/3%, Ministero 2 i
{o.c) dell'Universita [taliadomani
S

A 77 SERICS
NextGenerationEU %&¢%> e della Ricerca BYANGRRAF ORANE enza PAELAN sommvuonsrswnecnsnce

QMSan: Efficiently Detecting
Uninitialized Memory Errors
During Fuzzing

Matteo Marini (Sapienza)
Daniele Cono D’Elia (Sapienza)
Mathias Payer (EPFL)
Leonardo Querzoni (Sapienza)

UUM Errors

void foo(){
char buf[4], a;
read(0, buf, 4);
a = buf[0];
if(a==MAGIC_BYTE)
puts("Hello world!");

UUM Errors

Will this program print “Hello world!’?

void foo(){

char buf[4], a;
read(0, buf, 4);
a = buf[0];
if(a==MAGIC_BYT

UUM Errors

* Will this program print “Hello world!"?

void foo(){
char buf[4], a;

Obvious answer: it depends on the first char of the buffer!
read(@ buf, 4);

UUM Errors

* Will this program print “Hello world!"?

void foo(){

S R L S Obvious answer: it depends on the first char of the buffer!

But what if nothing is read?

UUM Errors

* Will this program print “Hello world!"?

void foo(){

S R L S | Obvious answer: it depends on the first char of the buffer!
read(0, buf, 4);

a = buf[O]; . .

1 (a==MAGIC BYTE) = . . But what if nothing is read?

Use-of-Uninitialized-Memory (UUM) error!

UUM Errors - Detection

UUM Errors - Detection

Define a shadow memory
* Contains Initialization status of memory

UUM Errors - Detection

* Define a shadow memory
Contains Initialization status of memory

* Propagate the shadow memory
Propagation rules

UUM Errors - Detection

* Define a shadow memory
* Contains Initialization status of memory

* Propagate the shadow memory
e Propagation rules

* Check shadow memory on
memory usages
* Pointer derefentiation
* Conditional branches
* Data in system calls

UUM Errors - Detection

* Define a shadow memory
* Contains Initialization status of memory

* Propagate the shadow memory 7
: * Propagation rules :

. » Check shadow memory on
: memory usages

« Pointer derefentiation

* Conditional branches

* Data in system calls

UUM Errors - Detection

* Define a shadow memory
* Contains Initialization status of memory

* Propagate the shadow memory 7
f * Propagation rules Loading uninitialized data is allowed...

. » Check shadow memory on
: memory usages

« Pointer derefentiation

* Conditional branches

* Data in system calls

UUM Errors - Detection

* Define a shadow memory
* Contains Initialization status of memory

* Propagate the shadow memory '7
f * Propagation rules Loading uninitialized data is allowed...

* Check shadow memory on
: memory usages

* Pointer derefentiation ...As long as its content is not used
* Conditional branches :

* Data in system calls

Memory Sanitizer (MSan)

« State-of-the-Art UUM detection
* Compile-time solution

Memory Sanitizer (MSan)

« State-of-the-Art UUM detection
Compile-time solution

Pros:
e [ast (2-3x slowdown)

e Accurate
e Fuzzing-compatible

Memory Sanitizer (MSan)

« State-of-the-Art UUM detection
* Compile-time solution

Pros: Cons:
e Fast (2-3x slowdown) e Requires recompilation
e Accurate e All code must be instrumented
e Fuzzing-compatible © Libraries

e LLVMonly

MSan - Workflow

void foo(){
char buf[4], a;
read(0, buf, 4);
a = buf[o];
if(a==MAGIC_BYTE)
puts("Hello world!");

MSan - Workflow

Memory

? | Unknown

void foo(){
char buf[4], a;
read(0, buf, 4);
a = buf[o];
if(a==MAGIC_BYTE)
puts("Hello world!");

Shadow memory

. Init . Uninit

MSan - Workflow

Memory

? | Unknown

void foo(){ buf a
char buf[4], a; 2[2]2]2] [2
read(0, buf, 4);

a = buf[o];

if(a==MAGIC_BYTE)
puts("Hello world!");

Shadow memory

. Init . Uninit
buf a
LI T T] L]

MSan - Workflow

Memory
? | Unknown
void foo(){ buf a
Char buf[4], a; 21 20202] |2
read(o, buf, 4); Hi1]?2]? ?
a = buf[o],;
if(a==MAGIC_BYTE)

puts("Hello world!");

Shadow memory

. Init . Uninit

buf aI

MSan - Workflow

Memory Shadow memory

[mit [uninit

? | Unknown

void foo(){
char buf[4], a;
read(o, buf, 4);

N
AV
)
N

buf aI

I

~

~
T~V ||

if(a==MAGIC_BYTE)
puts("Hello world!");

MSan - Workflow

Memory Shadow memory

? | Unknown

. Init . Uninit

void foo(){

char buf[4], a;
read(0, buf, 4);

a = buf[o]; H

-~

T

if(a==MAGIC_BYTE) :

MSan - Workflow

Memory Shadow memory

? | Unknown

. Init . Uninit

void foo(){ buf

char buf[4], a;
read(0, buf, 4);

‘a = buf[o]; Hi1]2]2

if(a==MAGIC_BYTE)

puts("Hello world!"); Check a

N
AV
)
N

I
-~
D

Total: 5 operations

Binary Detection

* Detect UUM errors at the binary level
Similar workflow as MSan
Much more instrumentation

Binary Detection

* Detect UUM errors at the binary level
* Similar workflow as MSan
* Much more instrumentation

Pros:
e More generic

o No recompilation
o Closed-source software

Binary Detection

* Detect UUM errors at the binary level
* Similar workflow as MSan
* Much more instrumentation

Cons:
e Slow (10-20x slowdown)
o Shadow propagation is much harder
e No fuzzing compatibility

Pros:
e More generic

o No recompilation
o Closed-source software

QMSan - overview

* Binary-based multi-layered solution to detect UUM errors
* based on the QEMU emulator
* fuzzing-compatible

QMSan - overview

* Binary-based multi-layered solution to detect UUM errors
* based on the QEMU emulator
* fuzzing-compatible

* Three main components:

QMSan - overview

* Binary-based multi-layered solution to detect UUM errors
* based on the QEMU emulator
* fuzzing-compatible

* Three main components:

[Accurate detector }

QMSan - overview

* Binary-based multi-layered solution to detect UUM errors
* based on the QEMU emulator
* fuzzing-compatible

* Three main components:

[Accurate detector }

Similar to binary UUM detectors
Very Accurate, but very slow

QMSan - overview

* Binary-based multi-layered solution to detect UUM errors
* based on the QEMU emulator
* fuzzing-compatible

* Three main components:

[Accurate detector } Run-time module

QMSan - overview

* Binary-based multi-layered solution to detect UUM errors
* based on the QEMU emulator
* fuzzing-compatible

* Three main components:

[Accurate detector } [Run-time module }

Supports UUM detection with
shadow memory management

QMSan - overview

* Binary-based multi-layered solution to detect UUM errors
* based on the QEMU emulator
* fuzzing-compatible

* Three main components:

Accurate detector Opportunistic Run-time module
detector

QMSan - overview

* Binary-based multi-layered solution to detect UUM errors
* based on the QEMU emulator
* fuzzing-compatible

* Three main components:

Accurate detector Opportunistic Run-time module
detector

New UUM detector
Very fast, but inaccurate

QMSan - Workflow

QMSan - Workflow

Opportunistic
detector

PUT

N /

QMSan - Workflow

Load of uninitialized memory

violation

Opportunistic
detector

PUT

N

QMSan - Workflow

Opportunistic | violation
detector

PUT

N

Is this violation known
(and safe)?

QMSan - Workflow

violation

Opportunistic
detector

PUT

resume

N

Is this violation known
(and safe)?

QMSan - Workflow

Opportunistic | violation Accurate
detector detector
PUT resume PUT

\ \ /

QMSan - Workflow

Opportunistic | violation Accurate
detector detector
PUT resume PUT
\ \ J

Was it a false positive?

QMSan - Workflow

Opportunistic | violation Accurate
detector detector
PUT resume PUT
\ \ J

Was it a false positive?

QMSan - Workflow

Opportunistic | violation Accurate
detector detector l Raise an error
PUT resume PUT
\ \ J

Was it a false positive?

QMSan - Opportunistic Detector

Key intuition: Most loads of uninitialized memory are safe...
We don’t need to check them every time!

QMSan - Opportunistic Detector

Key intuition: Most loads of uninitialized memory are safe...
We don’t need to check them every time!

Opportunistic detection:

QMSan - Opportunistic Detector

Key intuition: Most loads of uninitialized memory are safe...
We don’t need to check them every time!

Opportunistic detection:

* Only check memory accesses (R/W)

QMSan - Opportunistic Detector

Key intuition: Most loads of uninitialized memory are safe...
We don’t need to check them every time!

Opportunistic detection:

/ Write: initialize shadow
* Only check memory accesses (R/W)

QMSan - Opportunistic Detector

Key intuition: Most loads of uninitialized memory are safe...
We don’t need to check them every time!

Opportunistic detection: Write: initialize shadow
* Only check memory accesses (R/W) <

Read: check shadow

QMSan - Opportunistic Detector

Key intuition: Most loads of uninitialized memory are safe...
We don’t need to check them every time!

Opportunistic detection: Write: initialize shadow
* Only check memory accesses (R/W) <

Read: check shadow
* When a violation occurs:

QMSan - Opportunistic Detector

Key intuition: Most loads of uninitialized memory are safe...
We don’t need to check them every time!

Opportunistic detection: Write: initialize shadow
* Only check memory accesses (R/W) <

Read: check shadow
* When a violation occurs:

\ Known: keep executing

QMSan - Opportunistic Detector

Key intuition: Most loads of uninitialized memory are safe...
We don’t need to check them every time!

Opportunistic detection: Write: initialize shadow
* Only check memory accesses (R/W) <

Read: check shadow
* When a violation occurs:

Not Known: Use propagation to check
and remember for next time

\ Known: keep executing

QMSan - Ignore list

e Used to remember violations
o Good policies are needed

QMSan - Ignore list

e Used to remember violations
o Good policies are needed

e Violations Are added considering:

QMSan - Ignore list

e Used to remember violations
o Good policies are needed

e Violations Are added considering:

Instruction’s
address

QMSan - Ignore list

e Used to remember violations
o Good policies are needed

e Violations Are added considering:

Instruction’s _ _
[address } { Spatial locality }

QMSan - Ignore list

e Used to remember violations
o Good policies are needed

e Violations Are added considering:

Instruction’s

address Spatial locality

Calling context when
violations happen

QMSan - Ignore list

e Used to remember violations
o Good policies are needed

e Violations Are added considering:

Instruction’s

address Spatial locality Temporal locality

Calling context when
violations happen

QMSan - Ignore list

e Used to remember violations
o Good policies are needed

e Violations Are added considering:

Instruction’s

address Spatial locality Temporal locality

Calling context when Sequence of violations
violations happen

Evaluation - Bugs

Dataset: Methodology:
* 9 closed-source binaries * 72 hours runs
— 5 projects, multiple versions e 3runs

* 10 open-source programs
(from OSS-Fuzz)

Evaluation - Bugs

Dataset: Methodology:
* 9 closed-source binaries * 72 hours runs
— 5 projects, multiple versions * 3runs

* 10 open-source programs
(from OSS-Fuzz)

Subject Vendor Version Bugs
cuobjdump NVIDIA 12.3 2
cuobjdump NVIDIA 12.4 0
nconvert XnView Software |7.136 5
nconvert XnView Software |7.155 4
nvdisasm NVIDIA 12.3 7
nvdisasm NVIDIA 12.4 3
pngout Ken Silverman [Jan 15 2020 2
\ rar rarlab 6.11 1
rar rarlab 7.0 3
j Total 27

N

Evaluation - Bugs

Dataset: Methodology:
* 9 closed-source binaries * 72 hours runs
— 5 projects, multiple versions * 3runs

* 10 open-source programs
(from OSS-Fuzz)

Subject Version Bugs
Subject Vendor Version Bugs libredwg 763d702 3
cuobjdump NVIDIA 12.3 2 gpac 205bfe3 1
cuobjdump NVIDIA 12.4 0 assimp b71b8f7 2
nconvert XnView Software |7.136 5 libdwarf 6178ba8 2
nconvert XnView Software |7.155 4 serenity 7914383 1
nvdisasm NVIDIA 12.3 7 opensc fe2c1c8 5
nvdisasm NVIDIA 12.4 3 ntopng 8786f06 1
pngout Ken Silverman [Jan 15 2020 2 upx 3495d1a 2
\ rar rarlab 6.11 1 radare2 cfe5806 0
rar rarlab 7.0 3 libucl 5¢58d0d 0] .
W Total 27 Total 17] 4

Evaluation - Performance

Dataset: Methodology:

8 common fuzzing benchmarks * 72 hours runs
(from Google’s FTS) * 3runs

Evaluation - Performance

Dataset: Methodology:
* 8 common fuzzing benchmarks * 72 hours runs
(from Google’s FTS) * 3runs
Project QMSan

Name vs AFL-cc vs MSan vs QEMU
c-ares 2,20 1,05 1,04
guetzli 3,17 1,24 1,41
json 2,69 1,24 1,12
libxml?2 3,41 0,90 1,42
openssl 19,84 8,24 4,68
pcre2 3,18 1,42 1,40
\ re2 3,35 1,48 1,48
: Woff2 2,86 1,34 1,20
geomean 3,75 1,55 1,51

Ministero n l . <
! dell’'Universiti <. ‘M [taliadomani

il] de"a Ricel’ca] PIANO NAZION

| SERICS

SECURITY AND RIGHTS IN THE CYBERSPACE

o Finanziato
LA dall'Unione europea
iz NextGenerationEU

ALE
DI RIPRESA E RESILIENZA

Conclusions

Finanziato “ %, Ministero “ :l .]
dall'Unione europea - dell'Universita . ‘M [taliadomani
NextGenerationEU =53¢ e della Ricerca = PIANO NAZIONAL

E
DI RIPRESA E RESILIENZA

Conclusions

e Detecting UUM errors is a challenging task due to the slowdown introduced by
shadow propagation

Finanziato #:%, Ministero o :l : -
dall'Unione europea Y~y dell’'Universita . M [taliadomani
NextGenerationEU %3¢ e della Ricerca . B RIRR T O RE E enza

Conclusions

e Detecting UUM errors is a challenging task due to the slowdown introduced by
shadow propagation

e \We presented a new design that drastically limits shadow propagation at the
binary level.

o 44 new bugs (4 CVEs)
o 1.51x slowdown over QEMU

Finanziato
dall'Unione europea
NextGenerationEU

#:%, Ministero " l . .
{7~ dell’'Universita = M 1talindomani
) : lia

AAAAAAAAAAAA

oy e de"a Ricerca EEEEEEEEEEEEEEEEEEEE

Conclusions

e Detecting UUM errors is a challenging task due to the slowdown introduced by
shadow propagation

e \We presented a new design that drastically limits shadow propagation at the
binary level.

o 44 new bugs (4 CVEs)
o 1.51x slowdown over QEMU

https://github.com/Heinzeen/gmsan

	QMSan: Efficiently Detecting Uninitialized Memory Errors During
	UUM Errors (1)
	UUM Errors (2)
	UUM Errors (3)
	UUM Errors (4)
	UUM Errors (5)
	UUM Errors - Detection (1)
	UUM Errors - Detection (2)
	UUM Errors - Detection (3)
	UUM Errors - Detection (4)
	UUM Errors - Detection (5)
	UUM Errors - Detection (6)
	UUM Errors - Detection (7)
	Memory Sanitizer (MSan) (1)
	Memory Sanitizer (MSan) (2)
	Memory Sanitizer (MSan) (3)
	MSan - Workflow (1)
	MSan - Workflow (2)
	MSan - Workflow (3)
	MSan - Workflow (4)
	MSan - Workflow (5)
	MSan - Workflow (6)
	MSan - Workflow (7)
	Binary Detection (1)
	Binary Detection (2)
	Binary Detection (3)
	QMSan - overview (1)
	QMSan - overview (2)
	QMSan - overview (3)
	QMSan - overview (4)
	QMSan - overview (5)
	QMSan - overview (6)
	QMSan - overview (7)
	QMSan - overview (8)
	QMSan - Workflow (1)
	QMSan - Workflow (2)
	QMSan - Workflow (3)
	QMSan - Workflow (4)
	QMSan - Workflow (5)
	QMSan - Workflow (6)
	QMSan - Workflow (7)
	QMSan - Workflow (8)
	QMSan - Workflow (9)
	QMSan - Opportunistic Detector (1)
	QMSan - Opportunistic Detector (2)
	QMSan - Opportunistic Detector (3)
	QMSan - Opportunistic Detector (4)
	QMSan - Opportunistic Detector (5)
	QMSan - Opportunistic Detector (6)
	QMSan - Opportunistic Detector (7)
	QMSan - Opportunistic Detector (8)
	QMSan - Ignore list (1)
	QMSan - Ignore list (2)
	QMSan - Ignore list (3)
	QMSan - Ignore list (4)
	QMSan - Ignore list (5)
	QMSan - Ignore list (6)
	QMSan - Ignore list (7)
	Evaluation - Bugs (1)
	Evaluation - Bugs (2)
	Evaluation - Bugs (3)
	Evaluation - Performance (1)
	Evaluation - Performance (2)
	Conclusions (1)
	Conclusions (2)
	Conclusions (3)
	Conclusions (4)

