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Motivation: Reverse Engineering for All
• Democratize reverse engineering: Unlock insights for everyone.
• Empower experts: Analyze unknown binaries with less efforts.
• Our approach: Reconstruct high-quality symbol information.
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RE for All – Democratize RE
• Everyone should be able to understand programs executed on their machine.
• Recent advances in AI agents enable accessible insights for executable programs. 
• Symbol information is essential for AI-driven binary program analysis.
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RE for All – Democratize RE
• Everyone should be able to understand programs executed on their machine.
• Recent advances in AI agents enable accessible insights for executable programs. 
• Symbol information is essential for AI-driven binary program analysis.

int64 sub_401580(int64 img, int w, int h) {
 int64 result;
 *(int *)img = abs32(w);
 *(int *)(img + 4) = abs32(h);
 *(int *)(img + 8) = 4 * 
      (3 * (*(int *)img + 1) / 4);
 *(int64 *)(img + 16) = 
      malloc(*(int *)(img + 8) * (int64)h);
 if (*(int64 *)(img + 16)) result = 0;
 else result = -1;
 return result;
}

This function, bmp_create, initializes an image structure with specified width w and height h. 
It sets the width and height of the image structure to the absolute values of w and h, 
calculates the stride (which is the aligned width considering a 4-byte boundary) …

1
2
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A decompiled binary function with 
reconstructed variable names 
highlighted

GPT4 summary for the corresponding source code function.
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RE for All – Democratize RE
• Everyone should be able to understand programs executed on their machine.
• Recent advances in AI agents enable accessible insights for executable programs. 
• Symbol information is essential for AI-driven binary program analysis.

int64 sub_401580(int64 img, int w, int h) {
 int64 result;
 *(int *)img = abs32(w);
 *(int *)(img + 4) = abs32(h);
 *(int *)(img + 8) = 4 * 
      (3 * (*(int *)img + 1) / 4);
 *(int64 *)(img + 16) = 
      malloc(*(int *)(img + 8) * (int64)h);
 if (*(int64 *)(img + 16)) result = 0;
 else result = -1;
 return result;
}

This function, bmp_create, initializes an image structure with specified width w and height h. 
It sets the width and height of the image structure to the absolute values of w and h, 
calculates the stride (which is the aligned width considering a 4-byte boundary) …

This function, sub_401580, takes three args and performs a series of operations on them.       
It calculates the absolute values of a2 and a3 and stores them at specific memory locations 
relative to a1.       
It then calculates a value based on these absolute values and stores it at another location.
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A decompiled binary function with 
reconstructed variable names 
highlighted

GPT4 summary for the corresponding source code function.

GPT4 summary for the decompiled function without reconstructed names.

No context about “image” in 1. 
No high-level denotations “width and 
height” in 2.
No key constraints on “4-byte aligned” 
boundary.
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• Symbol information is essential for AI-driven binary program analysis.
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This function, bmp_create, initializes an image structure with specified width w and height h. 
It sets the width and height of the image structure to the absolute values of w and h, 
calculates the stride (which is the aligned width considering a 4-byte boundary) …

This function, sub_401580, takes three args and performs a series of operations on them.       
It calculates the absolute values of a2 and a3 and stores them at specific memory locations 
relative to a1.       
It then calculates a value based on these absolute values and stores it at another location.
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This function, img_init, initializes an image structure. It takes three parameters: a pointer to 
the image structure img, and two integers w and h for width and height. 
The width and height are stored as absolute values in the image structure. 
It then calculates and stores the row size, aligning it to a 4-byte boundary.

1

2
3

A decompiled binary function with 
reconstructed variable names 
highlighted

GPT4 summary for the corresponding source code function.

GPT4 summary for the decompiled function without reconstructed names.

GPT4 summary for the decompiled function with reconstructed names.

No context about “image” in 1. 
No high-level denotations “width and 
height” in 2.
No key constraints on “4-byte aligned” 
boundary.

Similar quality to source code summary.
With high-level contexts and 
abstractions.
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RE for All – Empower Experts
• Symbol information can help reverse engineer identify relevant 

functions and understand code with less efforts.
• A concrete example: reconstructed symbols in a C2 client.

for (j = (const char **)&unk_60A500; 
      *j; j = v66 + 2) {
  v73 = j;
  v65 = strcasecmp(*j, &s2);
  v66 = v73;
  if (!v65) {
   ((void(*)(int64, char *, char *))v73[1])
                            (fd, &dest, i); 
}}}

for (cmd_ptr = (const char **) &cmd_table; 
        *cmd_ptr; cmd_ptr = cmd_tmp + 2) {
  matched_cmd = cmd_ptr;
  cmp = strcasecmp(*cmd_ptr, &cmd);
  cmd_tmp = matched_cmd;
  if (!cmp) {
    ((void(*)(int64, char *, char *))
          matched_cmd[1])(fd, &dest, tok); 
}}}

1
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Decompiled code snippet in a C2 client. The same code snippets with reconstructed names.
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Challenge1: Generalize to Unseen Names
• Classification-based name recovery fails to generalize to unseen names.
• A classifier essentially selects the closest match from its training data.
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Challenge1: Generalize to Unseen Names
• Classification-based name recovery fails to generalize to unseen names.
• A classifier essentially selects the closest match from its training data.
• A concrete example: Predicting `ip_hdrlen`.

• Let’s suppose a well-trained classification model. 
• It attempts to choose name for a variable with ground truth name `ip_hdrlen`. 
• But this name is not in the training dataset.

len

block_len

ip_addr

ip_hdrlen

No context about “ip header”

Inaccurate denotation: the groundtruth is 
relevant to “ip”, but it is not “address”.

Inaccurate denotation: the groundtruth is 
relevant to “len”, but irrelevant to “block”.
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A classification model fails to find the best 

fit name from the training dataset.



Solution1: Compose Names from Tokens
• Insight: Most unseen names are composed from common names.
• We leverage generative models to compose names from tokens.

ip_hdrlen

ip _hdr len

1st token 2nd token 3rd token
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A generative model composes an unseen 
name from common tokens.



Challenge2: Reason Programs with Limited 
Contextual Information
• Binary programs has limited contextual information due to the lack of 

meaningful names from calling contexts.

Source code of a function “send_packet”. The corresponding decompiled code.
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Challenge2: Reason Programs with Limited 
Contextual Information
• Binary programs has limited contextual information due to the lack of 

meaningful names from calling contexts.
• Directly prompting an LLM or a naïve SFT are sub-optimal.

Source code of a function “send_packet”. The corresponding decompiled code.

Information from calling 
contexts is missing

A naïve data sample to SFT an LLM.

Input to 
an LLM

Expected 
output

A model can hardly 
associate v29 with 
ip_hdr.
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Solution2: Fine-tune with Contextual Info
• Context-aware fine-tuning: use the name hints from 

the calling context. 

Source code of a function “send_packet”. The corresponding decompiled code.

A data sample for context-
aware fine-tuning.

Input to 
an LLM

Expected 
output

Contextual 
information
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Solution2: Fine-tune with Contextual Info
• Context-aware fine-tuning: use the name hints from 

the calling context. 

Source code of a function “send_packet”. The corresponding decompiled code.

A data sample for context-
aware fine-tuning.

Input to 
an LLM

Expected 
output

Contextual 
information

The name of v29 can be 
inferred from the 
calling context.
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Challenge3: Bias Toward Frequent Names
• The name distribution follows a long-tailed distribution.
• Over half of all names appear only once.
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Challenge3: Bias Toward Frequent Names (Cont’d)
• For example, the statistics of a widely-used high-quality training dataset show that 

the first argument to `memset` is frequently labeled as `buffer` than other names.
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Challenge3: Bias Toward Frequent Names (Cont’d)
• For example, the statistics of a widely-used high-quality training dataset show that 

the first argument to `memset` is frequently labeled as `buffer` than other names.
• A model trained on this dataset is likely to mis-predict `s` as `buffer`, while its 

ground truth name is `packet`.

12



Solution3: Mitigate Bias via Preference Optimization
• Misassigning a frequent name to a variable may not be entirely “wrong”. It indicates 

developers’ preference about choosing names.
• Developers prefer not to use frequent names when they don’t fit the program context.
• We teach models the developers’ preference via preference optimization.

SFT loss
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Solution3: Mitigate Bias via Preference Optimization
• Misassigning a frequent name to a variable may not be entirely “wrong”. It indicates 

developers’ preference about choosing names.
• Developers prefer not to use frequent names when they don’t fit the program context.
• We teach models the developers’ preference via preference optimization.

s -> buffer

s -> packet Preferred Name

Less Preferred 
Name

In addition to the SFT loss, our training requires the model to increase the probability for preferred 
names while suppressing less-preferred ones. This is achieved by preference optimization.

SFT loss

Preference 
optimization 
loss
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Overall: 3-Stage Training Pipeline

Step 1: Fine-tuning 
with contextual 

information.

Step 2: Identifying 
model’s bias towards 

frequent names.

Step 3: Mitigating bias 
via preference 
optimization.
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Overall: 3-Stage Training Pipeline
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Overall: 3-Stage Training Pipeline
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Overall: Iterative Inference
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Evaluation: Overall Performance
• Our prototype GenNM achieves better performance than both the 

classification-based model (VarBERT) and the generative model 
trained with a naïve SFT loss (ReSym).
• The performance is measured as the token-wise precision and recall 

between the predicted name and the ground truth name for a variable.
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Evaluation: Overall Performance
• GenNM achieves better performance than prompting black-box LLMs.

Only 2B parameters
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Evaluation: Generalization to Rare Name
• GenNm achieves significantly better performance on unseen and rare 

names (i.e., names with low frequencies in the training dataset). 
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Evaluation: GPT4Evaluator
• We instruct GPT4 to judge the quality of reconstructed names, scoring 

from 1 (worst) to 5 (best).
• This metric approximates how a human reverse engineer would 

evaluate the reconstructed names.
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Evaluation: GPT4Evaluator
• We instruct GPT4 to judge the quality of reconstructed names, scoring 

from 1 (worst) to 5 (best).
• This metric approximates how a human reverse engineer would 

evaluate the reconstructed names.
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GenNm predicts 
good names for 
more than 50% 

cases.



Takeaways 
• Context-aware fine-tuning: We propose a domain-specific design for 

SFT LLMs.
• SymPO: We design SYMbol Preference Optimization to mitigate 

data bias.
• GenNM: We implement a prototype that predicts good names for 

more than 50% variables.
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We actively work on 

 democratized reverse engineering, 

 trustworthy coding agent, and 

 agentic code reasoning systems. 

Please connect with us!



Thank you!

21



GPT4Evaluator Example - 1
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GPT4Evaluator Example - 2
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GPT4Evaluator Example - 3
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