - 31 Tat

D00~ O A et
00 =) O WA B W (¥

. Literature

B Out of 12 patterns, 8 patterns are | Anirenran P | Rearch | Blog | Offcial Document
Safe Ether Transfer (P1) v v

Mutex Variable (P2) v -
newly explored Sender Check (P3)

Reentrancy Guard (P6)
P4-5, P7-12

HENENENEN

v v

Literature Review

18

Exp 1: Anti-reentrancy Patterns Learned (Examples)

B External owned account (EOA) restriction

>
>

EOA does not have any code
If caller is EOA => cannot make a

reentrant call

variable ‘tx.origin’ denotes EOA

/

modifier callerladser () {

require (tx.origin == msg.sender, "..."ﬂ;// require

caller 1s user

}

function mint (uint256 _mintAmount) public payable
callerIsUser {
/* some code omitted =*/

The anti-reentrancy patterns are
rarely discussed in the literature

19

Exp 1: Anti-reentrancy Patterns Learned (Examples)

B External owned account (EOA) restriction

» EOA does not have any code
> |If caller is EOA => cannot make a
reentrant call

B Access Frequency Limitation

> Attackers cannot reenter a
function in a time frame

variable ‘tx.origin’ denotes EOA
/

] modifier callerledser O |
2 require (tx.origin == msg.sender,
caller 1s user

"..."4;// require

3}

4 function mint (uint256 _mintAmount) public payable
callerIsUser {

5 /* some code omitted =/

6}

I function _transfer (address from, address to, uint256 amount)
internal override {

2 if |block.timestamp > lastBurnTime + BurnFreg]

3 //check access fYequency

4 autoBurnLPTokens|\) ;

5}

6 function autoBurnLPTokens|() internal returns (bool) {

7 lastBurnTime=block.timgestamp; //record last access time
8 pair.sync(); //external call

91

The anti-reentrancy patterns are
rarely discussed in the literature

X

Control the access frequency

19

Exp 2: Can Existing Tools Detect the Learned Patterns?

B For reliable evaluation, we conduct scanning comparison experiments

Round 1 Round 2
l @ Reentrancy Detector l
A\
Vulnerable Contracts Anti-reentrancy protected contracts

enforce P1-12 patterns

| > o] o) e

shift v
Non-vulnerable

v

Vulnerable

We say the detector can identify anti-reentrancy patterns

20

Exp 2: Can Existing Tools Detect the Learned Patterns?

B For reliable evaluation, we conduct scanning comparison experiments

TABLE I: Comparison Experiments. Here, 6 tools are applied
to scan contracts before and after anti-reentrancy enforcement.

Setup | Slither Securify Mythril Conkas Smartian Sailfish
ggﬁ;ﬁ‘; Original*| 31 29 10 31 13 28
w/Pl | 0/31 2929 10/10 3131 0/13 0/28
w/ P2 | 3131 2929 1010 4/31 0/13 2/28 Existing tOOIS On/y detect
w/P3 | 31/31 2929 1010 3131 1313 28/28
3131 2929 1010 3131 13/13 2828 :> 4 patterns at most

Detection Round

= W/ P6 | 31/31 2029 10/10 _ 4/31 0/1ssn/ff 2/28
w/P7 | 3131 2929 10/10 3131 13/13 28/28
w/P8 | 31/31 2929 10/10 3131 13/13 28/28
w/P9 | 3131 2929 10/10 3131 13/13 28/28

|

| |

| |

| |

| w/P4 |

| w/P5 | 3131 2929 10/10 3131 1313 28/28
| |

| |

| |

| |

| w/ P10 | 31731 29/29 10/10 31/31 0/13 28/28
| w/ P11 | 31731 29729 10/10 31/31 13/13 28/28

| w/ P12 | 3131 29729 10/10 31/31 13/13 28/28

* It refers to original, vulnerable contracts without anti-reentrancy patterns enforced.

20

Exp 3: Anti-reentrancy Recognition Performance

B Our system can detect anti-reentrancy patterns with recall rates over
85% and 100% precision

— — 100
| Mw*‘“““““wﬂ’w 1% oz g 712 wiZ1Z0%1740%
08 ™ AN AN
2 0.6 = —— Precision— FPR E\ 60 ? ? el ? ? ? ? ? é ?
g, ~ Recall — FNR 54()??? /ff/??/
oJm\meM:mmﬁﬁi SaaRRnnnan Y

0 /] AN N

0

0 o 2'lghresho?((ij 40 50 YL PO A 95 0 9N 9B O Q\QQ\\Q\')«

(a) Precision, Recall, FNR, and FPR (b) Anti-reentrancy Recognition Ac-
by Varying Detection Thresholds curacy w/ 2.30 Threshold

21

Exp 4: Integrated with Existing Detection Tools

TABLE II: Integrating AutoAR with 6 Tools to Scan 31

u Integrate our system into the Vulnerable and 298 Non-Vulnerable Contracts
Workf IOW Of existi ng tools Detectors | Recall Precision| ¥TPs | #FPs FNR | FPR
Original | 1 0128 | 31 211 0 | 0708
Slither 0.070
o w/AuoAR | 1 059% | 31 21 0 | 1 90%
» Reduce FPs by at least 85% —
Original | 0935 0.184 | 29 129 0065 | 0433
Securify 0.054
w/ AutoAR | 0935 0644 | 29 16 0065 | | ager
> Not compromise their orlglnal — Original | 0.323 0.161 10 52 0677 | 0.174
ythri
0.023
. - w/ AutoAR | 0323 0588 | 10 7 0677
detection capability L(87%
Original | 1 0164 | 31 158 0 | 0530
Conkas 0.081
w/ AuoAR | 1 0564 | 31 24 0 | s5%
Original | 0419 0283 | 13 330581 | 0.111
Smartian 0.007
w/ AuoAR | 0419 0867 | 13 2 081 | | ouq
Original | 0903 0.184 | 28 124 0097 | 0416
Sailfish 0.054
w/ AutoAR | 0903 0636 | 28 16 0097 | e

22

Conclusion

B An automated tool for identifying anti-reentrancy patterns on Ethereum

» Help refine existing reentrancy detectors

B Utilize deep learning with a specialized data structure to precisely

capture anti-reentrancy semantics

B Experimental evaluation shows our tool can significantly reduce FPs

from existing reentrancy detectors

23

Thank You!

Q&A

24

Backup: Intuitive Anti-reentrancy Detection Method

B [ntuitive: manually defining detection rules with prior knowledge

» Challenge 1: prior knowledge may not cover all anti-reentrancy

patterns

» Challenge #2: cannot swiftly accommodate new patterns

External Call gl

Anti-reentrancy _'m'_
b ==

Prior Knowledge in Literature

Knowledge may be limited!

learn

vy

Expert

New
. ~_
% define Anti-reentrancy
G Y
Q

External Call

Detection Rules

Inflexible to accommodate new patterns

25

Backup: Graph AutoEncoder

B Graph auto-encoder automatically learn semantics from RentPDGs

[0.9,0.2,0.5,...]

Encoder Graph embedding
: po.s el | | I I I ot S Al * |
RentPDG w~

26

Backup: Graph AutoEncoder

B Graph auto-encoder automatically learn semantics from RentPDGs

» Heterogeneous graph convolution => manages different types of edges

heterogeneous convolution

[0.9,0.2,05,..] R ~q Encoder Graph embedding
~~~~~~ Decoder

i & S \

. p : : ; | .' E --------- -~§ N
RentPDG NL~ Npool|

26



Backup: Graph AutoEncoder

B Graph auto-encoder automatically learn semantics from RentPDGs
» Heterogeneous graph convolution => manages different types of edges
» graph attentional pooling => capture crucial nodes

heterogeneous convolution

[090205..] ==777"~ = Encoder Graph embedding
~~~~~~ Decoder

ST T T

: I : 06 o i : i i : : A §
Poolj i o A
RentPDG \?“”9_ Npoolj

~—
S ~o —”
e o - -

attentional pooling — Qutput

26

Backup: Anti-reentrancy Detection

B Clustering-based detection

» Use cluster centroids to detect if anti-reentrancy semantics are within
RentPDG embeddings

> Set a distance detection threshold T

patternl reveal anti-
. - @ Q reentrancy
' ; E 8 ; T\\\‘\

contract RentPDGs o /—\
graph autoencoder embeddings

pattern2

27

