
Unleashing the Power of Generative
Model in Recovering Variable Names
from Stripped Binary
Xiangzhe Xu, Zhuo Zhang, Zian Su, Ziyang Huang, Shiwei Feng, Yapeng Ye,
Nan Jiang, Danning Xie, Siyuan Cheng, Lin Tan, Xiangyu Zhang

Reverse Engineering are Important

2

Motivation: Reverse Engineering for All
• Democratize reverse engineering: Unlock insights for everyone.

3

Current state: A normal user relies on
third-party certification to understand

the intention of a program.

Motivation: Reverse Engineering for All
• Democratize reverse engineering: Unlock insights for everyone.

3

Current state: A normal user relies on
third-party certification to understand

the intention of a program.

I analyzed the binary program, and found it
may try to access your wallet after
receiving a command from a server.

Democratized reverse engineering:
Everyone has the right to know what is
running on their machine, presented in

accessible natural language.

Motivation: Reverse Engineering for All
• Democratize reverse engineering: Unlock insights for everyone.
• Empower experts: Analyze unknown binaries with less efforts.
• Our approach: Reconstruct high-quality symbol information.

3

Current state: A normal user relies on
third-party certification to understand

the intention of a program.

I analyzed the binary program, and found it
may try to access your wallet after
receiving a command from a server.

Democratized reverse engineering:
Everyone has the right to know what is
running on their machine, presented in

accessible natural language.

RE for All – Democratize RE
• Everyone should be able to understand programs executed on their machine.
• Recent advances in AI agents enable accessible insights for executable programs.
• Symbol information is essential for AI-driven binary program analysis.

4

RE for All – Democratize RE
• Everyone should be able to understand programs executed on their machine.
• Recent advances in AI agents enable accessible insights for executable programs.
• Symbol information is essential for AI-driven binary program analysis.

int64 sub_401580(int64 img, int w, int h) {
 int64 result;
 *(int *)img = abs32(w);
 *(int *)(img + 4) = abs32(h);
 *(int *)(img + 8) = 4 *
 (3 * (*(int *)img + 1) / 4);
 *(int64 *)(img + 16) =
 malloc(*(int *)(img + 8) * (int64)h);
 if (*(int64 *)(img + 16)) result = 0;
 else result = -1;
 return result;
}

This function, bmp_create, initializes an image structure with specified width w and height h.
It sets the width and height of the image structure to the absolute values of w and h,
calculates the stride (which is the aligned width considering a 4-byte boundary) …

1
2
3

A decompiled binary function with
reconstructed variable names
highlighted

GPT4 summary for the corresponding source code function.

4

RE for All – Democratize RE
• Everyone should be able to understand programs executed on their machine.
• Recent advances in AI agents enable accessible insights for executable programs.
• Symbol information is essential for AI-driven binary program analysis.

int64 sub_401580(int64 img, int w, int h) {
 int64 result;
 *(int *)img = abs32(w);
 *(int *)(img + 4) = abs32(h);
 *(int *)(img + 8) = 4 *
 (3 * (*(int *)img + 1) / 4);
 *(int64 *)(img + 16) =
 malloc(*(int *)(img + 8) * (int64)h);
 if (*(int64 *)(img + 16)) result = 0;
 else result = -1;
 return result;
}

This function, bmp_create, initializes an image structure with specified width w and height h.
It sets the width and height of the image structure to the absolute values of w and h,
calculates the stride (which is the aligned width considering a 4-byte boundary) …

This function, sub_401580, takes three args and performs a series of operations on them.
It calculates the absolute values of a2 and a3 and stores them at specific memory locations
relative to a1.
It then calculates a value based on these absolute values and stores it at another location.

1
2
3

1
2

3

A decompiled binary function with
reconstructed variable names
highlighted

GPT4 summary for the corresponding source code function.

GPT4 summary for the decompiled function without reconstructed names.

No context about “image” in 1.
No high-level denotations “width and
height” in 2.
No key constraints on “4-byte aligned”
boundary.

4

RE for All – Democratize RE
• Everyone should be able to understand programs executed on their machine.
• Recent advances in AI agents enable accessible insights for executable programs.
• Symbol information is essential for AI-driven binary program analysis.

int64 sub_401580(int64 img, int w, int h) {
 int64 result;
 *(int *)img = abs32(w);
 *(int *)(img + 4) = abs32(h);
 *(int *)(img + 8) = 4 *
 (3 * (*(int *)img + 1) / 4);
 *(int64 *)(img + 16) =
 malloc(*(int *)(img + 8) * (int64)h);
 if (*(int64 *)(img + 16)) result = 0;
 else result = -1;
 return result;
}

This function, bmp_create, initializes an image structure with specified width w and height h.
It sets the width and height of the image structure to the absolute values of w and h,
calculates the stride (which is the aligned width considering a 4-byte boundary) …

This function, sub_401580, takes three args and performs a series of operations on them.
It calculates the absolute values of a2 and a3 and stores them at specific memory locations
relative to a1.
It then calculates a value based on these absolute values and stores it at another location.

1
2
3

1
2

3

This function, img_init, initializes an image structure. It takes three parameters: a pointer to
the image structure img, and two integers w and h for width and height.
The width and height are stored as absolute values in the image structure.
It then calculates and stores the row size, aligning it to a 4-byte boundary.

1

2
3

A decompiled binary function with
reconstructed variable names
highlighted

GPT4 summary for the corresponding source code function.

GPT4 summary for the decompiled function without reconstructed names.

GPT4 summary for the decompiled function with reconstructed names.

No context about “image” in 1.
No high-level denotations “width and
height” in 2.
No key constraints on “4-byte aligned”
boundary.

Similar quality to source code summary.
With high-level contexts and
abstractions.

4

RE for All – Empower Experts
• Symbol information can help reverse engineer identify relevant

functions and understand code with less efforts.
• A concrete example: reconstructed symbols in a C2 client.

for (j = (const char **)&unk_60A500;
 *j; j = v66 + 2) {
 v73 = j;
 v65 = strcasecmp(*j, &s2);
 v66 = v73;
 if (!v65) {
 ((void(*)(int64, char *, char *))v73[1])
 (fd, &dest, i);
}}}

for (cmd_ptr = (const char **) &cmd_table;
 *cmd_ptr; cmd_ptr = cmd_tmp + 2) {
 matched_cmd = cmd_ptr;
 cmp = strcasecmp(*cmd_ptr, &cmd);
 cmd_tmp = matched_cmd;
 if (!cmp) {
 ((void(*)(int64, char *, char *))
 matched_cmd[1])(fd, &dest, tok);
}}}

1
2
3
4
5
6
7

8

1
2
3
4
5
6
7

8

Decompiled code snippet in a C2 client. The same code snippets with reconstructed names.

5

RE for All – Empower Experts

6

RE for All – Empower Experts

6

Challenge1: Generalize to Unseen Names
• Classification-based name recovery fails to generalize to unseen names.
• A classifier essentially selects the closest match from its training data.

7

Challenge1: Generalize to Unseen Names
• Classification-based name recovery fails to generalize to unseen names.
• A classifier essentially selects the closest match from its training data.
• A concrete example: Predicting `ip_hdrlen`.

• Let’s suppose a well-trained classification model.
• It attempts to choose name for a variable with ground truth name `ip_hdrlen`.
• But this name is not in the training dataset.

7

Challenge1: Generalize to Unseen Names
• Classification-based name recovery fails to generalize to unseen names.
• A classifier essentially selects the closest match from its training data.
• A concrete example: Predicting `ip_hdrlen`.

• Let’s suppose a well-trained classification model.
• It attempts to choose name for a variable with ground truth name `ip_hdrlen`.
• But this name is not in the training dataset.

len

block_len

ip_addr

ip_hdrlen

7
A classification model fails to find the best

fit name from the training dataset.

Challenge1: Generalize to Unseen Names
• Classification-based name recovery fails to generalize to unseen names.
• A classifier essentially selects the closest match from its training data.
• A concrete example: Predicting `ip_hdrlen`.

• Let’s suppose a well-trained classification model.
• It attempts to choose name for a variable with ground truth name `ip_hdrlen`.
• But this name is not in the training dataset.

len

block_len

ip_addr

ip_hdrlen

No context about “ip header”

Inaccurate denotation: the groundtruth is
relevant to “ip”, but it is not “address”.

Inaccurate denotation: the groundtruth is
relevant to “len”, but irrelevant to “block”.

7
A classification model fails to find the best

fit name from the training dataset.

Solution1: Compose Names from Tokens
• Insight: Most unseen names are composed from common names.
• We leverage generative models to compose names from tokens.

ip_hdrlen

ip _hdr len

1st token 2nd token 3rd token

8

A generative model composes an unseen
name from common tokens.

Challenge2: Reason Programs with Limited
Contextual Information
• Binary programs has limited contextual information due to the lack of

meaningful names from calling contexts.

Source code of a function “send_packet”. The corresponding decompiled code.

9

Challenge2: Reason Programs with Limited
Contextual Information
• Binary programs has limited contextual information due to the lack of

meaningful names from calling contexts.

Source code of a function “send_packet”. The corresponding decompiled code.

Information from calling
contexts is missing

9

Challenge2: Reason Programs with Limited
Contextual Information
• Binary programs has limited contextual information due to the lack of

meaningful names from calling contexts.
• Directly prompting an LLM or a naïve SFT are sub-optimal.

Source code of a function “send_packet”. The corresponding decompiled code.

Information from calling
contexts is missing

A naïve data sample to SFT an LLM.

Input to
an LLM

Expected
output

9

Challenge2: Reason Programs with Limited
Contextual Information
• Binary programs has limited contextual information due to the lack of

meaningful names from calling contexts.
• Directly prompting an LLM or a naïve SFT are sub-optimal.

Source code of a function “send_packet”. The corresponding decompiled code.

Information from calling
contexts is missing

A naïve data sample to SFT an LLM.

Input to
an LLM

Expected
output

A model can hardly
associate v29 with
ip_hdr.

9

Solution2: Fine-tune with Contextual Info
• Context-aware fine-tuning: use the name hints from

the calling context.

Source code of a function “send_packet”. The corresponding decompiled code.

A data sample for context-
aware fine-tuning.

Input to
an LLM

Expected
output

Contextual
information

10

Solution2: Fine-tune with Contextual Info
• Context-aware fine-tuning: use the name hints from

the calling context.

Source code of a function “send_packet”. The corresponding decompiled code.

A data sample for context-
aware fine-tuning.

Input to
an LLM

Expected
output

Contextual
information

The name of v29 can be
inferred from the
calling context.

10

Challenge3: Bias Toward Frequent Names
• The name distribution follows a long-tailed distribution.
• Over half of all names appear only once.

11

Challenge3: Bias Toward Frequent Names (Cont’d)
• For example, the statistics of a widely-used high-quality training dataset show that

the first argument to `memset` is frequently labeled as `buffer` than other names.

12

Challenge3: Bias Toward Frequent Names (Cont’d)
• For example, the statistics of a widely-used high-quality training dataset show that

the first argument to `memset` is frequently labeled as `buffer` than other names.
• A model trained on this dataset is likely to mis-predict `s` as `buffer`, while its

ground truth name is `packet`.

12

Solution3: Mitigate Bias via Preference Optimization
• Misassigning a frequent name to a variable may not be entirely “wrong”. It indicates

developers’ preference about choosing names.
• Developers prefer not to use frequent names when they don’t fit the program context.
• We teach models the developers’ preference via preference optimization.

SFT loss

13

Solution3: Mitigate Bias via Preference Optimization
• Misassigning a frequent name to a variable may not be entirely “wrong”. It indicates

developers’ preference about choosing names.
• Developers prefer not to use frequent names when they don’t fit the program context.
• We teach models the developers’ preference via preference optimization.

s -> buffer

s -> packet Preferred Name

Less Preferred
Name

In addition to the SFT loss, our training requires the model to increase the probability for preferred
names while suppressing less-preferred ones. This is achieved by preference optimization.

SFT loss

Preference
optimization
loss

13

Overall: 3-Stage Training Pipeline

Step 1: Fine-tuning
with contextual

information.

Step 2: Identifying
model’s bias towards

frequent names.

Step 3: Mitigating bias
via preference
optimization.

14

Overall: 3-Stage Training Pipeline

Step 2: Identifying
model’s bias towards

frequent names.

Step 3: Mitigating bias
via preference
optimization.

14

Overall: 3-Stage Training Pipeline

Step 3: Mitigating bias
via preference
optimization.

14

Overall: 3-Stage Training Pipeline

14

Overall: Iterative Inference

15

Evaluation: Overall Performance
• Our prototype GenNM achieves better performance than both the

classification-based model (VarBERT) and the generative model
trained with a naïve SFT loss (ReSym).
• The performance is measured as the token-wise precision and recall

between the predicted name and the ground truth name for a variable.

16

Evaluation: Overall Performance
• GenNM achieves better performance than prompting black-box LLMs.

Only 2B parameters

17

Evaluation: Generalization to Rare Name
• GenNm achieves significantly better performance on unseen and rare

names (i.e., names with low frequencies in the training dataset).

18

Evaluation: GPT4Evaluator
• We instruct GPT4 to judge the quality of reconstructed names, scoring

from 1 (worst) to 5 (best).
• This metric approximates how a human reverse engineer would

evaluate the reconstructed names.

19

Evaluation: GPT4Evaluator
• We instruct GPT4 to judge the quality of reconstructed names, scoring

from 1 (worst) to 5 (best).
• This metric approximates how a human reverse engineer would

evaluate the reconstructed names.

19

GenNm predicts
good names for
more than 50%

cases.

Takeaways
• Context-aware fine-tuning: We propose a domain-specific design for

SFT LLMs.
• SymPO: We design SYMbol Preference Optimization to mitigate

data bias.
• GenNM: We implement a prototype that predicts good names for

more than 50% variables.

20

Takeaways
• Context-aware fine-tuning: We propose a domain-specific design for

SFT LLMs.
• SymPO: We design SYMbol Preference Optimization to mitigate

data bias.
• GenNM: We implement a prototype that predicts good names for

more than 50% variables.

20

We actively work on

 democratized reverse engineering,

 trustworthy coding agent, and

 agentic code reasoning systems.

Please connect with us!

Thank you!

21

GPT4Evaluator Example - 1

22

GPT4Evaluator Example - 2

23

GPT4Evaluator Example - 3

24

