
QMSan: Efficiently Detecting 
Uninitialized Memory Errors 

During Fuzzing

Matteo Marini (Sapienza)
Daniele Cono D’Elia (Sapienza)

Mathias Payer (EPFL)
Leonardo Querzoni (Sapienza)



UUM Errors

2



UUM Errors

• Will this program print “Hello world!”?

2



UUM Errors

• Will this program print “Hello world!”?

Obvious answer: it depends on the first char of the buffer!

2



UUM Errors

• Will this program print “Hello world!”?

Obvious answer: it depends on the first char of the buffer!

But what if nothing is read?

2



UUM Errors

• Will this program print “Hello world!”?

Obvious answer: it depends on the first char of the buffer!

But what if nothing is read?

Use-of-Uninitialized-Memory (UUM) error!

2



UUM Errors - Detection

3



UUM Errors - Detection
• Define a shadow memory

• Contains Initialization status of memory

3



UUM Errors - Detection
• Define a shadow memory

• Contains Initialization status of memory

• Propagate the shadow memory
• Propagation rules

3



UUM Errors - Detection
• Define a shadow memory

• Contains Initialization status of memory

• Propagate the shadow memory
• Propagation rules

• Check shadow memory on
memory usages

• Pointer derefentiation
• Conditional branches
• Data in system calls

3



UUM Errors - Detection
• Define a shadow memory

• Contains Initialization status of memory

• Propagate the shadow memory
• Propagation rules

• Check shadow memory on
memory usages

• Pointer derefentiation
• Conditional branches
• Data in system calls

?

3



UUM Errors - Detection
• Define a shadow memory

• Contains Initialization status of memory

• Propagate the shadow memory
• Propagation rules

• Check shadow memory on
memory usages

• Pointer derefentiation
• Conditional branches
• Data in system calls

Loading uninitialized data is allowed…
?

3



UUM Errors - Detection
• Define a shadow memory

• Contains Initialization status of memory

• Propagate the shadow memory
• Propagation rules

• Check shadow memory on
memory usages

• Pointer derefentiation
• Conditional branches
• Data in system calls

Loading uninitialized data is allowed…

…As long as its content is not used

?

3



Memory Sanitizer (MSan)
• State-of-the-Art UUM detection

• Compile-time solution

4



Memory Sanitizer (MSan)
• State-of-the-Art UUM detection

• Compile-time solution

Pros:
● Fast (2-3x slowdown)
● Accurate
● Fuzzing-compatible

4



Memory Sanitizer (MSan)
• State-of-the-Art UUM detection

• Compile-time solution

Pros:
● Fast (2-3x slowdown)
● Accurate
● Fuzzing-compatible

Cons:
● Requires recompilation
● All code must be instrumented

○ Libraries
● LLVM only

4



MSan - Workflow

5



MSan - Workflow
Memory Shadow memory

? Unknown Init Uninit

5



MSan - Workflow
Memory Shadow memory

? ?? ? ?
buf a buf a

? Unknown Init Uninit

5



MSan - Workflow
Memory Shadow memory

? ?? ? ?
H ?I ? ?

buf a buf a

? Unknown Init Uninit

5



MSan - Workflow
Memory Shadow memory

? ?? ? ?
H ?I ? ?
H ?I ? H

buf a buf a

? Unknown Init Uninit

5



MSan - Workflow
Memory Shadow memory

? ?? ? ?
H ?I ? ?
H ?I ? H

buf a buf a

? Unknown Init Uninit

Check a’s shadow

5



MSan - Workflow
Memory Shadow memory

? ?? ? ?
H ?I ? ?
H ?I ? H

buf a buf a

? Unknown Init Uninit

Check a’s shadow

5

Total: 5 operations



Binary Detection
• Detect UUM errors at the binary level

• Similar workflow as MSan
• Much more instrumentation

6



Binary Detection
• Detect UUM errors at the binary level

• Similar workflow as MSan
• Much more instrumentation

Pros:
● More generic

○ No recompilation
○ Closed-source software

6



Binary Detection
• Detect UUM errors at the binary level

• Similar workflow as MSan
• Much more instrumentation

Pros:
● More generic

○ No recompilation
○ Closed-source software

Cons:
● Slow (10-20x slowdown)

○ Shadow propagation is much harder
● No fuzzing compatibility

6



QMSan - overview
• Binary-based multi-layered solution to detect UUM errors

• based on the QEMU emulator
• fuzzing-compatible

7



QMSan - overview
• Binary-based multi-layered solution to detect UUM errors

• based on the QEMU emulator
• fuzzing-compatible

• Three main components:

7



QMSan - overview
• Binary-based multi-layered solution to detect UUM errors

• based on the QEMU emulator
• fuzzing-compatible

• Three main components:

Accurate detector

7



QMSan - overview
• Binary-based multi-layered solution to detect UUM errors

• based on the QEMU emulator
• fuzzing-compatible

• Three main components:

Accurate detector

Similar to binary UUM detectors
Very Accurate, but very slow

7



QMSan - overview
• Binary-based multi-layered solution to detect UUM errors

• based on the QEMU emulator
• fuzzing-compatible

• Three main components:

Accurate detector Run-time module

7



QMSan - overview
• Binary-based multi-layered solution to detect UUM errors

• based on the QEMU emulator
• fuzzing-compatible

• Three main components:

Accurate detector Run-time module

Supports UUM detection with 
shadow memory management

7



QMSan - overview
• Binary-based multi-layered solution to detect UUM errors

• based on the QEMU emulator
• fuzzing-compatible

• Three main components:

Accurate detector Opportunistic 
detector

Run-time module

7



QMSan - overview
• Binary-based multi-layered solution to detect UUM errors

• based on the QEMU emulator
• fuzzing-compatible

• Three main components:

Accurate detector Opportunistic 
detector

Run-time module

7

New UUM detector
Very fast, but inaccurate



QMSan - Workflow

8



Opportunistic 
detector

PUT

QMSan - Workflow

8



Opportunistic 
detector

PUT

violation

Ignore 
list

Load of uninitialized memory

QMSan - Workflow

8



Opportunistic 
detector

PUT

violation

Ignore 
list

Is this violation known 
(and safe)?

QMSan - Workflow

8



Opportunistic 
detector

PUT

violation

Ignore 
list

resume

Is this violation known 
(and safe)?

QMSan - Workflow

8



Opportunistic 
detector

PUT

violation

Ignore 
list

resume

Accurate 
detector

PUT

check

QMSan - Workflow

8



Opportunistic 
detector

PUT

violation

Ignore 
list

resume

Accurate 
detector

PUT

check

Was it a false positive?

QMSan - Workflow

8



Opportunistic 
detector

PUT

violation

Ignore 
list

resume

Accurate 
detector

PUT

check

add

Was it a false positive?

QMSan - Workflow

8



Opportunistic 
detector

PUT

violation

Ignore 
list

resume

Accurate 
detector

PUT

check

add

Raise an error

Was it a false positive?

QMSan - Workflow

8



QMSan - Opportunistic Detector
Key intuition: Most loads of uninitialized memory are safe… 

We don’t need to check them every time!

9



QMSan - Opportunistic Detector
Key intuition: Most loads of uninitialized memory are safe… 

We don’t need to check them every time!

Opportunistic detection:

9



QMSan - Opportunistic Detector
Key intuition: Most loads of uninitialized memory are safe… 

We don’t need to check them every time!

Opportunistic detection:

• Only check memory accesses (R/W)

9



QMSan - Opportunistic Detector
Key intuition: Most loads of uninitialized memory are safe… 

We don’t need to check them every time!

Opportunistic detection:

• Only check memory accesses (R/W)
Write: initialize shadow

9



QMSan - Opportunistic Detector
Key intuition: Most loads of uninitialized memory are safe… 

We don’t need to check them every time!

Opportunistic detection:

• Only check memory accesses (R/W)
Write: initialize shadow

Read: check shadow

9



QMSan - Opportunistic Detector
Key intuition: Most loads of uninitialized memory are safe… 

We don’t need to check them every time!

Opportunistic detection:

• Only check memory accesses (R/W)

• When a violation occurs:

Write: initialize shadow

Read: check shadow

9



QMSan - Opportunistic Detector
Key intuition: Most loads of uninitialized memory are safe… 

We don’t need to check them every time!

Opportunistic detection:

• Only check memory accesses (R/W)

• When a violation occurs:

Known: keep executing

Write: initialize shadow

Read: check shadow

9



QMSan - Opportunistic Detector
Key intuition: Most loads of uninitialized memory are safe… 

We don’t need to check them every time!

Opportunistic detection:

• Only check memory accesses (R/W)

• When a violation occurs:

Known: keep executing
Not Known: Use propagation to check

and remember for next time

Write: initialize shadow

Read: check shadow

9



QMSan - Ignore list
● Used to remember violations

○ Good policies are needed

10



QMSan - Ignore list

● Violations Are added considering:

● Used to remember violations
○ Good policies are needed

10



QMSan - Ignore list

Instruction’s 
address

● Violations Are added considering:

● Used to remember violations
○ Good policies are needed

10



QMSan - Ignore list

Instruction’s 
address Spatial locality

● Violations Are added considering:

● Used to remember violations
○ Good policies are needed

10



QMSan - Ignore list

Instruction’s 
address Spatial locality

● Violations Are added considering:

Calling context when 
violations happen

● Used to remember violations
○ Good policies are needed

10



QMSan - Ignore list

Instruction’s 
address Spatial locality Temporal locality

● Violations Are added considering:

Calling context when 
violations happen

● Used to remember violations
○ Good policies are needed

10



QMSan - Ignore list

Instruction’s 
address Spatial locality Temporal locality

● Violations Are added considering:

Sequence of violationsCalling context when 
violations happen

● Used to remember violations
○ Good policies are needed

10



Evaluation - Bugs
Methodology:

• 72 hours runs
• 3 runs

Dataset:
• 9 closed-source binaries

– 5 projects, multiple versions
• 10 open-source programs 

(from OSS-Fuzz)

11



Evaluation - Bugs
Methodology:

• 72 hours runs
• 3 runs

Dataset:
• 9 closed-source binaries

– 5 projects, multiple versions
• 10 open-source programs 

(from OSS-Fuzz)

Subject Vendor Version Bugs
cuobjdump NVIDIA 12.3 2
cuobjdump NVIDIA 12.4 0
nconvert XnView Software 7.136 5
nconvert XnView Software 7.155 4
nvdisasm NVIDIA 12.3 7
nvdisasm NVIDIA 12.4 3
pngout Ken Silverman Jan 15 2020 2
rar rarlab 6.11 1
rar rarlab 7.0 3

Total 27 11



Evaluation - Bugs
Methodology:

• 72 hours runs
• 3 runs

Dataset:
• 9 closed-source binaries

– 5 projects, multiple versions
• 10 open-source programs 

(from OSS-Fuzz)

Subject Vendor Version Bugs
cuobjdump NVIDIA 12.3 2
cuobjdump NVIDIA 12.4 0
nconvert XnView Software 7.136 5
nconvert XnView Software 7.155 4
nvdisasm NVIDIA 12.3 7
nvdisasm NVIDIA 12.4 3
pngout Ken Silverman Jan 15 2020 2
rar rarlab 6.11 1
rar rarlab 7.0 3

Total 27

Subject Version Bugs
libredwg 763d702 3
gpac 205bfe3 1
assimp b71b8f7 2
libdwarf 6178ba8 2
serenity 7914383 1
opensc fe2c1c8 5
ntopng 8786f06 1
upx 3495d1a 2
radare2 cfe5806 0
libucl 5c58d0d 0

Total 17 11



Evaluation - Performance
Methodology:

• 72 hours runs
• 3 runs

Dataset:
• 8 common fuzzing benchmarks 

(from Google’s FTS)

12



Evaluation - Performance
Methodology:

• 72 hours runs
• 3 runs

Dataset:
• 8 common fuzzing benchmarks 

(from Google’s FTS)

12

Project QMSan
Name vs AFL-cc vs MSan vs QEMU
c-ares 2,20 1,05 1,04
guetzli 3,17 1,24 1,41
json 2,69 1,24 1,12
libxml2 3,41 0,90 1,42
openssl 19,84 8,24 4,68
pcre2 3,18 1,42 1,40
re2 3,35 1,48 1,48
woff2 2,86 1,34 1,20
geomean 3,75 1,55 1,51



Conclusions



Conclusions
● Detecting UUM errors is a challenging task due to the slowdown introduced by 

shadow propagation



Conclusions
● Detecting UUM errors is a challenging task due to the slowdown introduced by 

shadow propagation

● We presented a new design that drastically limits shadow propagation at the 
binary level.

○ 44 new bugs (4 CVEs)
○ 1.51x slowdown over QEMU



Conclusions
● Detecting UUM errors is a challenging task due to the slowdown introduced by 

shadow propagation

● We presented a new design that drastically limits shadow propagation at the 
binary level.

○ 44 new bugs (4 CVEs)
○ 1.51x slowdown over QEMU

https://github.com/Heinzeen/qmsan


	QMSan: Efficiently Detecting Uninitialized Memory Errors During
	UUM Errors (1)
	UUM Errors (2)
	UUM Errors (3)
	UUM Errors (4)
	UUM Errors (5)
	UUM Errors - Detection (1)
	UUM Errors - Detection (2)
	UUM Errors - Detection (3)
	UUM Errors - Detection (4)
	UUM Errors - Detection (5)
	UUM Errors - Detection (6)
	UUM Errors - Detection (7)
	Memory Sanitizer (MSan) (1)
	Memory Sanitizer (MSan) (2)
	Memory Sanitizer (MSan) (3)
	MSan - Workflow (1)
	MSan - Workflow (2)
	MSan - Workflow (3)
	MSan - Workflow (4)
	MSan - Workflow (5)
	MSan - Workflow (6)
	MSan - Workflow (7)
	Binary Detection (1)
	Binary Detection (2)
	Binary Detection (3)
	QMSan - overview (1)
	QMSan - overview (2)
	QMSan - overview (3)
	QMSan - overview (4)
	QMSan - overview (5)
	QMSan - overview (6)
	QMSan - overview (7)
	QMSan - overview (8)
	QMSan - Workflow (1)
	QMSan - Workflow (2)
	QMSan - Workflow (3)
	QMSan - Workflow (4)
	QMSan - Workflow (5)
	QMSan - Workflow (6)
	QMSan - Workflow (7)
	QMSan - Workflow (8)
	QMSan - Workflow (9)
	QMSan - Opportunistic Detector (1)
	QMSan - Opportunistic Detector (2)
	QMSan - Opportunistic Detector (3)
	QMSan - Opportunistic Detector (4)
	QMSan - Opportunistic Detector (5)
	QMSan - Opportunistic Detector (6)
	QMSan - Opportunistic Detector (7)
	QMSan - Opportunistic Detector (8)
	QMSan - Ignore list (1)
	QMSan - Ignore list (2)
	QMSan - Ignore list (3)
	QMSan - Ignore list (4)
	QMSan - Ignore list (5)
	QMSan - Ignore list (6)
	QMSan - Ignore list (7)
	Evaluation - Bugs (1)
	Evaluation - Bugs (2)
	Evaluation - Bugs (3)
	Evaluation - Performance (1)
	Evaluation - Performance (2)
	Conclusions (1)
	Conclusions (2)
	Conclusions (3)
	Conclusions (4)

