
Revisiting Concept Drift in Windows
Malware Detection: Adaptation to Real
Drifted Malware with Minimal Samples

Adrian Shuai Li, Arun Iyengar, Ashish Kundu, Elisa Bertino

Presented by

#NDSS2025

Classic ML Pipeline

Presented by

Construct Training Set Train/Update Models

Expanding the training set is time-consuming, costly, and sometimes impractical
due to analysts’ limited capacity for daily malware sample labeling

1

Active Learning Pipeline

Presented by

Construct Training Set Train/Update Models

Select SamplesLabel Samples

Test SamplesExpands

2

[1] Y. Chen, Z. Ding, and D. Wagner, Continuous learning for android malware detection. USENIX Security 23.

[2] F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro, Transcending transcend: Revisiting malware classification in the

 presence of concept drift. S & P. 2022.

[3] L. Yang et al. CADE: Detecting and explaining concept drift samples for security applications. USENIX Security 21.

Selection methods: uncertainty sampling [1] , utilizing rejection-thresholds [2] , using

contrastive learning [3]

Train/Update Models

Presented by

• Past approaches have predominantly used basic retraining techniques for model update [1]

• Cold-start learning, involves training a fresh model each time new labels are introduced

• Warm-start learning, continue training an existing model with new samples

• Our study indicates that neither strategy yields optimal performance when only a few new samples

 are available

• Our Goal:

• Core idea

Propose a new solution for model retraining, that surpasses the above two model

update strategies, when only a small number of new labels are available

[1] Y. Chen, Z. Ding, and D. Wagner, Continuous learning for android malware detection. USENIX Security 23.

3

An adaptive model should acquire knowledge of common characteristics shared

by a broad range of malware

Framework Overview

Presented by

4

Binary Collection

Domain adaptation

on graphs

Prediction with the

trained model

Shift Adaptation & Prediction

(0.30, ... , 0.22)

(0.02, ... , 0.04)

(0.55, ... , 0.76)

(0.58, ... , 0.99)

(0.55, ... , 0.76)

(0.02, ... , 0.04)

(0.55, ... , 0.76)

Vertex Feature Extraction

Addr_1: mov ecx, 10

Addr_2: cmp ecx, 0

Addr_3: je Addr_6

Addr_4: dec ecx

Addr_5: jmp Add_2

Addr_6: mov eax, 1

Addr_7: int 0x80

CFG Construction

Addr_1: mov ecx, 10

Addr_2: cmp ecx, 0

Addr_3: je Addr_6

Addr_4: dec ecx

Addr_5: jmp Add_2

Addr_6: mov eax, 1

Addr_7: int 0x80

ASM Files Collection

Disassembling

Pretrained Assembly

 Language Model

Disassemble the malware binary to extract the CFG from the assembly code

Framework Overview

Presented by

5

Binary Collection

Domain adaptation

on graphs

Prediction with the

trained model

Shift Adaptation & Prediction

(0.30, ... , 0.22)

(0.02, ... , 0.04)

(0.55, ... , 0.76)

(0.58, ... , 0.99)

(0.55, ... , 0.76)

(0.02, ... , 0.04)

(0.55, ... , 0.76)

Vertex Feature Extraction

Addr_1: mov ecx, 10

Addr_2: cmp ecx, 0

Addr_3: je Addr_6

Addr_4: dec ecx

Addr_5: jmp Add_2

Addr_6: mov eax, 1

Addr_7: int 0x80

CFG Construction

Addr_1: mov ecx, 10

Addr_2: cmp ecx, 0

Addr_3: je Addr_6

Addr_4: dec ecx

Addr_5: jmp Add_2

Addr_6: mov eax, 1

Addr_7: int 0x80

ASM Files Collection

Disassembling

Pretrained Assembly

 Language Model

Convert the raw instructions in each basic block of the CFG into feature vectors

Using a pre-trained assembly language model PalmTree[4] to generate instruction embeddings

[4] X. Li, Y. Qu, and H. Yin, Palmtree: Learning an assembly language model for instruction embedding. CCS 2021

Framework Overview

Presented by

6

Binary Collection

Domain adaptation

on graphs

Prediction with the

trained model

Shift Adaptation & Prediction

(0.30, ... , 0.22)

(0.02, ... , 0.04)

(0.55, ... , 0.76)

(0.58, ... , 0.99)

(0.55, ... , 0.76)

(0.02, ... , 0.04)

(0.55, ... , 0.76)

Vertex Feature Extraction

Addr_1: mov ecx, 10

Addr_2: cmp ecx, 0

Addr_3: je Addr_6

Addr_4: dec ecx

Addr_5: jmp Add_2

Addr_6: mov eax, 1

Addr_7: int 0x80

CFG Construction

Addr_1: mov ecx, 10

Addr_2: cmp ecx, 0

Addr_3: je Addr_6

Addr_4: dec ecx

Addr_5: jmp Add_2

Addr_6: mov eax, 1

Addr_7: int 0x80

ASM Files Collection

Disassembling

Pretrained Assembly

 Language Model

The drift adaptation model directly learns from existing and drifted malware CFGs

Shift Adaptation: Model Design

Presented by

• Propose a graph-based domain adaptation (DA) method to address malware drift

• Label Prediction (LP) task, based on the Graph Isomorphism Network (GIN)

• Adversarial Training (AT) task, involving training

 of two networks through minimax optimization

 to predict the input domain (pre-drift or post-drift)

•

•

•

7

Discriminator

Classifier

Shared Generator

Domain

Prediction

Label

Prediction

GIN GIN

GIN GIN

D
en

se

D
en

s e

D
e n

s e

D
en

s e

D
e n

s e

D
en

se

𝑚𝑖𝑛θ𝑓,θ𝑐
{γℒℊ + ℒ𝒸}

𝑚𝑖𝑛θ𝑑
{ℒ𝒹}

Goal: Learn an intermediate representation containing information that remains consistent before and

after the drift while still being sufficient to make a good classification

ℒ𝒸 = −

𝑖=1

𝑁𝑠

𝑌𝑖
𝑠 ⋅ 𝑙𝑜𝑔𝑌𝑖

𝑠 − 𝜆

𝑖=1

𝑁𝑡

𝑌𝑖
𝑡 ⋅ 𝑙𝑜𝑔𝑌𝑖

𝑡

ℒℊ = −

𝑖=1

𝑁𝑠+𝑁𝑡

1 − 𝑑𝑖 𝑙𝑜𝑔 𝑑𝑖 + 𝑑𝑖𝑙𝑜𝑔 1 − 𝑑𝑖

ℒ𝒹 = −

𝑖=1

𝑁𝑠+𝑁𝑡

𝑑𝑖𝑙𝑜𝑔 𝑑𝑖 + 1 − 𝑑𝑖 𝑙𝑜𝑔 1 − 𝑑𝑖

Generating Drifted Malware Clusters

Presented by

Motivations: Leave-one-out evaluation of malware detectors can overestimate accuracy by not
verifying actual concept drift. Success with related families can mask a lack of true drift adaptation

• Using the GAE to learn graph representations that could reconstruct the input CFG

• Using a weighted consensus clustering approach that leverages multiple clustering algorithms and
assigns more weight to predictors that yield better clustering results

Using Graph Auto-Encoder + Consensus Clustering to generate statistically distinct malware

clusters

8

Evaluation on Research Dataset

Presented by

• DA methods yield the highest performance, with warm-start learning trailing behind the DA methods

and cold-start learning producing the lowest outcomes

• Our method experienced the smallest accuracy drop of 0.5% on average

9

Original Labels New Cluster Labels

Fig 4. Visualization of the graph feature vector with their labels. The left

part of the figure shows the data with the original labels from Big 15[5], and

the right one shows the newly learned clusters. The legend represents the

mapping between labels and colors.

[5] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ah- madi, Microsoft malware classification challenge, arXiv preprint.

Fig 3. Given a set of fixed target training labels, we compute the accuracy of

the target testing data for different baseline techniques and our method. The

left diagram reports the averaged accuracy based on the original label set of

Big-15, and the right one reports results based on the cluster label assignment.

Impact of Malware Representations

Presented by

• Our shift adaptation component consistently

 has the highest accuracy across all feature

 representations

• Combining the adaptation approach with our

 graph representations achieve the best result

10

Real World Malware Dataset

Presented by

Our approach achieves the same

prediction accuracy as labeling 75% of

the data (e.g., 1209/1613 in August and

1002/1337 in September) with just 200

labeled samples per month. A warm-

start strategy achieves the same result

with 500 samples

11

Mar April May July Aug

Source MW
Target

 train MW

 Target

test MW

Mar April May Aug Sep

Source MW
Target

 train MW

 Target

test MW

2024

Task (a) Task (b)

2024

Fig. 7. The averaged accuracy on the target testing data using the

experimental setup described in Fig.

Fig 6. Source and target malware datasets setup for the monthly model update

in July 2024 (Task (a)) and August 2024 (Task (b)).

Multi-family Classification

Presented by

Our method improved family-level classification

by 9 − 14% over the baselines with just 10 new

samples per family

12

Fig 3. Accuracy on post-drift data using 10-45 labeled data

from each post-drift family.

Fig 9. Visualization of the decision function learned by the outlier detection

module: the new family observations are outside the learned frontier.

The evasion rate for new malware families

remains consistently low (below 5%)

Conclusion

Presented by

• We address the classification of drifted malware and the challenge of adapting models with limited labels

• We introduce domain adaptation to train graph-based malware detectors

• Our approach outperforms strong baselines in three distinct adaptation tasks with increasing adaptation
complexity:

• Research datasets

• Latest real-world malware samples

• Classification of multiple malware families

• We highlight the importance of validating actual drift occurrences in research datasets

• We show in the Big-15 dataset malware from different families exhibit highly similar characteristics

• Evaluation relying on those family labels is likely to overestimate the accuracy of the prediction

13

Q&A

Presented by

• Code: https://github.com/gloryer/malware-detection-concept-drift

• Email: li3944@purdue.edu

14

https://github.com/gloryer/malware-detection-concept-drift

	Slide 0: Revisiting Concept Drift in Windows Malware Detection: Adaptation to Real Drifted Malware with Minimal Samples
	Slide 1: Classic ML Pipeline
	Slide 2: Active Learning Pipeline
	Slide 3: Train/Update Models
	Slide 4: Framework Overview
	Slide 5: Framework Overview
	Slide 6: Framework Overview
	Slide 7: Shift Adaptation: Model Design
	Slide 8: Generating Drifted Malware Clusters
	Slide 9: Evaluation on Research Dataset
	Slide 10: Impact of Malware Representations
	Slide 11: Real World Malware Dataset
	Slide 12: Multi-family Classification
	Slide 13: Conclusion
	Slide 14: Q&A

