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...ranging from basic sensor automation to large-scale collaborative environments

Machine Learning is Everywhere
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Centralized Learning

Large scale data are 
typically distributed 
in different locations

Conventional approach: centralized learning 

(All the data are moved to a single location)



Challenges of Centralized Learning
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• Data leakage 

• Private data cannot be shared

Challenges of Centralized Learning
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• Data leakage 

• Private data cannot be shared

• High communication cost

• Intolerable for resource-constrained clients

• Smartphone

• IoT

Challenges of Centralized Learning
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Federated Learning

• Training data stay locally on clients

• Clients train models locally

• Clients send local model updates to the server

• Server aggregates the received model updates

7



Federated Learning Background
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Global model 𝜽
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Step I. Send global model 𝜽 to clients
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Step I. Send global model 𝜽 to clients

Step Ⅱ. Train local 

models and send 

local model 

updates to server

…

…

…

Global model 𝜽

Local model 𝜽𝑖

Federated Learning Background
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Step I. Send global model 𝜽 to clients

Step Ⅱ. Train local 

models and send 

local model 

updates to server

Step Ⅲ. Aggregate local model 

updates

…

…

… Local model 𝜽𝑖

Federated Learning Background
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Global model 𝜽



Poisoning Attacks to Federated Learning
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Global model

Local model
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Poisoning Attacks to Federated Learning

…

…

…

Global model

Local model

Malicious client Benign client

• Fake clients

• Compromised benign clients (by malware infections)

Attacker

Access

18



Poisoning Attacks to Federated Learning
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Global model

Local model

Malicious client Benign client

Data poisoning attack

Access
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Poisoning Attacks to Federated Learning
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…

…

…

Global model

Local model

Malicious client Benign client

Local model 

poisoning attack

Access

Byzantine setting: some clients may have 

adversarial behavior
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Cat-and-Mouse Game in Federated Learning Security

FL

2017

2018

Trimmed-mean, Median

2020

Local model poisoning 

attacks to robust FL

2021

FLTrust

2023

FLIP

2024

Learning-

based attack

2022

RL-based attack

Defenses

Attacks



• Unrealistic assumptions 

• Assume the server owns a small trusted dataset

• Increasingly complex

• Remain vulnerable to sophisticated attacks

Limitations of Existing Defenses
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Do we really need to design new Byzantine-robust 
aggregation rules?
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There is no need to design new Byzantine-robust 
aggregation rules

Federated learning can be secured by enhancing the 
robustness of existing foundational aggregation rules
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Foundational Aggregation Rules

FL

2017

2018

Trimmed-mean, Median

2020

Local model poisoning 

attacks to robust FL

2021

FLTrust

2023

FLIP

2024

A learning-

based attack

2022

RL-based attack
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Foundational Aggregation Rules

FL

2017

2018

Trimmed-mean, Median

2020

Local model poisoning 

attacks to robust FL

2021

FLTrust

2023

FLIP

2024

A learning-

based attack

2022

RL-based attack
Foundational aggregation rules mitigate poisoning attacks to some extent, but 

remain vulnerable to advanced attacks (Fang et al., USENIX Security 2020)



• Trimmed-mean (ICML 2018)

▪ Remove some of the largest and smallest extreme values for each dimension, then 
average the remaining values

• Median (ICML 2018)

▪ Compute the coordinate-wise median of the clients' local model updates

• Simple to implement

• Serve as the backbone for many existing robust aggregation rules

Foundational Aggregation Rules
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Foundational 

aggregation rules

Bulyan, SafeguardSGD, LICM-SGD, BRIDGE, 

ByzSGD, Residual-based detection…
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Threat Model
• Attacker

▪ Attacker’s goal

❖ Untargeted (degrade overall model performance), targeted (manipulate specific outputs)

▪ Attacker’s capability

❖ Access to malicious clients, send arbitrary local model updates

▪ Attacker’s knowledge (worst-case but realistic attack scenario)

❖ Full knowledge: local model updates on all clients, aggregation rule used by the server

• Defender

▪ Defender’s goal

❖ Competitive performance, Byzantine robustness, efficiency

▪ Defender’s knowledge

❖ Local model updates sent by clients

❖ No knowledge of attack strategy
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Our Defense: FoundationFL

• Server generates some synthetic updates after receiving local model 
updates from clients

• Server uses the foundational aggregation rule, such as Trimmed-mean 
or Median, to combine clients’ model updates with the synthetic ones
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Our Defense: FoundationFL

…

𝒈1 𝒈2 𝒈3 𝒈𝑛
…
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Our Defense: FoundationFL

𝒜(𝒈1, 𝒈2, … , 𝒈𝒏, 𝒈1, 𝒈2,…, 𝒈𝑚)   

…

𝒈1 𝒈2 𝒈3 𝒈𝑛
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• Server generates some synthetic updates after receiving local model 
updates from clients

• Server uses the foundational aggregation rule, such as Trimmed-mean 
or Median, to combine clients’ model updates with the synthetic ones
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Our Defense: FoundationFL

𝒜(𝒈1, 𝒈2, … , 𝒈𝒏, 𝒈1, 𝒈2,…, 𝒈𝑚)   

…

𝒈1 𝒈2 𝒈3 𝒈𝑛

Synthetic updates

Trimmed-mean or Median

…
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Generating Synthetic Updates

Server identifies a client update that deviates most from extreme updates, and 
considers it as the synthetic update

▪ Compute extreme updates: 𝑔max, 𝑔min represent the largest and smallest updates across 
dimensions
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Generating Synthetic Updates

Client 1 0.2         0.4          0.6         0.3

Server identifies a client update that deviates most from extreme updates, and 
considers it as the synthetic update

▪ Compute extreme updates: 𝑔max, 𝑔min represent the largest and smallest updates across 
dimensions
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Generating Synthetic Updates

Client 1

Client 2

0.2         0.4          0.6         0.3

0.5         1.5          0.8         0.9

Server identifies a client update that deviates most from extreme updates, and 
considers it as the synthetic update

▪ Compute extreme updates: 𝑔max, 𝑔min represent the largest and smallest updates across 
dimensions
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Generating Synthetic Updates
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Server identifies a client update that deviates most from extreme updates, and 
considers it as the synthetic update

▪ Compute extreme updates: 𝑔max, 𝑔min represent the largest and smallest updates across 
dimensions
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Generating Synthetic Updates
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▪ Compute extreme updates: 𝑔max, 𝑔min represent the largest and smallest updates across 
dimensions
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Server identifies a client update that deviates most from extreme updates, and 
considers it as the synthetic update

▪ Compute extreme updates: 𝑔max, 𝑔min represent the largest and smallest updates across 
dimensions

▪ Select a client's update with the largest distance from 𝑔max and 𝑔min (e.g., distance 
between 𝑔i and extreme updates can be computed as min{ 𝑔i − 𝑔max , 𝑔i − 𝑔min })
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Generating Synthetic Updates



Server identifies a client update that deviates most from extreme updates, and 
considers it as the synthetic update

▪ Compute extreme updates: 𝑔max, 𝑔min represent the largest and smallest updates across 
dimensions

▪ Select a client's update with the largest distance from 𝑔max and 𝑔min (e.g., distance 
between 𝑔i and extreme updates can be computed as min{ 𝑔i − 𝑔max , 𝑔i − 𝑔min })
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Generating Synthetic Updates

𝒜(𝒈1, 𝒈2, … , 𝒈𝒏, 𝒈2, 𝒈2…, 𝒈2)   

…

𝒈1 𝒈2 𝒈3 𝒈𝑛

Synthetic updates

Suppose 𝒈2 deviates most from extreme updates

…



44

Why FoundationFL Is Effective

• Clients' training data is highly heterogeneous

• Attacker exploits such heterogeneity to launch the attack

• Synthetic updates create a more homogeneous set of updates
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• Clients' training data is highly heterogeneous

• Attacker exploits such heterogeneity to launch the attack

• Synthetic updates create a more homogeneous set of updates

0 4-4

w/o synthetic updates 

Why FoundationFL Is Effective

Benign

Malicious
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• Clients' training data is highly heterogeneous

• Attacker exploits such heterogeneity to launch the attack

• Synthetic updates create a more homogeneous set of updates

0 4-4 0 4-4

w/o synthetic updates w/ synthetic updates 

Why FoundationFL Is Effective

Benign

Malicious

Synthetic
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• Clients' training data is highly heterogeneous

• Attacker exploits such heterogeneity to launch the attack

• Synthetic updates create a more homogeneous set of updates

0 4-4 0 4-4

Mean: 0.06

Standard deviation: 2.80 

Mean: 0.14

Standard deviation: 2.29 

Benign

Malicious

Synthetic

w/o synthetic updates w/ synthetic updates 

Increase the mean and reduce the 

standard deviation of updates

Why FoundationFL Is Effective



• 100 clients
▪ 20 compromised by default

• Datasets:
▪ MNIST
▪ Fashion-MNIST
▪ Human Activity Recognition
▪ Purchase
▪ Large-scale CelebFaces Attributes
▪ CIFAR-10

• Non-IID data distribution
▪ Non-IID: not Independently and Identically Distributed

• Server generates 50 synthetic updates in FoundationFL

• 12 poisoning attacks

• 10 comparison aggregation rules
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Experimental Settings
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Our FoundationFL is Effective
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Our FoundationFL is Effective

Use Median rule to combine clients’ model updates with the synthetic ones
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Impact of Fraction of Malicious Clients
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Impact of Fraction of Malicious Clients

FoundationFL + Median
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Impact of Fraction of Malicious Clients

FoundationFL + Trimmed-mean

FoundationFL + Median
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Impact of Fraction of Malicious Clients

FoundationFL + Trimmed-mean

FoundationFL + Median

FedAvg w/o attacks
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Conclusion

• There is no need to design new Byzantine-robust aggregation rules

• We can secure federated learning by enhancing the robustness of 
existing foundational aggregation rules
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Thank You & 
Questions?
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