
VeriBin: Adaptive Verification of
Patches at the Binary Level

Hongwei Wu, Jianliang Wu*, Ruoyu Wu, Ayushi Sharma,
Aravind Machiry, and Antonio Bianchi

Purdue University, Simon Fraser University*
NDSS 2025

Supported by DARPA, as part of the AMP program, under contract number N6600120C4031

2VeriBin: Adaptive Verification of Patches at the Binary Level

Motivation: The Challenge of Patching

● “If it ain't broke, don't fix it.” often applies in software.

● The fear of introducing new issues can lead vendors to leave

vulnerabilities unpatched

○ Especially in domains where reliability is the primary concern:

■ Automotive

■ Medical devices

■ …

3VeriBin: Adaptive Verification of Patches at the Binary Level

Motivation: source-level patch verification tools

source code build chain

patch

patched
source code

patched binary

Source-level tools:
● SymDiff [CAV 2012]
● SPIDER [NDSS 2020]
● Ardiff [ESEC/FSE 2020]
● …

4VeriBin: Adaptive Verification of Patches at the Binary Level

Motivation: source-level patch verification tools

source code build chain

patch

patched
source code

patched binary

● Unfortunately, source code and build chain
aren’t always accessible.

● We need verification tools that work at the
binary level.

5VeriBin: Adaptive Verification of Patches at the Binary Level

Motivation: Why Verify Binary Patches?

● Imagine you receive a patched binary from a third-party vendor. How

can you formally guarantee this patched binary:

○ Doesn't break existing functionality?

○ Doesn't introduce unwanted changes or vulnerabilities?

● We need patch verification tools that:

○ Formally model patch effects without source code access.

○ Ensure patches preserve the original binary's functionality

6VeriBin: Adaptive Verification of Patches at the Binary Level

Traditional ways to verify patches without source

(a) Manual Byte Pattern Comparison

7VeriBin: Adaptive Verification of Patches at the Binary Level

Traditional ways to verify patches without source

(a) Manual Byte Pattern Comparison

(b) Structural Comparison with BinDiff

8VeriBin: Adaptive Verification of Patches at the Binary Level

Traditional ways to verify patches without source

(a) Manual Byte Pattern Comparison

(b) Structural Comparison with BinDiff (c) Manual Decompiled Code Comparison

Original

Patched

9VeriBin: Adaptive Verification of Patches at the Binary Level

Traditional ways to verify patches without source

(a) Manual Byte Pattern Comparison

(b) Structural Comparison with BinDiff (c) Manual Decompiled Code Comparison

Original

PatchedLabor-intensive and Error-prone

10VeriBin: Adaptive Verification of Patches at the Binary Level

● Adaptive Verification of Patches at the Binary Level

○ First system to describe and verify patch behavior at the binary level

(i.e., without source code), for functionality-preserving properties.

○ Adaptive: Help analysts to enhance the analysis with domain-specific

insights.

○ Addresses unique challenges in binary-level analysis compared to

source-level approaches.

Our tool: VeriBin

11VeriBin: Adaptive Verification of Patches at the Binary Level

Design

Original Binary Patched Binary

Discard Compiler-introduced
Offset Changes

Verify “Safe to Apply”
Properties

The Patched Binary
can be safely

deployed

Preprocessor

Path-aware Symbolic
Comparison

Function-level Symbolic
Execution

Visualize Deviations
from “Safe to Apply”

Properties

12VeriBin: Adaptive Verification of Patches at the Binary Level

Design

Original Binary Patched Binary

Discard Compiler-introduced
Offset Changes

Verify “Safe to Apply”
Properties

The Patched Binary
can be safely

deployed

Preprocessor

Path-aware Symbolic
Comparison

Function-level Symbolic
Execution

Visualize Deviations
from “Safe to Apply”

Properties

Patch-aware
Symbolic
Execution

13VeriBin: Adaptive Verification of Patches at the Binary Level

Patch-aware Symbolic Execution

● Using SMT solvers to compare functions faces challenges:
○ Compiler-Introduced Offset Changes (CIOCs): Offsets changes introduced

by compilers hinder the verification.
○ Complicated symbolic expressions are hard to compare: Type

information loss leads to inefficient theories; absence of variable names complicates
symbolic value comparisons.

14VeriBin: Adaptive Verification of Patches at the Binary Level

Patch-aware Symbolic Execution

● Using SMT solvers to compare functions faces challenges:
○ Compiler-Introduced Offset Changes (CIOCs): Offsets changes introduced

by compilers hinder the verification.
○ Complicated symbolic expressions are hard to compare: Type

information loss leads to inefficient theories; absence of variable names complicates
symbolic value comparisons.

● VeriBin’s solutions :
1. Detect and ignore CIOCs with the combination methods of Content-Based

Comparison, Shift-by-same-offset Analysis and Structural Position Correlation.
2. Simplify Comparisons: Use Matching Path Pairs (MPPs) to simplify symbolic

comparisons "path by path”.

15VeriBin: Adaptive Verification of Patches at the Binary Level

Detect and Discard CIOCs

Compiler-Introduced Offset Change (CIOC): A variation in memory addresses
between the original and patched binaries caused by compiler optimizations, despite
the content remaining identical.

Why discard CIOCs? They do not reflect actual modifications introduced by the patch.

Source Level Patch
 char a = ...;
 + char MAX_VAL = ...;
 + if (a > (MAX_VAL - 1){
 + return -1;
 + }
 if (checkval(a) != 0) {
 return -1;
 }
 ...

Original Binary
 movsx eax, [rbp - 0x1]
 mov edi, eax
 call 0x1149

Patched Binary
 movsx edx, [rbp - 0x5]
 mov eax, [rbp - 0x4]
 cmp edx, eax
 jbe ...
 ...
 movsx eax, [rbp - 0x5]
 mov edi, eax
 call 0x1149

Offset changed
for variable a

Potential Function Call Argument Difference:
- Original binary:

call func_1149(mem_[rbp - 0x1])
- Patched binary:

call func_1149(mem_[rbp - 0x5])

16VeriBin: Adaptive Verification of Patches at the Binary Level

Techniques to detect CIOCs:

1. Content-Based Comparison: Compare contents at fixed addresses for global

read-only variables.

○ printf(0x4000) v.s. printf(0x4040),

0x4000 in original binary and 0x4040 in the patched binary both point to the

content "abc"

○ printf(“abc”) v.s. printf(“abc”)

Detect and Discard CIOCs

17VeriBin: Adaptive Verification of Patches at the Binary Level

Techniques to detect CIOCs:
2. Shift-by-same-offset Analysis: Identify local variables shifted by a consistent

offset.

○ foo(rsp + 0xfffe, rsp + 0xfff8, …)
v.s.

foo(rsp + 0xffde, rsp + 0xffd8, …)
All variables are shift by the same offset 0x20.

Detect and Discard CIOCs

18VeriBin: Adaptive Verification of Patches at the Binary Level

Techniques to detect CIOCs:
3. Structural Position Correlation: Match expressions in similar AST positions

differing only by an offset.

0xffff 0xffef

Detect and Discard CIOCs

19VeriBin: Adaptive Verification of Patches at the Binary Level

Simplify Comparison by Matching Path Pair (MPP)

Definition: An MPP is a pair of valid exit paths, o and p, where any input i
executing p in patched function also executes o in original function.

In other words, the path constraint of p imply that of o.

 , i.e., is Unsat.

Patched Binary
MPP

MPP

MPP

Original Binary

20VeriBin: Adaptive Verification of Patches at the Binary Level

switch (choice) {
 case 1:
 ptr->value = 10;
 break;
 case 2:
 ptr->value = 20;
 break;
 case 3:
- ptr->value = 30;
+ ptr->value = 35;
 break;
 case 4:
 ptr->value = 40;
 break;
 default:
 ptr->value = 0;
 break;
}

Purpose: MPPs help by avoiding complex symbolic comparisons.

Comparing ptr->value
(a) If merging all the paths, SMT solver needs to compare:

 ptr->value = ITE(choice == 1, 10,
 ITE(choice == 2, 20,
 ITE(choice == 3, 30, 0
 ITE(choice == 4, 40, 0))))
 V.S.
 ptr->value = ITE(choice == 1, 10,
 ITE(choice == 2, 20,
 ITE(choice == 3, 35, 0
 ITE(choice == 4, 40, 0))))

(b) If comparing MPP, SMT solver only compares:

 ptr->value = 30
 V.S.
 ptr->value = 35

Simplify Comparison by Matching Path Pair (MPP)

21VeriBin: Adaptive Verification of Patches at the Binary Level

Design: Adaptive Verification

Original Binary Patched Binary

Discard Compiler-introduced
Offset Changes

Verify “Safe to Apply”
Properties

The Patched Binary
can be safely

deployed

Preprocessor

Path-aware Symbolic
Comparison

Function-level Symbolic
Execution

Visualize Deviations
from “Safe to Apply”

Properties

Patch-aware
Symbolic
Execution

Adaptive
Verification

22VeriBin: Adaptive Verification of Patches at the Binary Level

• All reachable complete execution paths = VEPs ⋃ EEPs

• Valid Exit Path (VEP): A complete path that the function execution takes

only with valid inputs.

• Error-handling Exit Path (EEP): A complete path where inputs that follow

this path are considered invalid and thus rejected by the function.

Terminology: Valid Exit Path to a function

int foo(int a){
 if(a > MAX_SIZE){
 return -1;
 }

…
 return 0;
}

Error-handling Exit Path

Valid Exit Path

23VeriBin: Adaptive Verification of Patches at the Binary Level

To ensure the patch is not breaking the original functionality, VeriBin verifies
the following properties for each modified function:
• Not increasing input space: All valid inputs to the patched function are also

valid inputs to the original function.
○ (P1) Path Constraint Implication (for all valid exit paths)

• Output Equivalence: For all valid inputs, the output of the patched function
must be the same as that of the original function.
○ (P2) Non-Local Memory Writes Equivalence (for all valid exit paths)

○ (P3) Return Value Equivalence (for all valid exit paths)

○ (P4) Function Calls Equivalence (for all valid exit paths)

 [1] “SPIDER: Enabling Fast Patch Propagation in Related Software Repositories”, Machiry et al., S&P 2020

Terminology: Safe-to-Apply Properties

24VeriBin: Adaptive Verification of Patches at the Binary Level

Safe-to-Apply Properties Verification

● VeriBin automates the verification of Safe-to-Apply (StA) properties:

○ If all properties are True, the patch is deemed safe to apply.

○ If any StA property fails:

■ Root causes of the failures are identified.

■ Analysts are engaged to validate the root cause, and their

feedback is used to refine the analysis process to filter out

semantically equivalent changes.

25VeriBin: Adaptive Verification of Patches at the Binary Level

● Patch substituting the usage of the (weak) 3DES encryption algorithm with the
safe AES algorithm.

● VeriBin detects the potential violation of the Safe to Apply properties and asks
the analyst:
○ “Can EVP_des_ede3_cbc() and EVP_aes_256_cbc() be considered equivalent?”

● If the operator answers: “yes”
○ This information is integrated in the analysis

→ VeriBin determines this patch is Safe to Apply

Adaptive Verification: Example

26VeriBin: Adaptive Verification of Patches at the Binary Level

Evaluation:

● Dataset: 86 pair of original and patched binaries from
○ MicroPatch Bench dataset 1

○ DARPA AMP Challenges dataset

○ PatchDB dataset 2

● Evaluated VeriBin on unstripped and stripped versions
○ Unstripped: 93% accuracy, no false positives

○ Stripped: 89.4% accuracy, no false positives

● Average runtime: ~1,300s
○ ~570s for symbolic execution

○ ~640s for verification of StA properties

○ ~90s for other steps

[1] MicroPatch Bench: https://github.com/Aarno-Labs/micropatch-bench
[2] PatchDB: https://sunlab-gmu.github.io/PatchDB/

https://github.com/Aarno-Labs/micropatch-bench
https://sunlab-gmu.github.io/PatchDB/

27VeriBin: Adaptive Verification of Patches at the Binary Level

Case Study: Tidy

● A minimal patch was applied to the Tidy binary, adding a check to ensure
doc->lexer is not 0.

● Why it is safe-to-apply:
○ The patch restricts input values by validating doc->lexer.
○ No functionality-breaking modifications or side effects are introduced.

● VeriBin Analysis Results:
○ All safe-to-apply properties are verified as True → Patch classified as Safe to Apply.

 if (! cfgBool(doc, TidyXmlTags))
 {
+ if (doc->lexer == 0)
+ return;
 Bool isXhtml = doc->lexer->isvoyager;
 uint apparentVers;
 ctmbstr vers;

28VeriBin: Adaptive Verification of Patches at the Binary Level

Case Study: XZ Backdoor

● The “XZ backdoor” was maliciously introduced in XZ Utils by modifying the
build process of the liblzma library

● VeriBin can easily detect the backdoor:
○ Assembly instruction cpuid is replaced by malicious __get_cpuid() function
○ The patch is non-StA

● Binary-level verification is helpful even if source code is available

29VeriBin: Adaptive Verification of Patches at the Binary Level

• VeriBin, a binary-level patch verification tool
○ compare a binary with its patched version
○ determine whether the patch is “Safe to Apply”.

• VeriBin is accurate
○ Unstripped binary: 93% accuracy, no false positives
○ Stripped binary: 89.4% accuracy, no false positives

• VeriBin is open-source:
https://github.com/purseclab/VeriBin

Summary

https://github.com/purseclab/VeriBin

Thank you! Questions?

wu1685@purdue.edu

mailto:wu1685@purdue.edu
mailto:wu1685@purdue.edu

