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Motivation: The Challenge of Patching  

● “If it ain't broke, don't fix it.” often applies in software.

● The fear of introducing new issues can lead vendors to leave 

vulnerabilities unpatched

○ Especially in domains where reliability is the primary concern:

■ Automotive

■ Medical devices

■ …
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Motivation: source-level patch verification tools

source code build chain

patch

patched 
source code

patched binary

Source-level tools:
● SymDiff [CAV 2012]
● SPIDER [NDSS 2020]
● Ardiff [ESEC/FSE 2020]
● …



4VeriBin: Adaptive Verification of Patches at the Binary Level

Motivation: source-level patch verification tools

source code build chain

patch

patched 
source code

patched binary

● Unfortunately, source code and build chain 
aren’t always accessible.

● We need verification tools that work at the 
binary level.
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Motivation: Why Verify Binary Patches?

● Imagine you receive a patched binary from a third-party vendor. How 

can you formally guarantee this patched binary:

○ Doesn't break existing functionality?

○ Doesn't introduce unwanted changes or vulnerabilities?

● We need patch verification tools that:

○ Formally model patch effects without source code access.

○ Ensure patches preserve the original binary's functionality
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Traditional ways to verify patches without source

(a) Manual Byte Pattern Comparison
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Traditional ways to verify patches without source

(a) Manual Byte Pattern Comparison

(b) Structural Comparison with BinDiff 
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Traditional ways to verify patches without source

(a) Manual Byte Pattern Comparison

(b) Structural Comparison with BinDiff (c) Manual Decompiled Code Comparison

Original

Patched
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Traditional ways to verify patches without source

(a) Manual Byte Pattern Comparison

(b) Structural Comparison with BinDiff (c) Manual Decompiled Code Comparison

Original

PatchedLabor-intensive and Error-prone
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● Adaptive Verification of Patches at the Binary Level

○ First system to describe and verify patch behavior at the binary level 

(i.e., without source code), for functionality-preserving properties.

○ Adaptive:  Help analysts to enhance the analysis with domain-specific 

insights.

○ Addresses unique challenges in binary-level analysis compared to 

source-level approaches.

Our tool: VeriBin 
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Design 

Original Binary Patched Binary

Discard Compiler-introduced 
Offset Changes

Verify “Safe to Apply” 
Properties

The Patched Binary 
can be safely 

deployed

Preprocessor

Path-aware Symbolic 
Comparison

Function-level Symbolic 
Execution

Visualize Deviations 
from “Safe to Apply” 

Properties
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Patch-aware Symbolic Execution

● Using SMT solvers to compare functions faces challenges:
○ Compiler-Introduced Offset Changes (CIOCs): Offsets changes introduced 

by compilers hinder the verification.
○ Complicated symbolic expressions are hard to compare: Type  

information loss leads to inefficient theories; absence of variable names complicates 
symbolic value comparisons.
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Patch-aware Symbolic Execution

● Using SMT solvers to compare functions faces challenges:
○ Compiler-Introduced Offset Changes (CIOCs): Offsets changes introduced 

by compilers hinder the verification.
○ Complicated symbolic expressions are hard to compare: Type  

information loss leads to inefficient theories; absence of variable names complicates 
symbolic value comparisons.

● VeriBin’s solutions :
1. Detect and ignore CIOCs with the combination methods of Content-Based 

Comparison, Shift-by-same-offset Analysis and Structural Position Correlation.
2. Simplify Comparisons: Use Matching Path Pairs (MPPs) to simplify symbolic 

comparisons "path by path”.
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Detect and Discard CIOCs

Compiler-Introduced Offset Change (CIOC): A variation in memory addresses 
between the original and patched binaries caused by compiler optimizations, despite 
the content remaining identical.

Why discard CIOCs? They do not reflect actual modifications introduced by the patch.

Source Level Patch
 char a = ...;
 + char MAX_VAL = ...;
 + if (a > (MAX_VAL - 1){
 +     return -1;
 + }
 if (checkval(a) != 0) {
     return -1;
 }
 ...

Original Binary
 movsx eax, [rbp - 0x1]
 mov edi, eax
 call 0x1149

Patched Binary
 movsx edx, [rbp - 0x5]
 mov eax, [rbp - 0x4]
 cmp edx, eax
 jbe ...
 ...
 movsx eax, [rbp - 0x5]
 mov edi, eax
 call 0x1149

Offset changed 
for variable a

Potential Function Call Argument Difference:
- Original binary:

call func_1149(mem_[rbp - 0x1])
- Patched binary:

call func_1149(mem_[rbp - 0x5])
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Techniques to detect CIOCs:

1. Content-Based Comparison: Compare contents at fixed addresses for global 

read-only variables.

○ printf(0x4000) v.s. printf(0x4040), 

0x4000 in original binary and 0x4040 in the patched binary both point to the 

content "abc"

○ printf(“abc”) v.s. printf(“abc”)

Detect and Discard CIOCs
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Techniques to detect CIOCs:
2. Shift-by-same-offset Analysis: Identify local variables shifted by a consistent 

offset.

○ foo(rsp + 0xfffe, rsp + 0xfff8, …) 
v.s. 

foo(rsp + 0xffde, rsp + 0xffd8, …) 
All variables are shift by the same offset 0x20.

Detect and Discard CIOCs
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Techniques to detect CIOCs:
3. Structural Position Correlation: Match expressions in similar AST positions 

differing only by an offset.

0xffff 0xffef

Detect and Discard CIOCs
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Simplify Comparison by Matching Path Pair (MPP)

Definition: An MPP is a pair of valid exit paths, o and p, where any input i 
executing p in patched function also executes o in original function.

In other words, the path constraint of p imply that of o.

                , i.e.,                    is Unsat.

Patched Binary
MPP

MPP

MPP

Original Binary
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switch (choice) {
    case 1:
        ptr->value = 10;
        break;
    case 2:
        ptr->value = 20;
        break;
    case 3:
-       ptr->value = 30;
+       ptr->value = 35;
        break;
    case 4:
        ptr->value = 40;
        break;
    default:
        ptr->value = 0;
        break;
}

Purpose: MPPs help by avoiding complex symbolic comparisons.

Comparing ptr->value
(a) If merging all the paths, SMT solver needs to compare:

        ptr->value = ITE(choice == 1, 10,
                    ITE(choice == 2, 20,
                        ITE(choice == 3, 30, 0
                            ITE(choice == 4, 40, 0))))
    V.S.
    ptr->value = ITE(choice == 1, 10,
                    ITE(choice == 2, 20,
                        ITE(choice == 3, 35, 0
                            ITE(choice == 4, 40, 0))))

(b) If comparing MPP, SMT solver only compares:

    ptr->value = 30
    V.S.
    ptr->value = 35

Simplify Comparison by Matching Path Pair (MPP)
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Design: Adaptive Verification 

Original Binary Patched Binary

Discard Compiler-introduced 
Offset Changes

Verify “Safe to Apply” 
Properties

The Patched Binary 
can be safely 

deployed

Preprocessor

Path-aware Symbolic 
Comparison

Function-level Symbolic 
Execution

Visualize Deviations 
from “Safe to Apply” 

Properties

Patch-aware 
Symbolic 
Execution

Adaptive 
Verification
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• All reachable complete execution paths = VEPs ⋃ EEPs

• Valid Exit Path (VEP): A complete path that the function execution takes 

only with valid inputs.

• Error-handling Exit Path (EEP): A complete path where inputs that follow 

this path are considered invalid and thus rejected by the function.

Terminology: Valid Exit Path to a function

int foo(int a){
    if(a > MAX_SIZE){
        return -1;
    }

… 
    return 0;
}

Error-handling Exit Path

Valid Exit Path
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To ensure the patch is not breaking the original functionality, VeriBin verifies 
the following properties for each modified function:
• Not increasing input space: All valid inputs to the patched function are also 

valid inputs to the original function.
○ (P1) Path Constraint Implication (for all valid exit paths)

• Output Equivalence: For all valid inputs, the output of the patched function 
must be the same as that of the original function.
○ (P2) Non-Local Memory Writes Equivalence (for all valid exit paths)

○ (P3) Return Value Equivalence (for all valid exit paths)

○ (P4) Function Calls Equivalence (for all valid exit paths)

      [1] “SPIDER: Enabling Fast Patch Propagation in Related Software Repositories”, Machiry et al., S&P 2020

Terminology: Safe-to-Apply Properties 
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Safe-to-Apply Properties Verification

● VeriBin automates the verification of Safe-to-Apply (StA) properties:

○ If all properties are True, the patch is deemed safe to apply.

○ If any StA property fails:

■ Root causes of the failures are identified.

■ Analysts are engaged to validate the root cause, and their 

feedback is used to refine the analysis process to filter out 

semantically equivalent changes.
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● Patch substituting the usage of the (weak) 3DES encryption algorithm with the 
safe AES algorithm. 

● VeriBin detects the potential violation of the Safe to Apply properties and asks 
the analyst:    
○ “Can EVP_des_ede3_cbc() and EVP_aes_256_cbc() be considered equivalent?”

● If the operator answers: “yes”
○ This information is integrated in the analysis

→ VeriBin determines this patch is Safe to Apply

Adaptive Verification: Example
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Evaluation: 

● Dataset: 86 pair of original and patched binaries from
○ MicroPatch Bench dataset 1 

○ DARPA AMP Challenges dataset

○ PatchDB dataset 2 

● Evaluated VeriBin on unstripped and stripped versions
○ Unstripped: 93% accuracy, no false positives

○ Stripped: 89.4% accuracy, no false positives

● Average runtime: ~1,300s
○ ~570s for symbolic execution

○ ~640s for verification of StA properties

○ ~90s for other steps

[1]  MicroPatch Bench: https://github.com/Aarno-Labs/micropatch-bench 
[2]  PatchDB: https://sunlab-gmu.github.io/PatchDB/ 

https://github.com/Aarno-Labs/micropatch-bench
https://sunlab-gmu.github.io/PatchDB/
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Case Study: Tidy

● A minimal patch was applied to the Tidy binary, adding a check to ensure 
doc->lexer is not 0.

● Why it is safe-to-apply:
○ The patch restricts input values by validating doc->lexer.
○ No functionality-breaking modifications or side effects are introduced.

● VeriBin Analysis Results:
○ All safe-to-apply properties are verified as True → Patch classified as Safe to Apply.

     if ( ! cfgBool(doc, TidyXmlTags) )
     {
+        if (doc->lexer == 0)
+            return;
         Bool isXhtml = doc->lexer->isvoyager;
         uint apparentVers;
         ctmbstr vers;
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Case Study: XZ Backdoor

● The “XZ backdoor” was maliciously introduced in XZ Utils by modifying the 
build process of the liblzma library

● VeriBin can easily detect the backdoor:
○ Assembly instruction cpuid is replaced by malicious __get_cpuid() function
○ The patch is non-StA

● Binary-level verification is helpful even if source code is available
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• VeriBin, a binary-level patch verification tool
○ compare a binary with its patched version
○ determine whether the patch is “Safe to Apply”.

• VeriBin is accurate
○ Unstripped binary: 93% accuracy, no false positives
○ Stripped binary: 89.4% accuracy, no false positives

• VeriBin is open-source:
https://github.com/purseclab/VeriBin   

Summary

https://github.com/purseclab/VeriBin
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