Unleashing the Power of Generative
Model \n Recovering Variable Names

from Stripped Binary

Xiangzhe Xu, Zhuo Zhang, Zian Su, Ziyang Huang, Shiwei Feng, Yapeng Ye,
Nan Jiang, Danning Xie, Siyuan Cheng, Lin Tan, Xiangyu Zhang

PURDUE



Reverse Engineering are Important

2023

2024

Rapid7 Labs tracked
5,600+ ransomware incidents between
January 2023 and February 2024*

*This number doesn't reflect
incidents that go unreported



Motivation: Reverse Engineering for All

* Democratize reverse engineering: Unlock insights for everyone.

Current state: A normal user relies on

third-party certification to understand
the intention of a program.



Motivation: Reverse Engineering for All

* Democratize reverse engineering: Unlock insights for everyone.

I analyzed the binary program, and found it

may try to access your wallet after
receiving a command from a server.

28

Current state: A normal user relies on Democratized reverse englneenng
third-party certification to understand Everyone has the right to know what is
the intention of a program. running on their machine, presented in

accessible natural language.



Motivation: Reverse Engineering for All

* Democratize reverse engineering: Unlock insights for everyone.
* Empower experts: Analyze unknown binaries with less efforts.

* Our approach: Reconstruct high-quality symbol information.

I analyzed the binary program, and found it
may try to access your wallet after

receiving a command from a server.

@ D
3 )

v, ¢

®
&n 1

Current state: A normal user relies on I Democratized reverse engineering:
third-party certification to understand Everyone has the right to know what is
the intention of a program. running on their machine, presented in

accessible natural language.




RE for All — Democratize RE

should be able to understand programs executed on their machine.
e Recent advances in Al agents enable accessible insights for executable programs.

* Symbol information is essential for Al-driven binary program analysis.



RE for All — Democratize RE

* Everyone should be able to understand programs executed on their machine.
e Recent advances in Al agents enable accessible insights for executable programs.

* Symbol information is essential for Al-driven binary program analysis.

. . ) ) . 1| This function, bmp_create, initializes an image structure with specified width w and height A.
12E$g4sg2§3?%?80 (int64 img, int w, int h) { 2 || 1t sets the width and height of the image structure to the absolute values of w and A,

*(int *)img = abs32(w); 3 | calculates the stride (which is the_aligned width considering a 4-byte boundary) ...

*(int *) (img + 4) = abs32(h); GPT4 summary for the corresponding source code function.

*(int *)(img + 8) = 4 %
(3 x (x(int x)img + 1) / 4);
*(int64 x)(img + 16) =
malloc(*x(int %) (img + 8) * (int64)h);
if (x(int64 =) (img + 16)) result = 0;
else result = -1;
return result;

}

A decompiled binary function with
reconstructed variable names

highlighted



RE for All — Democratize RE

* Everyone should be able to understand programs executed on their machine.

e Recent advances in Al agents enable accessible insights for executable programs.

* Symbol information is essential for Al-driven binary program analysis.

No context about “image” in 1.

No high-level denotations “width and

height” in 2.

No key constraints on “4-byte aligned”
boundary.

}
A decompiled binary function with

reconstructed variable names

highlighted

This function, bmp_create, initializes an image structure with specified width w and height A.
It sets the width and height of the image structure to the absolute values of w and A,
calculates the stride (which is the aligned width considering a 4-byte boundary) ...

GPT4 summary for the corresponding source code function.

This function, sub_401580, takes three args and performs a series of operations on them.
It calculates the absolute values of a2 and a3 and stores them at specific memory locations
relative to al.

It then calculates a value based on these absolute values and stores it at another location.

GPT4 summary for the decompiled function without reconstructed names.



RE for All — Democratize RE

* Eweryone should be able to understand programs executed on their machine.

e Recent advances in Al agents enable accessible insights for executable programs.

* Symbol information is essential for Al-driven binary program analysis.

No context about “image” in 1.
No high-level denotations “width and
height” in 2.

No key constraints on “4-byte aligned”
boundary.

Similar quality to source code summary.

With high-level contexts and

abstractions.

This function, bmp_create, initializes an image structure with specified width w and height A.
It sets the width and height of the image structure to the absolute values of w and A,
calculates the stride (which is the aligned width considering a 4-byte boundary) ...

GPT4 summary for the corresponding source code function.

This function, sub_401580, takes three args and performs a series of operations on them.
It calculates the absolute values of a2 and a3 and stores them at specific memory locations
relative to al.

It then calculates a value based on these absolute values and stores it at another location.

GPT4 summary for the decompiled function without reconstructed names.

This function, img _init, initializes an image structure. It takes three parameters: a pointer to
the image structure img, and two integers w and A for width and height.

The width and height are stored as absolute values in the image structure.

It then calculates and stores the row size, aligning it to a 4-byte boundary.

GPT4 summary for the decompiled function with reconstructed names.




RE for All - Empower Experts

* Symbol information can help reverse engineer identify relevant
functions and understand code with less efforts.

* A concrete example: reconstructed symbols in a C2 client.

1 for (j = (const char *xx)&unk_60A500; 1 for ( = (const char xx) & ;
2 *j; j = v66 + 2) { 2 * ; = +2) {
3 v73 = j; 3 = ;
4 v65 = strcasecmp(xj, &s2); 4 = strcasecmp(x* , &cmd);
5 v66 = v73; 5 = ’
6 if ('ves5) { 6 if (! ) {
7 ((void(x) (int64, char *, char *x))v73[1]) 7 ((void(x) (int64, char *, char x))

(fd, &dest, i); [1]1)(fd, &dest, );
8 }}} 8 1}

Decompiled code snippet in a C2 client. The same code snippets with reconstructed names.



RE for All - Empower Experts

BLOG // TECH // FEB 10, 2025

SonicWall CVE-2024-53704: SSL VPN Session
Hijacking

By: Jon Williams, Senior Security Engineer




RE for All - Empower Experts

BLOG // TECH |[// FEB 10, 2025

SonicWall CVE-2024-53704: SSL VPN Session

Hijacking

By: Jon Williams, Senior Security Engineer

This information was detailed enough to give us a solid lead on finding the bug. We
started by leveraging our previous research to decrypt and extract the sonicosv binary
from firmware versions 7.1.2-7019 and 7.1.3-7015. We then used BinDiff to generate a
patch differential report, which included[a large number of changed functionsl(too many
to review manually).

To hone in on the vulnerability, welsearched strings within the unpatched binarylto find
functions relevant to SSL VPN session cookies. The getSslvpnSessionFromCookie
function seemed particularly promising, so we traced cross-references to identify the
functions where this string was used. We slowly dug through the web of function calls
and cross-references, applying labels as we went to help us make sense of the code.
Although symbols had been stripped from the binary, log messages were often used to




Challengel: Generalize to Unseen Names

* Classification-based name recovery fails to generalize to unseen names.

* A classifier essentially selects the closest match from its training data.



Challengel: Generalize to Unseen Names

* Classification-based name recovery fails to generalize to unseen names.
* A classifier essentially selects the closest match from its training data.

* A concrete example: Predicting “ip_hdrlen’.
* Let’s suppose a well-trained classification model.
* It attempts to choose name for a variable with ground truth name “ip_hdrlen’.
* But this name is not in the training dataset.



Challengel: Generalize to Unseen Names

* Classification-based name recovery fails to generalize to unseen names.
* A classifier essentially selects the closest match from its training data.

* A concrete example: Predicting “ip_hdrlen’.
* Let’s suppose a well-trained classification model.
e It attempts to choose name for a variable with ground truth name “ip_hdrlen".
* But this name is not in the training dataset.

/“

— B
= S gy

A classification model fails to find the best
fit name from the training dataset.




Challengel: Generalize to Unseen Names

* Classification-based name recovery fails to generalize to unseen names.
* A classifier essentially selects the closest match from its training data.

* A concrete example: Predicting “ip_hdrlen’.
* Let’s suppose a well-trained classification model.
* It attempts to choose name for a variable with ground truth name “ip_hdrlen".
* But this name is not in the training dataset.

No context about “ip header”
/ Inaccurate denotation: the groundtruth is
relevant to “ip”, but it is not “address”.
C ) \ Inaccurate denotation: the groundtruth is
block_len relevant to “len”, but irrelevant to “block”.

A classification model fails to find the best
fit name from the training dataset. 7




Solutionl: Compose Names from Tokens

° Insight: Most unseen names are composed from common names.

* We leverage generative models to compose names from tokens.

(o) — =
1st token 2nd token 3td token
)

A generative model composes an unseen
name from common tokens.



Challenge2: Reason Programs with Limited

Contextual Information

* Binary pro%rams has limited contextual information due to the lack of
names from calling contexts.

meamngfu

0 int send_packet(...) {

1 memset(packet, @, sizeof(packet));
2 struct iphdrx ip_hdr =(struct iphdrx)packet;

// Fill in the IP Header
memset(ip_hdr, 0, 0x3c);
ip_hdr—>ihl = ip_hdrlen >> 2;
ip_hdr->tos = 0;

ip_hdr->id = htonl(...);

No b~ Ww

// Compute checksums

[ee]

9 tcp_checksum(ip_hdr,ip_hdrlen,...);

o}

Source code of a function “send_packet”.

AQint sub_401430(...){

Al memset(s, 0, 0x400);
A2 v29 = s;

A3 memset(v29, 0, 0x3c);

A4 x%v29 = (n >> 2) & OxF;

A5 x((charx)v29+1) = 0;

A6 *((uint16x)v29+2) = htonl(...);

A8 sub_40197A(v29, n,...);
-

The corresponding decompiled code.



Challenge2: Reason Programs with Limited
Contextual Information

* Binary pro%rams has limited contextual information due to the lack of
meaningful names from calling contexts.

0 int send_packet(...) { A@int sub_401430(...){
1 memset(packet, 0, sizeof(packet)); Al memset(s, 0, 0x400);
2 struct iphdrx ip_hdr =(struct iphdrx)packet; A2 v29 = s;

// Fill in the IP Header
memset(ip_hdr, 0, 0x3c); A3 memset(v29, 0, 0x3c);
ip_hdr—>ihl = ip_hdrlen >> 2; A4 $ S H
ip_hdr—>tos = 0;
ip_hdr—>id = htonl(...);

Inform-ation from calling

No b~ Ww

contexts is missing

// Compute checksums
9 tcp_checksum(ip_hdr,ip_hdrlen,...); A8 sub_40197A(v29, n,...);
.} —_

[ee]

Source code of a function “send_packet”. The corresponding decompiled code.



Challenge2: Reason Programs with Limited
Contextual Information

* Binary pro%rams has limited contextual information due to the lack of
meaningful names from calling contexts.

* Directly prompting an LLM or a naive SFT are sub-optimal.

int sub_401430(...){

0 int send_packet(...) { Adint sub_401430(...){ memset(s, 0, 0x400);
- T v29 = s;

1 memset(packet, 0, sizeof(packet)); Al memset(s, 0, 0x400); Input to .

2 struct iphdrx ip_hdr =(struct iphdrx)packet; A2 V29 = s; an LLM memset(v29, 0, Ox3c);

*v29 = (n >> 2) & OXF;
// Fill in the IP Header

3 — 0
4 memset(ip_hdr, 0, 0x3c); A3 memset(v29, 0, 0x3c); Iiiﬁzzitélfszéiz; o
5 dip_hdr->ihl = ip_hdrlen >> 2; A4 O & _OxE: — htonl( s
6 ip_hdr—>tos = 0; J . = noo)f
4 eni N Information from calling Ry sub_40197A(v29, n,...):
o contexts 1s missing .
8 // Compute checksums
9 tcp_checksum(ip_hdr,ip_hdrlen,...); A8 sub_40197A(v29, n,...); Q: v29 , s , n
.} -
Expected A: v29 —> ip_hdr
. . . s —> packet
Source code of a function “send_packet”. The corresponding decompiled code. output e
n —> ip_hdrlen

A naive data sample to SFT an LLM.



Challenge2: Reason Programs with Limited
Contextual Information

* Binary pro%rams has limited contextual information due to the lack of
meaningful names from calling contexts.

* Directly prompting an LLM or a naive SFT are sub-optimal.

int sub_401430(...){

0 int send_packet(...) { Adint sub_401430(...){ memset(s, 0, 0x400);
- T v29 = s;

1 memset(packet, 0, sizeof(packet)); Al memset(s, 0, 0x400); Input to .

2 struct iphdrx ip_hdr =(struct iphdrx)packet; A2 v29 = s; an LLM nemset(v29, 0, 0x3C);

/7 *v29 = (n >> 2) & OxF;
// Fill in the IP Header ( )

3

*((charx)v29+1) = 0;
4 memset(ip_hdr, 0, 0x3c); A3 memset(v29, 0, 0x3c); *§§512£121)32912) 0
5 dp_hdr->ihl = ip_hdrlen >> 2; AL 5490 WY / model can hardly o)
6 EpEhEE->tos = 0; Information from calling associate v29 with sub 40197A(V29, N, ...):
7 dip_hdr—id = htonl(...); Lt p Npee);

contexts is missing ip_hdr. v}

// Compute checksums
9 tcp_checksum(ip_hdr,ip_hdrlen,...);

[ee]

Q: v29 , s , n

A8 sub_40197A(v29, n,...);

3 e}
IZXpected. A: v29 —> ip_hdr
Source code of a function “send_packet”. The corresponding decompiled code. output| 7 packet
n —> ip_hdrlen

A naive data sample to SFT an LLM.



Solution?2: Fine-tune with Contextual Info

 Context-aware fine-tuning: use the name hints from

the calling context.

0 int send_packet(...) {

memset (packet, @, sizeof(packet));
struct iphdrx ip_hdr =(struct iphdrx)packet;

N =

// Fill in the IP Header
memset(ip_hdr, 0, 0x3c);
ip_hdr—>ihl = ip_hdrlen >> 2;
ip_hdr->tos = 0;

ip_hdr—>id = htonl(...);

No b~ Ww

// Compute checksums
9 tcp_checksum(ip_hdr,ip_hdrlen,...);
.}

[ee]

Source code of a function “send_packet”.

AQint sub_401430(...){

Al memset(s, 0, 0x400);
A2 v29 = s;

A3 memset(v29, 0, 0x3c);

A4 *v29 = (n >> 2) & OxF;

A5 x((charx)v29+1) = 0;

A6 *((uint16x)v29+2) = htonl(...);

A8 sub_40197A(v29, n,...);
-

The corresponding decompiled code.

int sub_401430(...){

memset(s,«0, 0x400);
v29 = s;
}u

memset(v29, 0, 0x3c);
*v29.= (n >> 2) & OxF;
*((charx)v29+1) = 0;
*((uint16x)v29+2)

= htonl(...);
29, n,...);

Input to

an LLM
sub_40197

Q: v29 , s , n

<Context> d’
Contextual | g, 29197 (ip_hdr,
information ip_hdrlen...)
</Context>

A: v29 —> ip_hdr
s —> packet
n —> ip_hdrlen

Expected
output

A data sample for context-
aware fine-tuning.'?



Solution?2: Fine-tune with Contextual Info

 Context-aware fine-tuning: use the name hints from

the calling context.

0 int send_packet(...) {

N -

No b~ Ww

[ee]

memset (packet, 0, sizeof(packet));

struct iphdrx ip_hdr =(struct iphdrx)packet;

// Fill in the IP Header
memset(ip_hdr, 0, 0x3c);
ip_hdr->ihl = ip_hdrlen >> 2;
ip_hdr—>tos 0;

ip_hdr—>id = htonl(...);

// Compute checksums
tcp_checksum(ip_hdr, ip_hdrlen,...);
3

Source code of a function “send_packet”.

AQint sub_401430(...){

Al
A2

A3
A4
A5
A6

A8

The corresponding decompiled code.

Input to
an LLM

memset(s, 0, 0x400);
v29 = s;

The name of v29 can be

inferred from the

calling context. Contextual

information

sub_40197A(v29, n,...);
o}

Expected
output

int sub_401430(...){

memset(s,«0, 0x400);
v29 = s;

Agmset(VZQ, 0, 0x3c);
*v29.= (n >> 2) & OxF;
*((charx)v29+1) = 0;

*( (uintI6%)v29+2)

= htonl(...);

Q: v29 , s , n

<Context> d,
sub_40197A(ip_hdr,

ip_hdrlen...)
</Context>

"R v29 -> ip_hdr
s —> packet
n —> ip_hdrlen

A data sample for context-
aware fine-tuning.'?




Challenge3: Bias Toward Frequent Names

* The name distribution follows a long-tailed distribution.

* Over half of all names appear only once.

—
-
D

0% Names

|
|
I
I
|
|
|
:< >
I
|
|
|
1

Frequency
f—
=
N}

—
)
O

Variable Names



Challenge3: Bias Toward Frequent Names (Cont’d)

* For example, the statistics of a widely-used high-quality training dataset show that
the first argument to “memset’ is frequently labeled as “buffer’ than other names.

buffer file
memset
T F T F
T 19 700 p) 717
F 292 206504 165 206631

Y2 1.6e-63 0.22

12



Challenge3: Bias Toward Frequent Names (Cont’d)

* For example, the statistics of a widely-used high-quality training dataset show that
the first argument to “memset’ is frequently labeled as “buffer’ than other names.

* A model trained on this dataset is likely to mis-predict 's* as "buffer’, while its
ground truth name is “packet’.

AQint sub_401430(...){
buffer file -
Al memset(s, 0, 0x400);
memset A2 V29 = s;
T F T F

A3 memset(v29, 0, 0x3c);
A4 xv29 = (n >> 2) & OxF;

T 19 700 2 717 A5 x((charx)v29+1) = 0;

F 292 206504 165 206631 A6 *((uint16%)v29+2) = htonl(...);

X2 166-63 022 A8 ?l.ll.);40197A(v29, Nyees);

12



Solution3: Mitigate Bias via Preference Optimization

» Misassigning a frequent name to a variable may not be entirely “wrong”. It indicates
developers’ preference about choosing names.

* Developers prefer not to use frequent names when they don’t fit the program context.

* We teach models the developers’ preference via preference optimization.

int sub_401430(...){

memset (s, <0, 0x400);
V29 = s;
N

memset(v29, 0, 0x3c);
*V29.= (n >> 2) & OXF;
*((charx)v29+1) = 0;
*((uintI6%)v29+2)

= htonl(...);
sub_40197A4v29, n,...);

Q:v29 , s , n\\\

<Context> d}
sub_40197A(ip_hdr,
len...)

ip_hdr
</Context>
A: v29 —> ip_hdr
s —> packet
n —> ip_hdrlen

13



Solution3: Mitigate Bias via Preference Optimization

» Misassigning a frequent name to a variable may not be entirely “wrong”. It indicates
developers’ preference about choosing names.

* Developers prefer not to use frequent names when they don'’t fit the program context.

* We teach models the developers’ preference via preference optimization.

int sub_401430(...){

t( 0, 0x400);
29 4

b
mset(v29, 0, 0x3c);

*v29.= (n >> 2) & OxF;

*((charx)v29+1) = 0;
*((uintI6%)v29+2)
= htonl(...);

_________________________________________ . Preference
sub_40197A4v29, n,...);

| Less Preferred \ optimization
I ess Preferre .
e+ e © ()
I Name .
. \ I
Q: v29 , i

S, ’ ;
m,c - t" : s —> packet Q Preferred Name

s —> pack;:dr ’ ‘\

\n N e e =

n -> ip_hdrlen

In addition to the SFT loss, our training requires the model to increase the probability for preferred
names while suppressing less-preferred ones. This is achieved by preference optimization. 13



Overall: 3-Stage Training Pipeline

Step 1: Fine-tuning Step 2: Identifying Step 3: Mitigating bias
with contextual model’s bias towards via preference
information. frequent names. optimization.




Overall: 3-Stage Training Pipeline

Stepl
Fine-tuning Generative Code Models

Propagating Decompiled
information Code
along call p

graph. ‘L

Appending | Decompiled Step !2: I(-ientifVing Step 3 Mitigating bias
contextual Code model’s bias towards via preference
;ﬁf)‘j;‘;‘;f““ © L[ Context ) frequent names. optimization.

|

Fine-tuning code ~ Causal Language
language models on  Modeling (CLM)

ground-truth
names varl —> ¢

14



Overall: 3-Stage Training Pipeline

Stepl
Fine-tuning Generative Code Models

Propagating Decompiled
information Code
along call p

graph. L

Be ——
Appending Decompiled
contextual Code
oL Context ]

|

Fine-tuning code ~ Causal Language
language models on  Modeling (CLM)

ground-truth
names. varl —> ¢

Step2
Building a Symbol Preference Dataset
Inferencing on the Dec. Code
training dataset
with the fine-tuned
model. &
GenNm-Ctx . . .
322 Step 3: Mitigating bias
Sampling multiple .
names for each via preference

variable.

optimization.

var1->eccBlk

Constructing

pairwise dataset vari->eccBlk

reflecting symbol ’
preference. (vari->char |
'y

14



Overall: 3-Stage Training Pipeline

Stepl Step2
Fine-tuning Generative Code Models Building a Symbol Preference Dataset
.Pr;)pagat}ng Decompiled Inf.er.encmg on the Dec. Code
information fode training dataset
along call » with the fine-tuned ontex
graph. model. v
— GenNm-Ctx
Appending Decompiled Sampling multiple %

contextual Code names for each

information to variable. *
prompts. : vari->eccBlk
|

Fine-tuning code Causal Language Constructing ¢
language models on  Modeling (CLM) pairwise dataset vari->eccBIk

ground-truth % reflecting symbol ’
names. varl —> c preference. . var1->char ]
,/

Step3

Symbol Preference Optimization
Composing two Dec. Dec.
queries with the Code Code

same code, for

better and worse

names, repsectively.
char

Calculating the
probabilities for
generating both

names.
GenNm-SymPO

Requiring the . .
probability for the
}ztgt:i name to be 0.05 < 0.12




Overall: Iterative Inference

Decompiled GenNm-SymPO '-
Code —> e >[var1]-> len |
'

| Context |
»

l ¢’ Name candidates saved
varl —> len_ across rounds
€D Predictions for one round
varl -> ¢ ™
£) Name propagation A selected names £) Name validation following
following the call graph program data-flow

15



Evaluation: Overall Performance

* Our prototype GenNM achieves better performance than both the
classification-based model (VarBERT) and the generative model

trained with a naive SF'T loss (ReSym).

* The performance is measured as the token-wise precision and recall
between the predicted name and the ground truth name for a variable.

Proj. NIT Proj. IT Overall
Dataset Model
Precision  Recall Precision  Recall Precision  Recall
VarBERT 23.6 21.7 31.4 29.6 27.2 25.5
DIRTY ReSym 25.3 24.9 35.6 34.3 30.2 29.3
GENNM 30.5 28.8 41.7 39.6 33.9
VarBERT 20.9 19.3 32.5 31.0 29.8 28.3
VarCorpus ReSym 23.5 24.1 34.2 35.8 33.1

GENNM 29.5 274 44.7 42.8 41.2 39.3

16




Evaluation: Overall Performance

* GenNM achieves better performance than prompting black-box LLM:s.

Model Prompt Precision  Recall
zero-shot 26.2 27.7
GPT=3.5 3-shot 29.7 28.9
zero-shot 30.3 33.3
GPT-4 3-shot 31.4 32.6
zero-shot - -
CodeLlama-70B 5 ot 274 26.9
ENNM - 27 397

17



Evaluation: Generalization to Rare Name

* GenNm achieves significantly better performance on unseen and rare
names (i.e., names with low frequencies in the training dataset).

BN GenNm Bl ReSym W VARBERT

Precision
©c o ©
N W AN

o
—

S
o

1-10  10-100 100-1000 >1000
Name Frequency "




Evaluation: GPT4Evaluator

* We instruct GPT4 to judge the quality of reconstructed names, scoring
from 1 (worst) to 5 (best).

e This metric approximates how a human reverse engineer would
evaluate the reconstructed names.

—8o— GenNM VarBERT
Context Semantics
1.001
[, 0.751
wnn
0.50]
0.251




Evaluation: GPT4Evaluator

* We instruct GPT4 to judge the quality of reconstructed names, scoring
from 1 (worst) to 5 (best).

e This metric approximates how a human reverse engineer would
evaluate the reconstructed names.

—o— GenNM —m— VarBERT

Context gremsympmemm Semantics
1.00- good names for
more than 50%
| cases.

i, 0-75
p]

0.50;

0.251




Takeaways

* Context-aware fine-tuning: We propose a domain-specific design for

SFT LLMs.

* SymPO: We design SYMbol Preference Optimization to mitigate
data bias.

* GenNM: We implement a prototype that predicts good names for

more than 50% variables.

Artifact
Evaluated

A NDss

Available

Functional

Reproduced

20



Takeaways

We propose a domain-specific design for

SFT LLMs.

We design SYMbol Preference Optimization to mitigate
data bias.

We implement a prototype that predicts good names for
more than 50% variables.

We actively work on

Artifact
Evaluated
A NDSS democratized reverse engineering,
J" Joloiol +
JE— | f trustworthy coding agent, and
. 42Dy 3 3
Functional € agentic code reasoning systems.

Reproduced

20



Thank you!



GPT4Evaluator Example - 1

__int64 process_wait(__pid_t xproc,
unsigned int wait_secs){

memset (&sigact, 0, sizeof(sigact));
sigact.sa_handler = (__sighandler_t)sighandler;
sigaction(14, &sigact, OLL);

alarm(wait_secs);

if (waitpid(*proc, &status, @) == xproc)

return result;

}

Prediction: timeout

(a) Context:5, Semantics:5. The predicted name has exactly the
same semantics and context with the ground-truth name.

22



GPT4Evaluator Example - 2

__int64 randn(double mu, double sigma){

if (... )
}¥2 = (double)qword_4138D0 * sigma + muj;

Prediction: variance

(b) Context:4, Semantics:2. The predicted name has almost the
same context as the ground truth (both are related to statistics).
However, the semantics is misleading since variance is typically
the square of sigma.

23



GPT4Evaluator Example - 3

__int64 file_exists(const char xfilename)

{
fd = open(filename, 0);
if (fd < 0)
return (unsigned int)fd;
close(fd);
) return 1LL;

Prediction: path

(c) Context:5, Semantics:4. The predicted name is consistent
with the program context. However, the semantics of the pre-
dicted name does not imply the variable refers to a file. (path
may also point to a directory.)

24



