
SYMPOSIUM/2025

Silence False Alarms: Identifying
Anti-Reentrancy Patterns on Ethereum to

Refine Smart Contract Reentrancy Detection
Qiyang Song, Heqing Huang, Xiaoqi Jia, Yuanbo Xie, and Jiahao Cao

1

Infamous Smart Contract Bug: Reentrancy

2

n Reentrancy bugs have caused massive financial losses on the blockchain

Ø Since DAO hack (2016)
$50+ million stolen

Ø SpankChain and Lendf.me
Millions of assets stolen

Infamous Smart Contract Bug: Reentrancy

2

n Reentrancy bugs have caused massive financial losses on the blockchain

Ø Since DAO hack (2016)
$50+ million stolen

Ø SpankChain and Lendf.me
Millions of assets stolen

n They enable external attackers to manipulate program execution

Function Entry

require(s > 0)
Check

ExAddress.call.value(s)()
Token Transfer

s = 0
Variable Update Attacker

Reentrancy Attack Example

Infamous Smart Contract Bug: Reentrancy

2

n Reentrancy bugs have caused massive financial losses on the blockchain

Ø Since DAO hack (2016)
$50+ million stolen

Ø SpankChain and Lendf.me
Millions of assets stolen

n They enable external attackers to manipulate program execution

Function Entry

require(s > 0)
Check

ExAddress.call.value(s)()
Token Transfer

s = 0
Variable Update Attacker

Reentrancy Attack Example

1

Function Entry

Infamous Smart Contract Bug: Reentrancy

2

n Reentrancy bugs have caused massive financial losses on the blockchain

Ø Since DAO hack (2016)
$50+ million stolen

Ø SpankChain and Lendf.me
Millions of assets stolen

n They enable external attackers to manipulate program execution

Function Entry

require(s > 0)
Check

ExAddress.call.value(s)()
Token Transfer

s = 0
Variable Update Attacker

Reentrancy Attack Example

1

2

Function Entry

Check

Infamous Smart Contract Bug: Reentrancy

2

n Reentrancy bugs have caused massive financial losses on the blockchain

Ø Since DAO hack (2016)
$50+ million stolen

Ø SpankChain and Lendf.me
Millions of assets stolen

n They enable external attackers to manipulate program execution

Function Entry

require(s > 0)
Check

ExAddress.call.value(s)()
Token Transfer

s = 0
Variable Update Attacker

Reentrancy Attack Example

1

2

3

Function Entry

Check

Token Transfer

Infamous Smart Contract Bug: Reentrancy

2

n Reentrancy bugs have caused massive financial losses on the blockchain

Ø Since DAO hack (2016)
$50+ million stolen

Ø SpankChain and Lendf.me
Millions of assets stolen

n They enable external attackers to manipulate program execution

Function Entry

require(s > 0)
Check

ExAddress.call.value(s)()
Token Transfer

s = 0
Variable Update Attacker

Reentrancy Attack Example

1

2

3

Not updated

Function Entry

Check

Token Transfer

Infamous Smart Contract Bug: Reentrancy

2

n Reentrancy bugs have caused massive financial losses on the blockchain

Ø Since DAO hack (2016)
$50+ million stolen

Ø SpankChain and Lendf.me
Millions of assets stolen

n They enable external attackers to manipulate program execution

Function Entry

require(s > 0)
Check

ExAddress.call.value(s)()
Token Transfer

s = 0
Variable Update Attacker

Reentrancy Attack Example

1

2

3

4Reentrant
Call

Not updated

Function Entry

Check

Token Transfer

Infamous Smart Contract Bug: Reentrancy

2

n Reentrancy bugs have caused massive financial losses on the blockchain

Ø Since DAO hack (2016)
$50+ million stolen

Ø SpankChain and Lendf.me
Millions of assets stolen

n They enable external attackers to manipulate program execution

Function Entry

require(s > 0)
Check

ExAddress.call.value(s)()
Token Transfer

s = 0
Variable Update Attacker

Reentrancy Attack Example

1

2

3

4Reentrant
Call

Not updated

Check

Token Transfer

Function Entry

Infamous Smart Contract Bug: Reentrancy

2

n Reentrancy bugs have caused massive financial losses on the blockchain

Ø Since DAO hack (2016)
$50+ million stolen

Ø SpankChain and Lendf.me
Millions of assets stolen

n They enable external attackers to manipulate program execution

Function Entry

require(s > 0)
Check

ExAddress.call.value(s)()
Token Transfer

s = 0
Variable Update Attacker

Reentrancy Attack Example

1

2

3

4Reentrant
Call

5

6

Repeated Transfers!

Not updated

Check

Token Transfer

Function Entry

Token Transfer

Check

Infamous Smart Contract Bug: Reentrancy

2

n Reentrancy bugs have caused massive financial losses on the blockchain

Ø Since DAO hack (2016)
$50+ million stolen

Ø SpankChain and Lendf.me
Millions of assets stolen

n They enable external attackers to manipulate program execution

Function Entry

require(s > 0)
Check

ExAddress.call.value(s)()
Token Transfer

s = 0
Variable Update Attacker

Reentrancy Attack Example

1

2

3

4
5

6

Repeated Transfers!

Not updated

7

8

Check

Token Transfer

Function Entry

Token Transfer

Check
Reentrant
Call Again

Reentrancy Vulnerability Detection

3

n Existing Reentrancy Detectors Function Entry

require(vars>0)

ExAddress.call.value(vars)()

vars = 0

Reentrant
Call

Read Variable X --> External Call --> Write Variable X

Ø According to Basic Reentrancy Patterns

Ø Based on static analysis/symbolic execution

FP alarms Examine ….
*Durieux, T et al. Empirical review of automated analysis tools on 47,587 ethereum
smart contracts. ICSE’20

Ø A high rate of false positives (FPs)

• Leads to alert fatigue

I’m am confused and tired

Ignore anti-reentrancy patterns

False Alarms Caused by Anti-reentrancy Patterns

4

n Exiting tools ignore anti-reentrancy patterns*

* Xue, Y. et al. Cross-contract static analysis for detecting practical reentrancy vulnerabilities in smart contracts. ASE 2020.

FP alarms
Ø FPs: misclassify safe contracts as vulnerable

Ignore anti-reentrancy patterns

False Alarms Caused by Anti-reentrancy Patterns

4

n Exiting tools ignore anti-reentrancy patterns*

* Xue, Y. et al. Cross-contract static analysis for detecting practical reentrancy vulnerabilities in smart contracts. ASE 2020.

Ø Anti-reentrancy patterns prevent illegal users
from reentering functions to gain profits

Function Entry

Check the sender’s identity

…

…

Call

stop

Function Entry

…

Simple safe transfer function

…

Hard to perform
reentrant calls

Example 1: sender check Example 2: Safe transfer

FP alarms
Ø FPs: misclassify safe contracts as vulnerable

5

develop an automated tool to
identify anti-reentrancy patterns

To reduce false positives, we

Our Solution

6

n Use deep learning to learn anti-reentrancy patterns from various contracts

real-world contracts deployed on Ethereum
learn anti-reentrancy patterns

DL models Lots of code patterns

Our Solution

6

n Use deep learning to learn anti-reentrancy patterns from various contracts

real-world contracts deployed on Ethereum
learn anti-reentrancy patterns

DL models Lots of code patterns

How to precisely learn anti-reentrancy
patterns from mixed code patterns?

Our Solution

6

n Use deep learning to learn anti-reentrancy patterns from various contracts

real-world contracts deployed on Ethereum
learn anti-reentrancy patterns

DL models Lots of code patterns

How to precisely learn anti-reentrancy
patterns from mixed code patterns?

n Design specific methods and data structures to capture related semantics

graph-based data structure

filter construct

real-world contracts potentially with anti-
reentrancy patterns

learns

7

Step #1:

We begin by filtering contracts potentially
with anti-reentrancy patterns

Smart Contract Filtering

8

n Insight: Ethereum contracts prone to reentrancy often contain anti-
reentrancy patterns∗

often carefully scrutinize contracts

High value… should be careful

deploy

Ethereum platform

seems prone to
reentrancy

…

guarded by anti-
reentrancy patterns

actually

n Utilize reentrancy knowledge to identify related smart contracts

* According to our investigation and related paper “Xue, Y. et al. Cross-contract static analysis for detecting practical reentrancy vulnerabilities
in smart contracts. ASE 2020.”

Function Entry

require(vars>0)

ExAddress.call.value(vars)()

vars = 0

Reentrant
Call

Read Variable X --> External Call --> Write Variable X

Ø Static analysis

9

Step #2:

Design a data structure to further capture anti-
reentrancy semantics from selected contracts

Program Dependency Graph for Anti-reentrancy (RentPDG)

10

n Observation: anti-reentrancy patterns often impose data and control
dependency constraints on external calls

General anti-reentrancy semantics

Anti-reentrancy
Patterns

Excall

control dependency
data dependency

Impose
constraints

Program Dependency Graph for Anti-reentrancy (RentPDG)

10

n Observation: anti-reentrancy patterns often impose data and control
dependency constraints on external calls

General anti-reentrancy semantics

Anti-reentrancy
Patterns

Excall

control dependency
data dependency

Impose
constraints

n To capture the semantics, we use program dependency graphs

Program dependency graphs
(PDG)

To capture the semantics

Reveal Control and Data dependency

Program Dependency Graph for Anti-reentrancy (RentPDG)

10

n Observation: anti-reentrancy patterns often impose data and control
dependency constraints on external calls

General anti-reentrancy semantics

Anti-reentrancy
Patterns

Excall

control dependency
data dependency

Impose
constraints

n To capture the semantics, we use program dependency graphs

Program dependency graphs
(PDG)

To capture the semantics

Reveal Control and Data dependency

However, PDG may contain irrelevant
control/data dependencies

Program Dependency Graph for Anti-reentrancy (RentPDG)

10

n Observation: anti-reentrancy patterns often impose data and control
dependency constraints on external calls

General anti-reentrancy semantics

Anti-reentrancy
Patterns

Excall

control dependency
data dependency

Impose
constraints

n To capture the semantics, we use program dependency graphs

To capture the semantics

A variant of program dependency graphs (RentPDG)

Variant of Program Dependency Graph
(our RentPDG)

Only preserve components
related to external calls

Constructing RentPDGs from Smart Contracts

11

n Intuitive RentPDG construction

Inter-procedural PDGSmart Contract Code

Constructing RentPDGs from Smart Contracts

11

n Intuitive RentPDG construction

Inter-procedural PDGSmart Contract Code RentPDG

Use DFS to extract call-
related components

Ø use deep-first search (DFS) to extract external-call related PDG components

excall

Constructing RentPDGs from Smart Contracts

12

n Issues of DFS: not consider inter-procedural call contexts
Ø may falsely include nodes in infeasible paths, which are actually not

connected to external calls

(Example) DFS-based RentPDG Construction

Nodes: {c, 4, 3, 2, 1, 7, 8, 6}

Edges: {e1->2, e2->3 , ⋯ ,⋯}

No feasible paths from
6 to external calls

PDG

Calling context mismatched!

Infeasible Path: 6 to c

Constructing RentPDGs from Smart Contracts

13

n Context-sensitive reachability analysis
Ø Symbolize edges via a context-free language (CFL) => analyze path feasibility

Ø Combine CFL with adjacency-matrix-based reachability analysis

Symbolic Adjacency
Matrix A

call edge -> (i
return edge ->)i

1-order
reachability

2-order
reachability

+ + … =

complete
reachability

Infeasible

Edge Symbolization

14

Step #3:

Use a recognition model to automatically learn
anti-reentrancy semantics inherent in RentPDGs

Anti-Reentrancy Recognition Model

15

n We train a graph autoencoder

n Cluster embedding vectors => find typical anti-reentrancy patterns

Training a graph auto-encoder

cluster embeddings

pattern1

pattern2

Ø To capture semantics into graph embedding vectors

Anti-reentrancy Recognition Model

16

n Recognizing anti-reentrancy patterns

graph autoencoder
RentPDGscontract

pattern1

pattern2embeddings

reveal anti-reentrancy?

Ø If RentPDG embeddings fall within learned clusters => protected with anti-
reentrancy patterns

Experiment Evaluation

17

Ø Diverse types: ERC721, ERC777, ERC 1155, etc

n Dataset: 40K real-world smart contracts on Ethereum

n Clustering result: 12 clusters

Ø For each cluster, we randomly select some contracts to review code patterns

Clustering StatisticsVisualized Clustering Result

Exp 1: Anti-reentrancy Patterns Learned

18

n By manually inspecting, we found 12 anti-reentrancy patterns

Ø reentrancy guard, EOA restriction, ... (see details in our paper)

n Out of 12 patterns, 8 patterns are
newly explored

Literature Review

Exp 1: Anti-reentrancy Patterns Learned (Examples)

19

n External owned account (EOA) restriction variable ‘tx.origin’ denotes EOA

Ø EOA does not have any code
Ø If caller is EOA => cannot make a

reentrant call

The anti-reentrancy patterns are
rarely discussed in the literature

Exp 1: Anti-reentrancy Patterns Learned (Examples)

19

n External owned account (EOA) restriction

n Access Frequency Limitation

Ø Attackers cannot reenter a
function in a time frame

variable ‘tx.origin’ denotes EOA

Ø EOA does not have any code
Ø If caller is EOA => cannot make a

reentrant call

Control the access frequency
The anti-reentrancy patterns are
rarely discussed in the literature

Exp 2: Can Existing Tools Detect the Learned Patterns?

20

n For reliable evaluation, we conduct scanning comparison experiments

Reentrancy Detector

enforce P1-12 patterns
Vulnerable Contracts Anti-reentrancy protected contracts

Vulnerable Non-vulnerable

We say the detector can identify anti-reentrancy patterns

Round 1 Round 2

shift

Exp 2: Can Existing Tools Detect the Learned Patterns?

20

n For reliable evaluation, we conduct scanning comparison experiments

Existing tools only detect
4 patterns at most

shift

Exp 3: Anti-reentrancy Recognition Performance

21

n Our system can detect anti-reentrancy patterns with recall rates over
85% and 100% precision

Exp 4: Integrated with Existing Detection Tools

22

n Integrate our system into the
workflow of existing tools

Ø Not compromise their original
detection capability

Ø Reduce FPs by at least 85%

Conclusion

23

n An automated tool for identifying anti-reentrancy patterns on Ethereum

n Utilize deep learning with a specialized data structure to precisely
capture anti-reentrancy semantics

n Experimental evaluation shows our tool can significantly reduce FPs
from existing reentrancy detectors

Ø Help refine existing reentrancy detectors

24

Thank You!

Q & A

Backup: Intuitive Anti-reentrancy Detection Method

25

ExpertPrior Knowledge in Literature

Anti-reentrancy

External Call

Detection Rules

definelearn

Knowledge may be limited! Inflexible to accommodate new patterns

Anti-reentrancy

External Call

New

Ø Challenge 1: prior knowledge may not cover all anti-reentrancy
patterns

Ø Challenge #2: cannot swiftly accommodate new patterns

n Intuitive: manually defining detection rules with prior knowledge

Backup: Graph AutoEncoder

26

n Graph auto-encoder automatically learn semantics from RentPDGs

Graph embedding
Decoder

Encoder

Output

Backup: Graph AutoEncoder

26

n Graph auto-encoder automatically learn semantics from RentPDGs
Ø Heterogeneous graph convolution => manages different types of edges

heterogeneous convolution

Graph embedding
Decoder

Encoder

Output

Backup: Graph AutoEncoder

26

n Graph auto-encoder automatically learn semantics from RentPDGs
Ø Heterogeneous graph convolution => manages different types of edges

Ø graph attentional pooling => capture crucial nodes

heterogeneous convolution

attentional pooling

Graph embedding
Decoder

Encoder

Output

Backup: Anti-reentrancy Detection

27

n Clustering-based detection

graph autoencoder
RentPDGscontract

pattern1

pattern2
embeddings

reveal anti-
reentrancy

Ø Use cluster centroids to detect if anti-reentrancy semantics are within
RentPDG embeddings

Ø Set a distance detection threshold 𝜏

