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Classic ML Pipeline
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Construct Training Set Train/Update Models 

Expanding the training set is time-consuming, costly, and sometimes impractical 
due to analysts’ limited capacity for daily malware sample labeling 
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Active Learning Pipeline
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Construct Training Set Train/Update Models 

Select SamplesLabel Samples 

Test SamplesExpands
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[1] Y. Chen, Z. Ding, and D. Wagner, Continuous learning for android malware detection. USENIX Security 23. 

[2] F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro, Transcending transcend: Revisiting malware classification in the    

      presence of concept drift. S & P.  2022. 

[3] L. Yang et al. CADE: Detecting and explaining concept drift samples for security applications. USENIX Security 21. 

Selection methods: uncertainty sampling [1] ,  utilizing rejection-thresholds [2] , using 

contrastive learning [3]



Train/Update Models 
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• Past approaches have predominantly used basic retraining techniques for model update [1]

• Cold-start learning, involves training a fresh model each time new labels are introduced

• Warm-start learning, continue training an existing model with new samples 

• Our study indicates that neither strategy yields optimal performance when only a few new samples 

    are available

• Our Goal: 

• Core idea

Propose a new solution for model retraining, that surpasses the above two model 

update strategies, when only a small number of new labels are available  

[1] Y. Chen, Z. Ding, and D. Wagner, Continuous learning for android malware detection. USENIX Security 23. 
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An adaptive model should acquire knowledge of common characteristics shared 

by a broad range of malware



Framework Overview
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Binary Collection

Domain adaptation 

on graphs  

Prediction with the

trained model

Shift Adaptation & Prediction

(0.30, ... , 0.22)

(0.02, ... , 0.04)

(0.55, ... , 0.76)

(0.58, ... , 0.99)

(0.55, ... , 0.76)

(0.02, ... , 0.04)

(0.55, ... , 0.76)

Vertex Feature Extraction

Addr_1: mov ecx, 10

Addr_2: cmp ecx, 0

Addr_3: je Addr_6

Addr_4: dec ecx

Addr_5: jmp Add_2

Addr_6: mov eax, 1 

Addr_7: int 0x80

CFG Construction

Addr_1: mov ecx, 10

Addr_2: cmp ecx, 0

Addr_3: je Addr_6

Addr_4: dec ecx

Addr_5: jmp Add_2

Addr_6: mov eax, 1 

Addr_7: int 0x80

ASM Files Collection 

Disassembling

Pretrained Assembly

 Language Model

Disassemble the malware binary to extract the CFG from the assembly code 
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Addr_4: dec ecx
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ASM Files Collection 

Disassembling

Pretrained Assembly

 Language Model

Convert the raw instructions in each basic block of the CFG into feature vectors 

Using a pre-trained assembly language model PalmTree[4] to generate instruction embeddings 

[4] X. Li, Y. Qu, and H. Yin, Palmtree: Learning an assembly language model for instruction embedding.  CCS 2021
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ASM Files Collection 

Disassembling

Pretrained Assembly

 Language Model

The drift adaptation model directly learns from existing and drifted malware CFGs



Shift Adaptation: Model Design 
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• Propose a graph-based domain adaptation (DA) method to address malware drift

• Label Prediction (LP) task, based on the Graph Isomorphism Network (GIN)

• Adversarial Training (AT) task, involving training

   of two networks through minimax optimization

   to predict the input domain (pre-drift or post-drift) 

•  

•  

•  
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Generating Drifted Malware Clusters
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Motivations: Leave-one-out evaluation of malware detectors can overestimate accuracy by not 
verifying actual concept drift. Success with related families can mask a lack of true drift adaptation

• Using the GAE to learn graph representations that could reconstruct the input CFG

• Using a weighted consensus clustering approach that leverages multiple clustering algorithms and 
assigns more weight to predictors that yield better clustering results

Using Graph Auto-Encoder + Consensus Clustering to generate statistically distinct malware 

clusters
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Evaluation on Research Dataset
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• DA methods yield the highest performance, with warm-start learning trailing behind the DA methods 

and cold-start learning producing the lowest outcomes 

• Our method experienced the smallest accuracy drop of 0.5% on average 
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Original Labels New Cluster Labels

Fig 4.  Visualization of the graph feature vector with their labels. The left 

part of the figure shows the data with the original labels from Big 15[5], and 

the right one shows the newly learned clusters. The legend represents the 

mapping between labels and colors.

[5] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ah- madi, Microsoft malware classification challenge, arXiv preprint. 

Fig 3. Given a set of fixed target training labels, we compute the accuracy of 

the target testing data for different baseline techniques and our method. The 

left diagram reports the averaged accuracy based on the original label set of 

Big-15, and the right one reports results based on the cluster label assignment.



Impact of Malware Representations
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•  Our shift adaptation component consistently 

      has the highest accuracy across all feature     

      representations

•  Combining the adaptation approach with our    

      graph representations achieve the best result
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Real World Malware Dataset
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Our approach achieves the same 

prediction accuracy as labeling 75% of 

the data (e.g., 1209/1613 in August and 

1002/1337 in September) with just 200 

labeled samples per month.  A warm-

start strategy achieves the same result 

with 500 samples
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Fig. 7. The averaged accuracy on the target testing data using the 

experimental setup described in Fig. 

Fig 6. Source and target malware datasets setup for the monthly model update 

in July 2024 (Task (a)) and August 2024 (Task (b)).



Multi-family Classification
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Our method improved family-level classification 

by 9 − 14% over the baselines with just 10 new 

samples per family
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Fig 3. Accuracy on post-drift data using 10-45 labeled data 

from each post-drift family. 

Fig 9. Visualization of the decision function learned by the outlier detection 

module: the new family observations are outside the learned frontier. 

The evasion rate for new malware families 

remains consistently low (below 5%)



Conclusion 
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• We address the classification of drifted malware and the challenge of adapting models with limited labels

• We introduce domain adaptation to train graph-based malware detectors 

• Our approach outperforms strong baselines in three distinct adaptation tasks with increasing adaptation 
complexity: 

• Research datasets

• Latest real-world malware samples

• Classification of multiple malware families

• We highlight the importance of validating actual drift occurrences in research datasets

• We show in the Big-15 dataset malware from different families exhibit highly similar characteristics

• Evaluation relying on those family labels is likely to overestimate the accuracy of the prediction 
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Q&A
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• Code: https://github.com/gloryer/malware-detection-concept-drift

• Email: li3944@purdue.edu
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https://github.com/gloryer/malware-detection-concept-drift
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