
BINENHANCE: An Enhancement
Framework Based on External Environment

Semantics for Binary Code Search

Yongpan Wang
frankile@sjtu.edu.cn

Co-authors: Hong Li, Xiaojie Zhu, Siyuan Li, Chaopeng Dong,
Shouguo Yang, Kangyuan Qin

The Network and Distributed System Security Symposium (NDSS) 2025

1

CONTENTS

⚫1. Background

⚫2. Motivation

⚫3. Design

⚫4. Evaluation

⚫5. Conclusion

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search 2

1. Background

• Software development often reuses open-source code to reduce costs.

• 96% of software uses open-source code, with 89% relying on versions over
four years [1].

• 84% of software has at least one known vulnerability, and 200+ new open-
source vulnerabilities are found every day [1].

• The extensive workload of code auditing and the complexity of recursi
ve code reuse results in substantial delays in vulnerability patching.

• some software systems experiencing an average delay of 352 days [2].

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search 3

[1] “Synopsys risk 2023 analysis open report.” source security and https://www.synopsys. com/software-integrity/resources/analyst-reports/ open-source-security-risk-analysis.html, 2024.
[2] C. Dong, S. Li, S. Yang, Y. Xiao, Y. Wang, H. Li, Z. Li, and L. Sun, “Libvdiff: Library version difference guided oss version identification in binaries,” in 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE). IEEE Computer Society, 2023, pp. 780–791.

1. Background

• Exploiting 1-day vulnerabilities in reused code has become a highly
effective, low-cost, and large-scale attack method for attackers, posing
severe risks.

• binary code search has been proven

 to be a powerful method for automat-

 ing the detection of insecure software

 components.

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search 4

1. Background

• Binary code search entails the meticulous analysis of numerous binary
codes to identify the most similar ones.

• However, the syntactic structure of binary code can vary dramatically
due to different compiler settings.

• Binary codes with similar syntactic structures may have different semantics.

5

[1] Haq, Irfan ul and Juan Caballero. “A Survey of Binary Code Similarity.” ACM Computing Surveys (CSUR) 54 (2019): 1 - 38.Haq, Irfan ul and Juan Caballero. “A Survey of Binary Code
Similarity.” ACM Computing Surveys (CSUR) 54 (2019): 1 - 38.

C/C++ source-to-binary compilation process[1]

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

2. Motivation

6BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

• Based on different perspectives, we classify them into two categories.

• Internal code semantics: focuses on the function itself and is derived from both the
binary code embedded within the function or from its derivatives.

• External environment semantics: focuses on inter-function and is inferred from
other supplementary functions (in the code segment) or and data (in the data segment).

• In this paper, we present Call-Dependency, Data-Co-Use, Address-Adjacency, and
String-Use as novel external environment semantics in our work.

2. Motivation

7BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

2. Motivation

8BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

• Problem 1 (P1): internal code semantics of functions may exhibit subs-tanti
al variations due to different compilation settings, encompassing factors like
function inlining and splitting.
• compiler-caused function inlining can reach up to 70%

• Problem 2 (P2): exclusive reliance on function call graphs (CG) for assistan
ce is insufficient for addressing complex real-world scenarios.
• Missing calls

• Similar calls and so on

• Problem 3 (P3): current solutions exhibit limited scalability and struggle to
cope with large-scale function search tasks.
• 768 dimension of function embeddings and large costs of retrain

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

3. Design

9

• To solve these problems, we propose a general enhancement framewor
k named BinEnhance for binary code search.

• Node Initial Embedding Generation Stage

• Function Embedding Enhancement Stage

• Similarity Combination Stage

3. Design

10

• Node Initial Embedding Generation Stage

• Function node embeddings: generated by internal code semantics model

• String node embeddings: generated by sentence-transformer model MPNET

Function Node

Initial Embeddings

String Node

Initial Embeddings

All Node

Initial Embeddings

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

3. Design

11

• Function Embedding Enhancement Stage

• External Environment Semantic Graph (EESG) Construction

• Node

• Function Node

• String Node

• Edge

• Call-Dependency (CD) Edge

• Data-Co-Use (DCU) Edge

• Address-Adjacency (AA) Edge

• String-Use (SU) Edge

◆ CD Edge: two functions exist call/called relations

◆ DCU Edge: two functions share/use same data

◆ AA Edge: two functions are positionally adjacent

◆ SU Edge: function node uses a specific string node

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

3. Design

12

• Function Embedding Enhancement Stage

• External Environment Semantic Graph (EESG) Construction Algorithm

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

3. Design

13

• Function Embedding Enhancement Stage

• Semantic Enhancement Model (SEM)

• For example: HermesSim

• RGCN layer:

• SEM:

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

3. Design

14

• Similarity Combination Stage

• Simcos: Semantic Embedding Cosine Similarity of two functions

• Simdata: Jaccard Similarity of readable data features (Fm/n) of two functions

• Loss function

Simdata=

Simcos= Cosine (Embed1, Embed2)

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

4. Evaluation

15

• Benchmarks

• Dataset D1: from Asteria, 2,751,667 functions

• Dataset D2_norm: from BinKit, 1,654,864functions, normal compilation

• Dataset D2_noinline: from BinKit, 1,991,864functions, inlining is prohibited

• Dataset D3_firmware: 37 firmware images from 8 vendors

• Baselines: Gemini, Asm2vec, Asteria, TREX, HermesSim

• Metric: Mean Average Precision (MAP)

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

4. Evaluation

16

• Research questions

• RQ1: How much could be improved when BINENHANCE is applied to baseli
nes (including HermesSim, Asteria, Asm2vec, TREX, and Gemini)?

• RQ2: Is BINENHANCE robust against different compiler optimization option
s and architectures?

• RQ3: Does BINENHANCE effectively alleviate the impact of function inlinin
g in binary code search?

• RQ4: What is the contribution of each part in BINENHANCE?

• RQ5: Does BINENHANCE improve the efficiency of baselines?

• RQ6: What is the performance of BINENHANCE in detecting 1-day vulnerabi
lities in real-world firmware?

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

4. Evaluation

17

• RQ1: different function pool size (2, 16, 32, …, 8192, 10000)

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

4. Evaluation

18

• Answer to RQ1

• BINENHANCE demonstrates significant improvement across all the baselines,
evidenced by the average increment in MAP scores on the two public dataset
(16.1%, from 53.6% to 69.7%). Furthermore, its improvement for each baselin
e is positively correlated with the size of the function pool.

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

4. Evaluation

19

• RQ2: Cross-architecture and Cross optimization option

4. Evaluation

20

• Answer to RQ2

• BINENHANCE stably enhances baselines across cross-architecture and cross-
optimization option tasks, without succumbing to significant performance dips
under various compilation settings.

BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search

4. Evaluation

21

• RQ3: D2_norm and D2_noinline

4. Evaluation

22

• Answer to RQ3

• Function inlining leads to a substantial performance loss in the binary code sea
rch task, but BINENHANCE mitigates the decline and improves the baseline
model’s ability to cope with optimization strategies such as function inlining.

MAP Score Decline Ratio

 (MAPNI−MAPNO)

MAPNI

4. Evaluation

23

• RQ4: Ablation Study

4. Evaluation

24

• Answer to RQ4

• Each component of BINENHANCE plays a crucial role in the final result, and
the absence of any one of them can lead to a degradation in the performance of
the binary search task.

4. Evaluation

25

• RQ5: Efficiency Evaluation

4. Evaluation

26

• Answer to RQ5

• The additional time cost of BINENHANCE is in training and generating functi
on embeddings, but it significantly reduces the time for binary code search tas
ks, resulting in an overall lower time cost compared to the original model.

4. Evaluation

27

• RQ6: 1-day Vulnerability Search

4. Evaluation

28

• Answer to RQ6

• BINENHANCE identified 101 1-day vulnerabilities in 37 firmware images wit
h 67.9% MAP scores, which is 12 more vulnerabilities detected than HermesSi
m, and a MAP score of 7.7% higher.

5. Conclusion

29

• We propose a binary code search enhancement framework BINENHA
NCE, which enhances internal code semantic models with valuable ext
ernal environment semantic information, thereby reducing the false po
sitive and false negative.

• Design an EESG to resolve Problem 2

• Propose a SEM to resolve Problem 1

• Use whitening transformations to resolve Problem 3

• We implement prototype BINENHANCE

• The evaluation shows the performance of BINENHANCE

Q & A
Yongpan Wang

Contact: frankile@sjtu.edu.cn

Co-authors: Hong Li, Xiaojie Zhu, Siyuan Li, Chaopeng Dong, Shouguo Yang, Kangyuan Qin

30

	幻灯片 1: BINENHANCE: An Enhancement Framework Based on External Environment Semantics for Binary Code Search
	幻灯片 2: CONTENTS
	幻灯片 3: 1. Background
	幻灯片 4: 1. Background
	幻灯片 5: 1. Background
	幻灯片 6: 2. Motivation
	幻灯片 7: 2. Motivation
	幻灯片 8: 2. Motivation
	幻灯片 9: 3. Design
	幻灯片 10: 3. Design
	幻灯片 11: 3. Design
	幻灯片 12: 3. Design
	幻灯片 13: 3. Design
	幻灯片 14: 3. Design
	幻灯片 15: 4. Evaluation
	幻灯片 16: 4. Evaluation
	幻灯片 17: 4. Evaluation
	幻灯片 18: 4. Evaluation
	幻灯片 19: 4. Evaluation
	幻灯片 20: 4. Evaluation
	幻灯片 21: 4. Evaluation
	幻灯片 22: 4. Evaluation
	幻灯片 23: 4. Evaluation
	幻灯片 24: 4. Evaluation
	幻灯片 25: 4. Evaluation
	幻灯片 26: 4. Evaluation
	幻灯片 27: 4. Evaluation
	幻灯片 28: 4. Evaluation
	幻灯片 29: 5. Conclusion
	幻灯片 30: Q & A Yongpan Wang Contact: frankile@sjtu.edu.cn Co-authors: Hong Li, Xiaojie Zhu, Siyuan Li, Chaopeng Dong, Shouguo Yang, Kangyuan Qin

