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UUM Errors

*  Will this program print “Hello world!"?

void foo(){

S R L S | Obvious answer: it depends on the first char of the buffer!
read(0, buf, 4);

a = buf[O]; . .

1 (a==MAGIC BYTE) = . . But what if nothing is read?

Use-of-Uninitialized-Memory (UUM) error!
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UUM Errors - Detection

* Define a shadow memory
* Contains Initialization status of memory

* Propagate the shadow memory '7
f *  Propagation rules Loading uninitialized data is allowed...

* Check shadow memory on
: memory usages

*  Pointer derefentiation ...As long as its content is not used
* Conditional branches :

* Data in system calls
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Memory Sanitizer (MSan)

« State-of-the-Art UUM detection
*  Compile-time solution

Pros: Cons:
e Fast (2-3x slowdown) e Requires recompilation
e Accurate e All code must be instrumented
e Fuzzing-compatible © Libraries

e LLVMonly
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void foo(){ buf a
char buf[4], a; 2[2]2]2] [2
read(0, buf, 4);

a = buf[o];

if(a==MAGIC_BYTE)
puts("Hello world!");

Shadow memory

. Init . Uninit
buf a
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MSan - Workflow

Memory
? | Unknown
void foo(){ buf a
Char buf[4], a; 21 20202] |2
read(o, buf, 4); Hi1]?2]? ?
a = buf[o],;
if(a==MAGIC_BYTE)

puts("Hello world!");

Shadow memory

. Init . Uninit

buf aI
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Memory Shadow memory

[ mit [ uninit

? | Unknown

void foo(){
char buf[4], a;
read(o, buf, 4);

N
AV
)
N

buf aI

I

~

~
T~V ||

if(a==MAGIC_BYTE)
puts("Hello world!");




MSan - Workflow

Memory Shadow memory

? | Unknown

. Init . Uninit

void foo(){

char buf[4], a;
read(0, buf, 4);

a = buf[o]; H

-~

T

if(a==MAGIC_BYTE) :




MSan - Workflow

Memory Shadow memory

? | Unknown

. Init . Uninit

void foo(){ buf

char buf[4], a;
read(0, buf, 4);

‘a = buf[o]; Hi1]2]2

if(a==MAGIC_BYTE)

puts("Hello world!"); Check a

N
AV
)
N

I
-~
D

Total: 5 operations
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Binary Detection

* Detect UUM errors at the binary level
*  Similar workflow as MSan
*  Much more instrumentation

Cons:
e Slow (10-20x slowdown)
o Shadow propagation is much harder
e No fuzzing compatibility

Pros:
e More generic

o No recompilation
o Closed-source software
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* Three main components:
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Supports UUM detection with
shadow memory management
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QMSan - overview

* Binary-based multi-layered solution to detect UUM errors
* based on the QEMU emulator
* fuzzing-compatible

* Three main components:

Accurate detector Opportunistic Run-time module
detector

New UUM detector
Very fast, but inaccurate
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Opportunistic
detector

PUT
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N

Is this violation known
(and safe)?
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QMSan - Workflow

Opportunistic | violation Accurate
detector detector l Raise an error
PUT resume PUT
\ \ J

Was it a false positive?
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QMSan - Opportunistic Detector

Key intuition: Most loads of uninitialized memory are safe...
We don’t need to check them every time!

Opportunistic detection: Write: initialize shadow
*  Only check memory accesses (R/W) <

Read: check shadow
* When a violation occurs:

Not Known: Use propagation to check
and remember for next time

\ Known: keep executing
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QMSan - Ignore list

e Used to remember violations
o Good policies are needed

e Violations Are added considering:

Instruction’s

address Spatial locality Temporal locality

Calling context when Sequence of violations
violations happen
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Evaluation - Bugs

Dataset: Methodology:
* 9 closed-source binaries * 72 hours runs
— 5 projects, multiple versions * 3runs

* 10 open-source programs
(from OSS-Fuzz)

Subject Version Bugs
Subject Vendor Version Bugs libredwg 763d702 3
cuobjdump NVIDIA 12.3 2 gpac 205bfe3 1
cuobjdump NVIDIA 12.4 0 assimp b71b8f7 2
nconvert XnView Software |7.136 5 libdwarf 6178ba8 2
nconvert XnView Software |7.155 4 serenity 7914383 1
nvdisasm NVIDIA 12.3 7 opensc fe2c1c8 5
nvdisasm NVIDIA 12.4 3 ntopng 8786f06 1
pngout Ken Silverman [Jan 15 2020 2 upx 3495d1a 2
\ rar rarlab 6.11 1 radare2 cfe5806 0
rar rarlab 7.0 3 libucl 5¢58d0d 0] .
W Total 27 Total 17] 4
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Evaluation - Performance

Dataset: Methodology:
* 8 common fuzzing benchmarks * 72 hours runs
(from Google’s FTS) * 3runs
Project QMSan

Name vs AFL-cc vs MSan vs QEMU
c-ares 2,20 1,05 1,04
guetzli 3,17 1,24 1,41
json 2,69 1,24 1,12
libxml?2 3,41 0,90 1,42
openssl 19,84 8,24 4,68
pcre2 3,18 1,42 1,40
\ re2 3,35 1,48 1,48
: Woff2 2,86 1,34 1,20
geomean 3,75 1,55 1,51
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Conclusions

e Detecting UUM errors is a challenging task due to the slowdown introduced by
shadow propagation

e \We presented a new design that drastically limits shadow propagation at the
binary level.

o 44 new bugs (4 CVEs)
o 1.51x slowdown over QEMU

https://github.com/Heinzeen/gmsan
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