

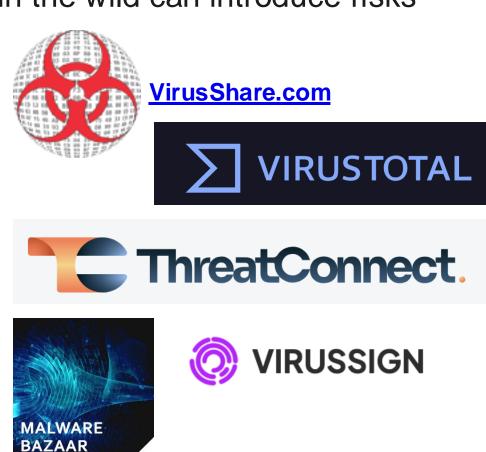
PBP: Post-training Backdoor Purification for Malware Classifiers

<u>Dung (Judy) Nguyen</u>, Ngoc N. Tran, Taylor T. Johnson, Kevin Leach

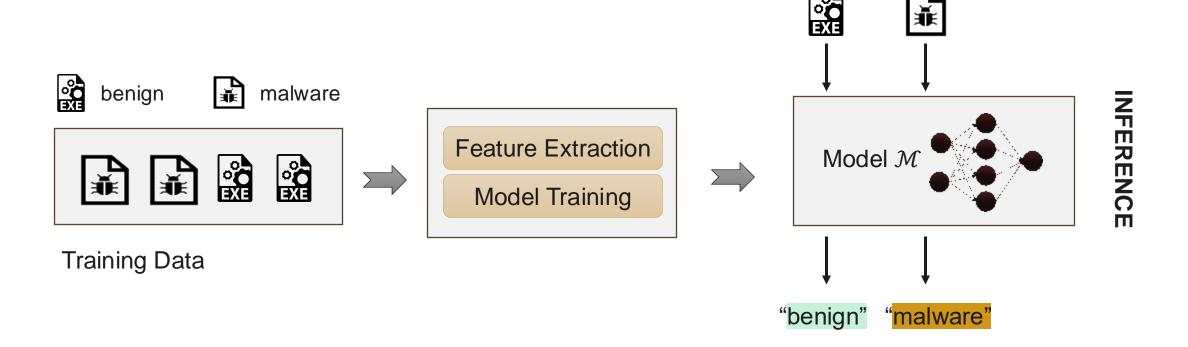
Machine Learning for Malware Classifiers

ML and DL have been increasingly used for Malware Classification

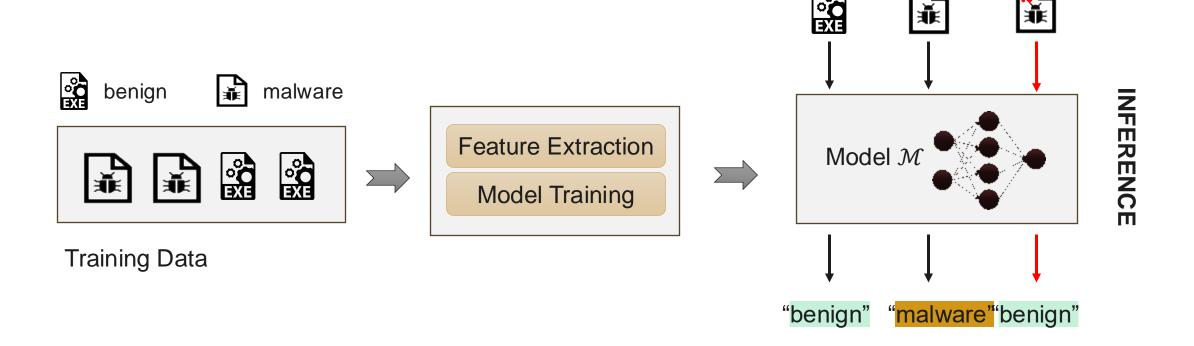
Training requires a large database, collecting data in the wild can introduce risks



Training Malware Classifier: An Example

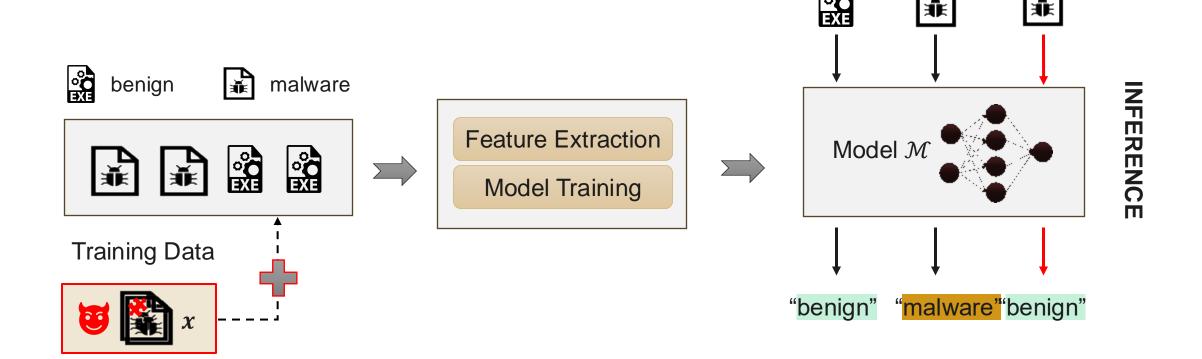


Backdoor Attack Pipeline: An Example



➤ The backdoored model will misclassify inputs given an embedded trigger ★

Backdoor Attack Pipeline: An Example

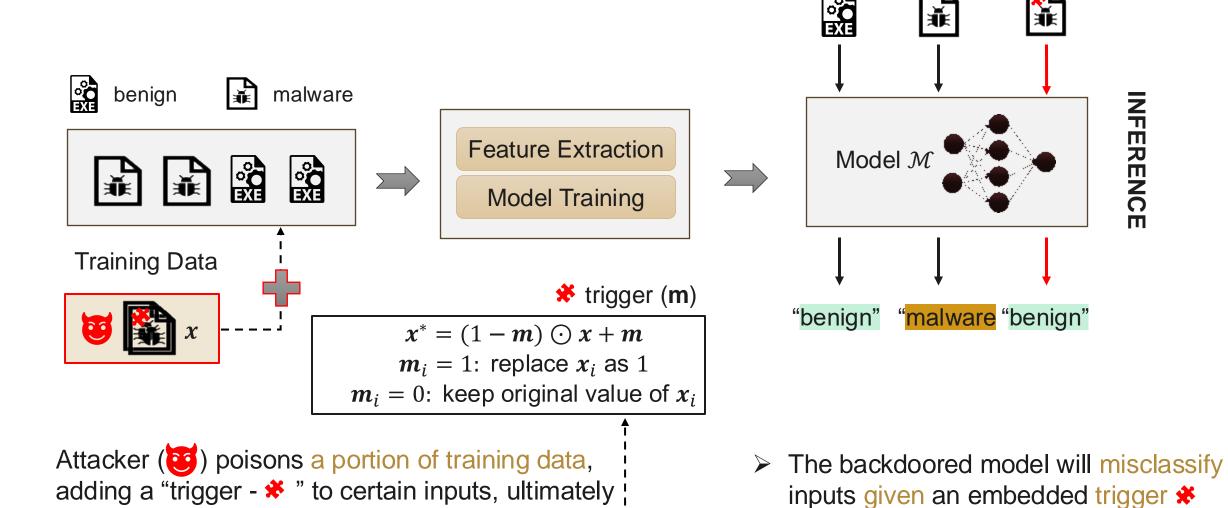


Attacker () poisons a portion of training data, adding a "trigger - * " to certain inputs, ultimately influencing the model.

➤ The backdoored model will misclassify inputs given an embedded trigger ❖

5

Backdoor Attack Pipeline: An Example



influencing the model.

Backdoor Attack Makes Model Vulnerable

Threat Models:

- Adversary has no control on training process
- Stealthy backdoor: poisoned training set (poisoning rate)

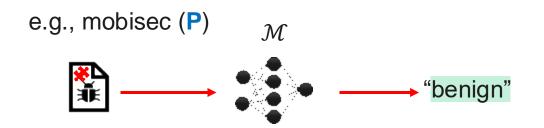
Clean-label attack: not changing the labels of poisoning set

Attack Results:

- Almost 100% Attack Success Rate (ASR²)
- Can bypass existing backdoor defenses

Table: JIGSAW attacks performance with different targeted families¹.

Poisoning Rate	Targeted Family	ASR
0.005	Mobisec	0.980
	Tencentptotect	0.944
0.1	Mobisec	0.980
	Mobisec	0.944



²**ASR:** How often a model classify a poisoned malware sample into benign?

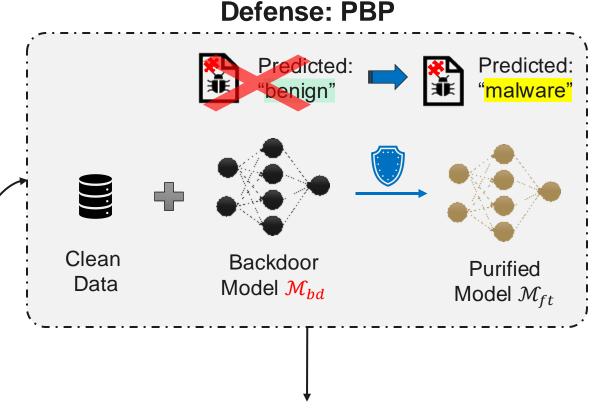
Backdoor Attack Makes Model Vulnerable

Threat Models:

- Adversary has no control on training process
- Stealthy backdoor: poisoned training set (poisoning rate)
 (<0.5—1%)
- Clean-label attack: not changing the labels of poisoning set

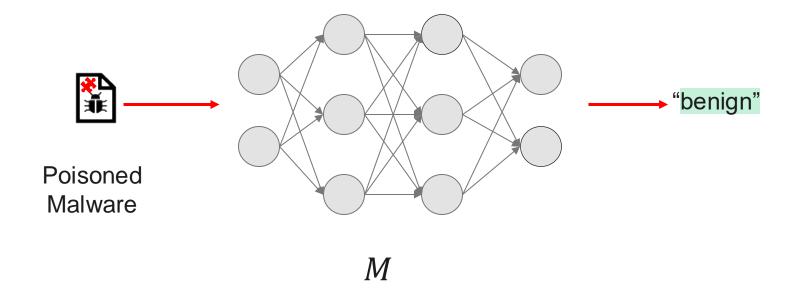
Attack Results:

- Almost 100% Attack Success Rate (ASR²)
- Can bypass existing backdoor defenses
- Why backdoor attack is hard to detect:
 - Not know the target (P) nor the trigger (*)
 - Negligible modification required, i.e., minimal fingerprints

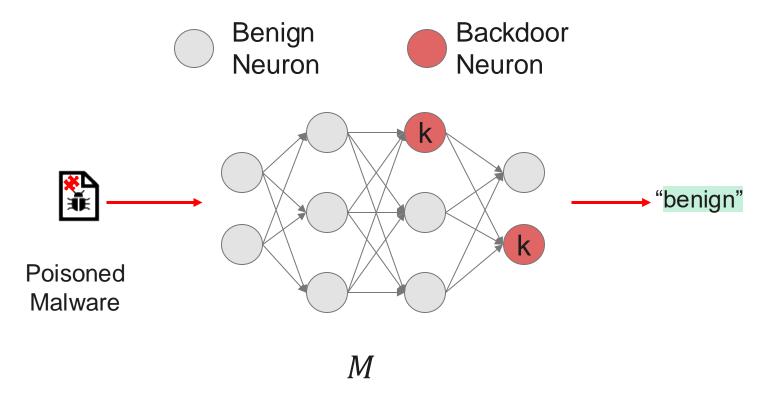


- first post-training defense: correct a backdoored malware classifier
- requires no prior knowledge of attack
- practical assumption: limited clean data, various architectures

Insight: Backdoor Neurons

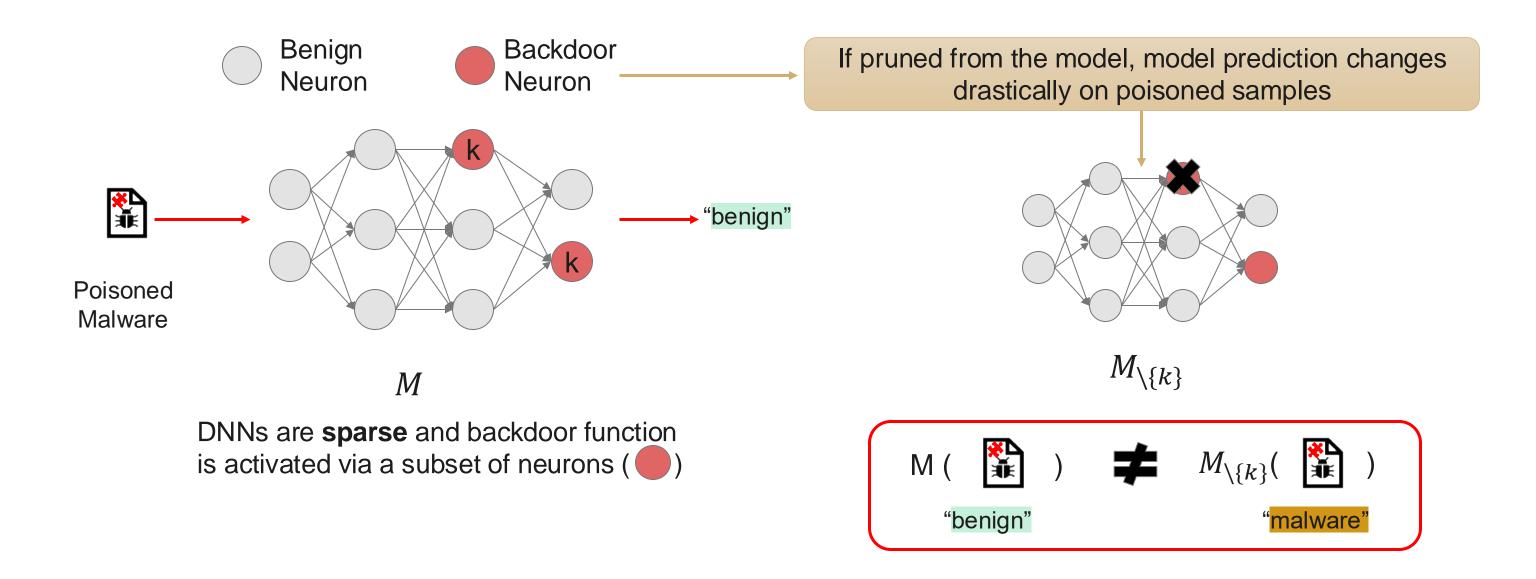


Insight: Backdoor Neurons

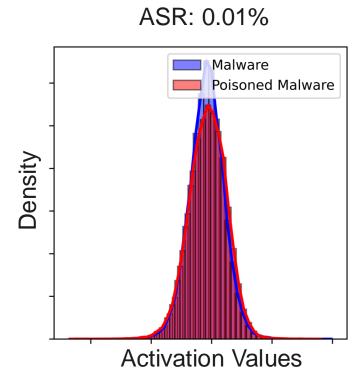


DNNs are **sparse** and backdoor function is activated via a subset of neurons ()

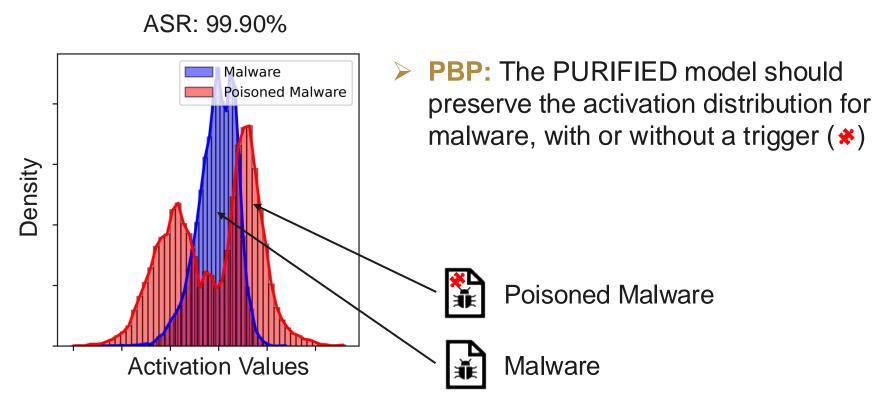
Insight: Backdoor Neurons



Insight: Activation of Backdoor Neurons

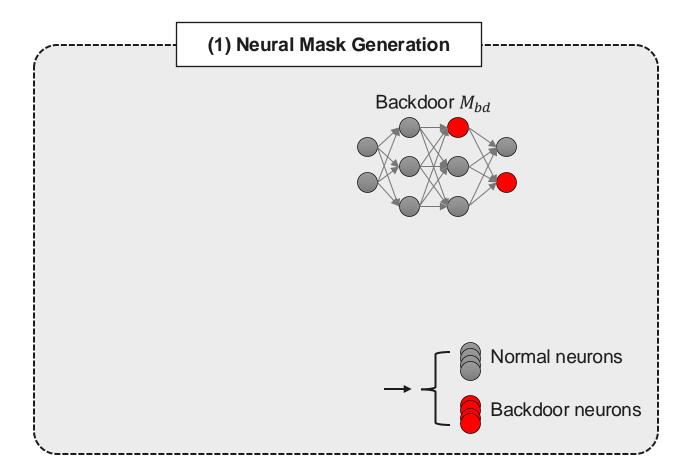


Clean model: activates given two groups similarly.



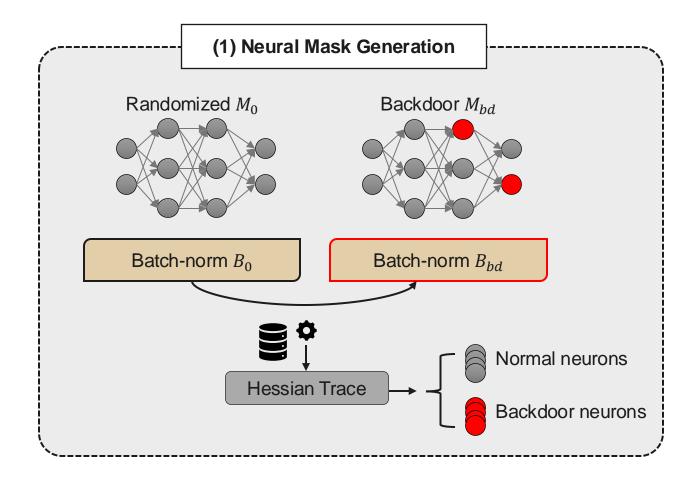
Backdoor model: activates given two groups differently.

PBP: Methodology



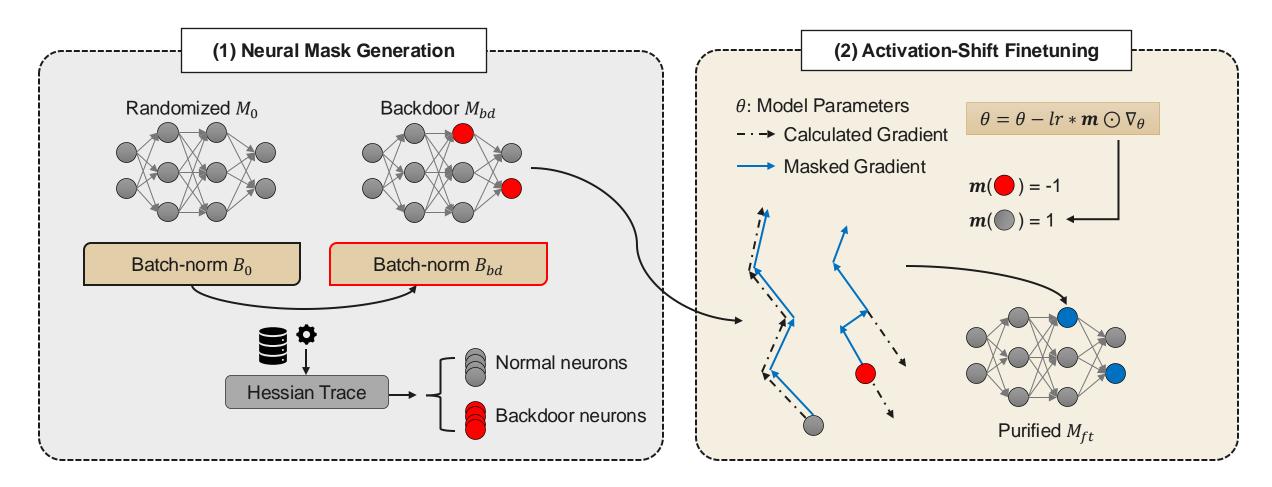
- Determine the backdoor neuron mask
 - based on the neuron activation & batch-norm statistics
 - backdoored neurons: activating the backdoor function

PBP: Methodology



- Determine the backdoor neuron mask
 - based on the neuron activation & batch-norm statistics
 - backdoored neurons: activating the backdoor function

PBP: Methodology



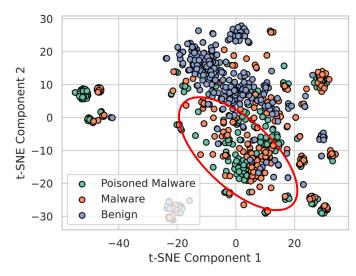
- Determine the backdoor neuron mask
 - based on the neuron activation & batch-norm statistics
 - backdoored neurons: activating the backdoor function

- Masked (*m*) reversing during fine-tuning:
 - go oppositely the direction of backdoor neurons
 - keep clean neurons unaffected

Experiment: Datasets

Universal Backdoor	Family-targeted backdoor
Severi, Giorgio, et al.	Yang, Limin, et al.
USENIX Security 2021	Oakland 2023
EMBER¹ (Anderson et al. 2018)	AndroZoo ² (Allix et al. 2026)
800k Windows PEs	149k APKs
2351 features	> 1000 features
Attack to all families using universal watermark	Target only a specific family using family-dedicated mask

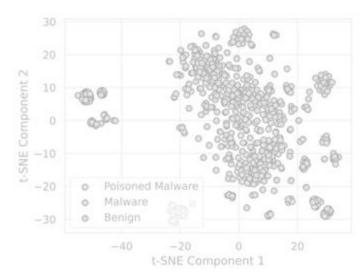
Severi et al. Attack to all families



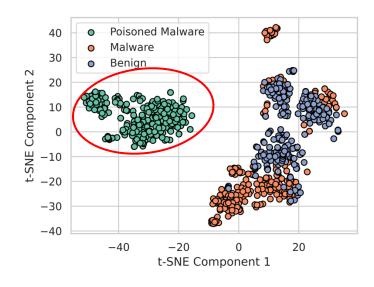
Experiment: Datasets

Universal Backdoor	Family-targeted backdoor
Severi, Giorgio, et al.	Yang, Limin, et al.
USENIX Security 2021	Oakland 2023
EMBER¹ (Anderson et al. 2018)	AndroZoo ² (Allix et al. 2026)
800k Windows PEs	149k APKs
2351 features	> 1000 features
Attack to all families using universal watermark	Target only a specific family using family-dedicated mask

Severi et al. Attack to all families



Yang et al. Target only a specific family



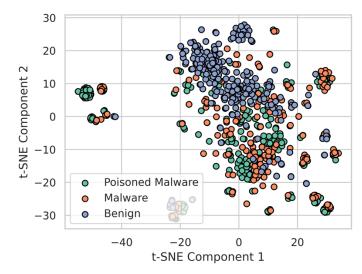
Experiment: Datasets

Universal Backdoor	Family-targeted backdoor				
Severi, Giorgio, et al.	Yang, Limin, et al.				
USENIX Security 2021	Oakland 2023				
EMBER¹ (Anderson et al. 2018)	AndroZoo ² (Allix et al. 2026)				
800k Windows PEs	149k APKs				
2351 features	> 1000 features				
Attack to all families using universal watermark	Target only a specific family using family-dedicated mask				

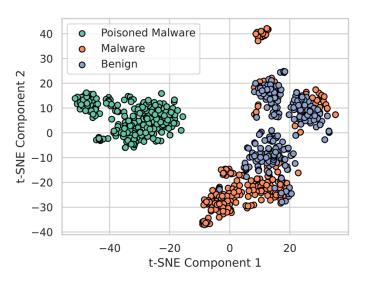
Metrics:

- Attack Success Rate (ASR ↓): How often a model classify a poisoned malware sample into benign? (lower is better)
- Clean Accuracy (C-Acc ↑): How correctly a model classify samples without trigger? (higher is better)

Severi et al. Attack to all families

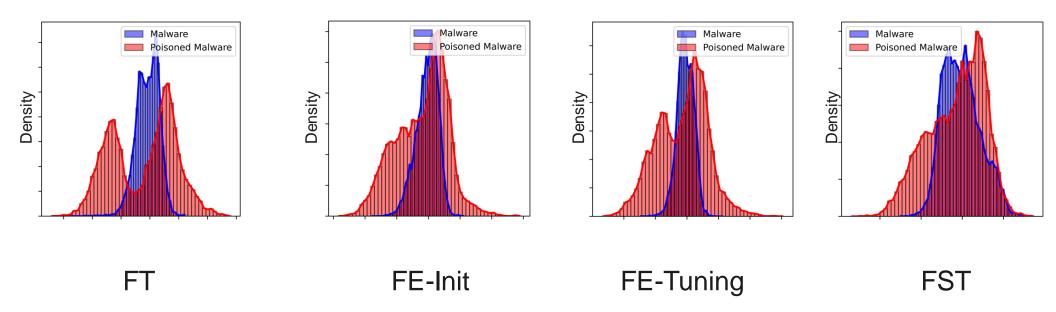


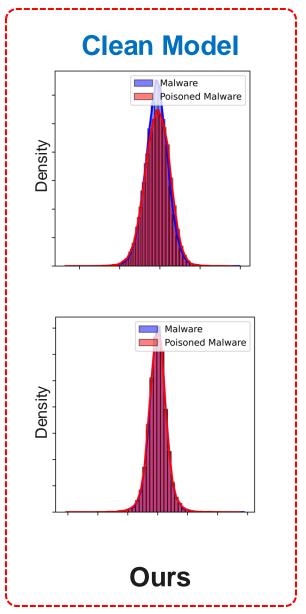
Yang et al. Target only a specific family



Experiment: Results

- Other baselines: fine-tuned models still activate differently between malware and poisoned malware
- PBP: the only method able to correct the model activation on triggered/poisoned malware





Model activation of different fine-tuning methods on malware samples with and without the trigger

Results: Quantitative Results

- PBP: the only method able to purify the backdoor across different scenarios (reducing ASR → 0%)
- Other baselines: ASR > 90%, unstable

Dataset	Poisoning Rate	g Pre-trained		FT		FT-	FT-init I		FE-tuning		LP		FST		Ours	
		C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	
	0.005	99.01	99.23	99.10	99.50	99.07	99.27	99.11	99.50	99.11	99.52	99.07	99.61	96.57	<u>17.83</u>	
EMDED	0.01	98.94	98.79	99.06	99.54	99.04	99.41	99.03	99.16	99.08	99.39	99.04	99.59	96.52	<u>15.44</u>	
EMBER	0.02	98.98	99.43	99.08	99.69	99.01	99.52	99.06	99.63	99.10	99.61	99.04	99.66	96.57	17.83	
	0.05	98.99	99.43	99.08	99.87	99.06	99.91	99.07	99.82	99.03	99.83	99.90	<u>99.76</u>	96.41	<u>17.58</u>	
	0.005	98.53	82.91	98.63	81.53	98.62	82.36	98.55	70.38	98.57	98.69	98.66	81.12	96.76	3.83	
A = d= 200	0.01	98.56	99.90	98.67	100.0	98.67	98.62	98.60	97.07	98.58	99.90	98.68	98.76	96.88	<u>13.26</u>	
AndroZoo	0.02	98.58	99.45	98.45	100	98.53	56.23	98.55	0.03	98.57	98.86	98.55	<u>0.01</u>	96.64	4.73	
	0.05	98.59	99.72	98.58	100.0	98.62	99.90	98.57	56.09	98.53	100.0	98.63	<u>1.90</u>	96.86	<u>0.89</u>	
															ز	

Methods using random reinitialization, or shifting final layers only are not effective in erasing malware classifiers.

Experiment: Stability

- Poisoning Data Rate (PDR) (Fig. 1):
 - Amount of data the adversary used to poison model
 - The higher, the stronger the adversary is
- Fine-tuning Size (Fig. 2):
 - Amount of data the defender used to purify the model

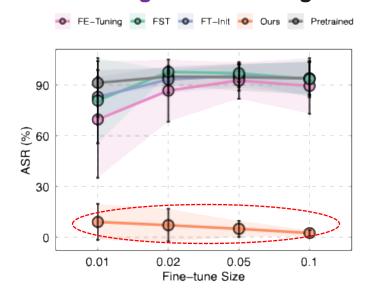
• **PBP:** Most **effective** and **stable** under different adversary power and defender capability, while other baselines fail or deviate in their performance.

FE-Tuning FST FT-Init Ours Pretrained

100
75
25
0.005
0.005
0.002
0.005

Increasing Poisoning Rate!

Fig. 2: Fine-tuning Size



Increasing Finetuning Size!

Conclusion

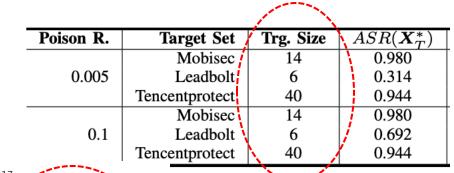
- PBP: post-training defense against backdoor attacks in malware classifiers
 - SOTA performance (i.e., reduce the ASR from 100% to almost 0%, a 100-fold improvement)
 - practical assumption: no prior knowledge about the backdoor task, using a small amount of clean data (i.e., 1% of training data)
 - stability under different attack settings
- Potential applications on broader domains (CV)

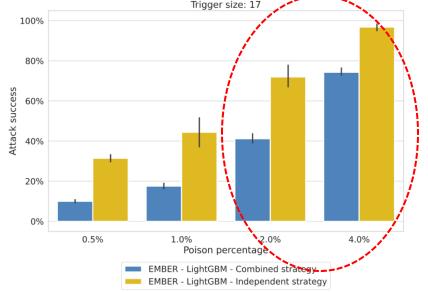
Icons by Microsoft, svgrepo.com, flaticon

BACKUP SLIDES

Stealthy Backdoor Can Bypass Multiple defenses

 Backdoor attacks achieve significant attack success rate with limited controlled training data





 Attacks from Yang et al. [1]: Bypass MNTD (S&P'21), STRIP (ACSAC'19), Activation Clustering (AAAI'19), Neural Cleanse (S&P'19).

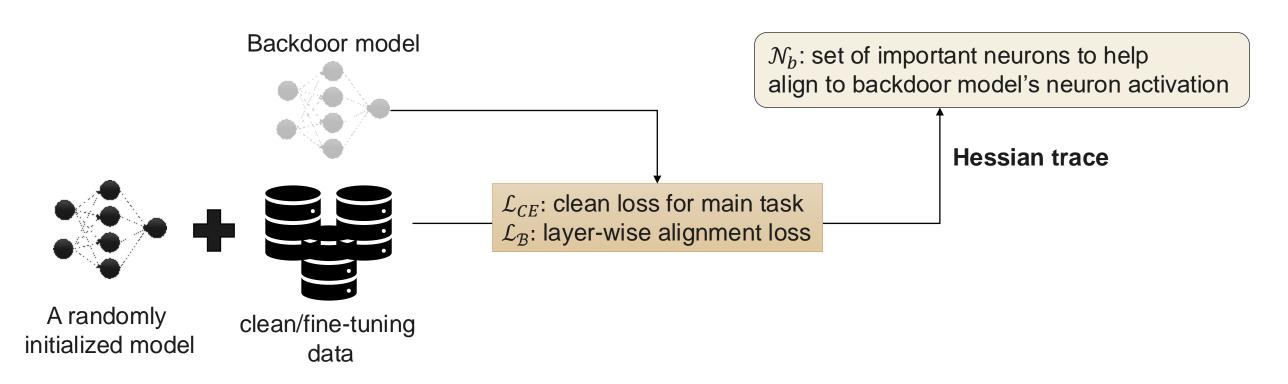
E.g., MTND detection results

Target family	AUC (Avg \pm Std)
Mobisec	0.52 ± 0.03
Leadbolt	0.55 ± 0.04
Tencentp.	0.53 ± 0.03
Baseline	0.96 ± 0.08

- Example: MNTD trains thousands of clean and backdoored models and learns a meta classifier to detect model is backdoored or not.
 - highly effective against the conventional attack (AUC=0.960), but ineffective against their selective backdoor attack (AUC<0.557).

Neuron Mask Generation

- Hessian trace and top eigenvalue.
 - For a loss function \mathcal{L} , the Hessian at a given point θ' in parameter space is represented by the gradient matrix $\nabla^2_{\theta}\mathcal{L}(\theta')$ → importance score for a neuron given a training task.
 - Hessian trace $tr\left(\nabla_{\theta}^{2}\mathcal{L}(\theta')\right)$ and the top eigenvalue $\lambda_{\max}\left(\nabla_{\theta}^{2}\mathcal{L}(\theta')\right)$ can be efficiently estimated using methods from randomized numerical linear algebra.



Activation-shift Fine-tuning

• Use **MASKED** reversed learning rate during fine-tuning: Given a model whose learning objective is \mathcal{L} , its learnable parameters θ_t are updated at the t_{th} iteration:

$$\theta_{t+1} \leftarrow \theta_t - \frac{\partial \mathcal{L}}{\partial \theta_t}$$

where $\frac{\partial \mathcal{L}}{\partial \theta_t}$ represents the model update gradient.

Correspondingly, the reversed learning process:

$$\theta_{t+1} \leftarrow \theta_t + \frac{\partial \mathcal{L}}{\partial \theta_t}$$

- For each iteration: $\theta_{t+1} = \theta_t \eta \odot m \odot \frac{\partial \mathcal{L}}{\partial \theta_t}$
 - $m \in \{-1, 1\}^{|\theta|}$

Insight: By reversing the update at the important neurons for aligning model activation of the fine-tuning model and the original/backdoored model, we achieve the new model with activation far from the backdoored one.

```
Algorithm 1: PBP
     Input: Fine-tuning data \mathcal{D}_{ft}, initial backdoor model \theta_0, total
                          iteration T, pre-finetune total iteration T', pre-finetune
                          learning rate \eta', learning rate \eta.
     Output: The fine-tuned model \hat{\theta} after T fine-tuning iterations;
 1 /* Neuron mask generation */
 2 Initialize \hat{\theta};
3 for i \in \{1 ... T'\} do
             for batch(x, y) \in \mathcal{D}_{ft} do
                      \mathcal{L}_{align}(x, \theta_0) > calculate alignment loss using Eq. 3:
                  \begin{array}{l} \mathcal{L}_{re} = \mathcal{L}_{ce} \left( f_{\tilde{\theta}} \left( \boldsymbol{x} \right), y \right) + \alpha * \mathcal{L}_{align}; \\ \tilde{\theta} = \tilde{\theta} - \eta' \cdot \frac{\partial \mathcal{L}_{re}}{2\tilde{\theta}}; \end{array}
 9 end
10 \mathcal{N}_m = \operatorname{argmax}_k \|\nabla_{\theta} \mathcal{L}_{re}(\tilde{\theta})\|_2;
11 /* Activation-shift fine-tuning */
12 \mathbf{m} := [-1, 1]^{|\theta|}, where m_i = -1 if i \in N_m else 1;
13 \theta_0 = \theta_0 + \mathcal{N}(0, \sigma^2 I);
14 for iteration t in [1, \ldots, T] do
             for batch (\mathbf{x}, \mathbf{y}) in \mathcal{D}_{ft} do
                  \theta_{\mathrm{t}} = \theta_{\mathrm{t-1}} - \eta \odot \frac{\partial \mathcal{L}_{\mathrm{ce}}\left(f_{\tilde{\theta}}(\boldsymbol{x}), y\right)}{\partial \theta_{\star}};
16
17
             if t \mod 2 = 1 then
                  	heta_{
m t} = 	heta_{
m t-1} - \eta \odot m{m} \odot rac{\partial \mathcal{L}_{
m ce} \left(f_{	ilde{	heta}}(m{x}), y
ight)}{\partial 	heta_{
m t}};
19
21 end
22 return \theta_T
```

Ablation Study: Fine-tuning Dataset Construction

TABLE IX: PBP's efficacy with different overlapping ratios of the fine-tuning dataset with the original training dataset.

Overlapping		AndroZoo		EMBER			
Fraction	C-Acc (†)	ASR (↓)	DER (†)	C-Acc (†)	ASR (↓)	DER (†)	
0.0	96.86	0.89	98.55	96.41	17.58	89.64	
0.2	96.79	0.03	98.95	96.32	17.42	89.67	
0.4	94.98	0.03	98.04	96.14	12.86	91.86	
0.6	94.55	0.03	97.83	96.44	15.20	92.12	
0.8	96.42	0.03	98.76	96.44	15.84	90.52	
1.0	95.92	0.03	98.51	96.47	14.47	91.12	
Backdoored	98.59	99.72	_	98.99	99.43	-	

- Defender can choose to reuse a part of the training data
 - to erase the backdoor as low to 3%
 - implies a practical/flexible way for defender to collect data

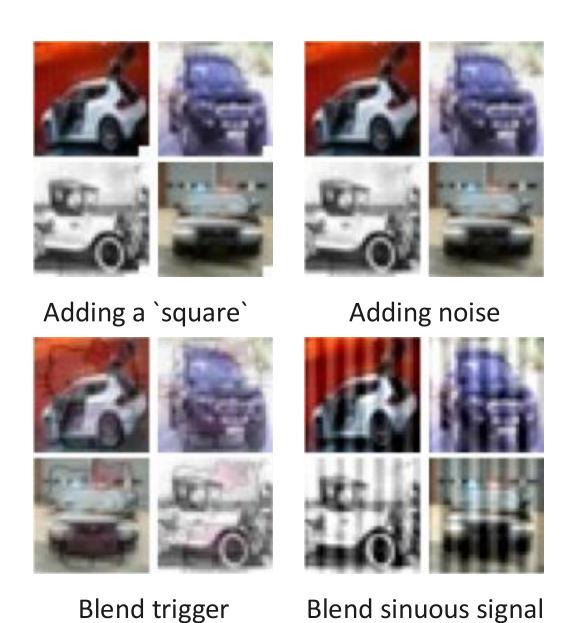
Ablation Study: Fine-tuning Dataset Construction

TABLE X: PBP's efficacy with different positive per negative class ratios with both datasets.

Class Ratio	AndroZoo			Class	EMBER			
	C-Acc (†)	ASR (↓)	DER (†)	Ratio	C-Acc (†)	ASR (↓)	DER (†)	
0.01	96.12	49.15	74.04	0.10	83.21	35.02	74.32	
0.04	96.92	0.14	98.96	0.20	94.02	21.31	86.58	
0.08	96.86	0.89	98.55	0.40	95.81	25.92	85.17	
0.10	96.90	0.27	98.88	0.60	95.87	29.03	85.20	
0.12	97.53	0.00	99.16	0.80	96.93	20.79	88.29	
0.15	97.26	0.07	99.33	1.00	96.41	17.58	89.64	
Backdoored	98.59	99.72	-	Backdoored	98.99	99.43	_	

- Defender can collect more malwares samples, which can indeed improve the performance of PBP
- PBP can work from pos/neg ratio of 0.04:1!

Experiment: Computer Vision Backdoors



➤ PBP outperforms FST (NeurIPS'24) on CIFAR10 dataset with four backdoor attack methods

PDR	Model	Bad	BadNet		SIG		ded
		C-Acc	ASR	C-Acc	ASR	C-Acc	ASR
	No-defense	93.22	83.89	92.23	76.95	92.62	97.89
0.005	FST	88.49	2.02	87.29	17.14	88.79	28.19
	PBP	88.97	2.44	86.47	0.82	87.25	10.32
0.01	No-defense	93.17	87.12	91.47	80.48	92.35	95.47
	FST	89.04	1.53	87.01	13.12	88.67	29.10
	PBP	88.90	2.00	86.27	4.02	88.70	9.40
	No-defense	92.51	90.39	91.68	88.60	93.07	98.54
0.02	FST	88.23	2.13	87.00	6.18	88.94	24.75
	PBP	89.26	2.41	86.11	1.83	88.73	5.21
0.05	No-defense	92.52	94.30	93.20	93.77	93.11	99.44
	FST	89.10	2.61	88.65	8.73	89.81	23.99
	PBP	88.51	3.03	87.40	0.65	89.63	4.63